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Composition and analysis of music using
Mathematica

Christopher W. Kulp, Marianella Machado, and Dirk Schlingmann

Abstract
In this paper we demonstrate how to create and analyze musical compositions using Matie-
matica. In §1, we begin by demonstrating how to create a musical composition for an
orchestra based on the butterfiy curve using traditional means. In §2, we then show how a
computer generated piece based on any curve can be composed using Matirematica. Finally,
in §3 we show how Mathematica can be vsed to analyze musical compositions using the
methods from nonlinear time series analysis.

1. The composition of an orchestral piece using the butterfly curve

1.1 The relationship between music and mathematics

In the composition of a musical work, it is common to find that musical transformations are closely
related to geometric transformations [1]. For example, in musical terms, o geometric reflection oceurs
when notes are symmetric about some line in a staff. In this paper, we sudy the relationship between
music and mathematics through the use of Mathematica. This approach is based on the premise that
the compositional process of a musical work could be generated from a graph of a mathematical
expression by using geometric transformations as patterns for musical transformations.

In this attempt, the graphical expression of a parametric curve executed through Mothematica is taken
as a starting point for determining the compositional features and creating form in an acoustical piece.
The following section contains a description of the compositional process of an orchestral work based
on a butterfly curve [2].

= rlt_] := {Sin[t] (e®*!*] - 2cCos[4t] + Sin[t/12]%),

Cos[t] (e®*!*] —2Cos[4 t] +Sin[t/12]%)};
ParametricPlot [ri{t], {t, 0, 48}];

Mathemutico in Education and Research Vol12 No.l 2007 @ dJournals.nel



2 Christopher W.Kulp, Marianella Machado, and Dirk Schlingmann

Fig. 1 The butterlly curve.

The creative process for this composition will be done in two steps. Step one refers to the musical
parameters that would be equivalent 1o the butterfly curve and how they function in order to generate a
theme as the basis of the composition. For example, the x and y axes correspond to duration and pitch,
respectively. The second step takes elements from the first step and creates a complete musical form
for an orchestral piece. For more tnformation, the interested reader is directed to [3].

1.2 The musical parameters and their equivalent parameters in a butterily curve

In this musical representation of the butterfly curve, the horizontal axis refers to duration and the
vertical one, to pitch., A measure is created as follows:

; L, 2 e e e
v e e S —

Fig. 2 Creation of a measure of music using one section of the butterfly curve.

Mathematica in Education and Research Vol 12 Ne.t 2007 @ ilournzls.net




Composition and analysis of music using Mathematica 3

Notice that in Fig, 2 the path of the butterfly curve and the notes in the piece are related. As the
parameter, 7, of the curve increas‘es, the curve follows the direction of the arrow. Notice how the pitch
of the notes increases then decreases as suggested by the curve. Further, note that the x axis crosses the
v axis at y=F}, The scale in Fig. 2 was chosen to accommodate the register for a treble cief instru-
ment, e.g. a violin.

As the graph below shows, a similar procedure is used to create three measures:

D

!Tl

’ Fig. 3 Four lobes of the butterfly curve, with arrows denoting the progression through the curve
: as its parameater, 1, increases.
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Fig. 4 Four measures as created by the buiierfly curve in Fig. 3.

In Fig. 3, as in Fig. 2, the first measure is formed by the lobe in Quadrant [. As the curve’s parameter
increases, more lobes are formed. The second measure is formed by the lobe that straddles the negative
x axis. Continuing along the curve, the third measure is created by the fobe in Quadrant I'V. Finally, the
fourth measure is created by the lobe that straddles the positive y axis. A similar process will be used
to compose the [6-measure theme of the piece. For more details about the composition of the orches-
tral piece, the interested reader is referred to [3].

Mathematica in Educarion and Researclt Vol.12 No.1 2007 ©® idournals.net



4 Christopher W.Kulp, Marianeila Machado, and Dirk Schiingmann

1.3 The compeositionaj Process that unfolds over time, following the butterfly curve

The path of the butterfly curve draws different curve lengths and shapes in each quadrant. Therefure,
Some measures will have more nates than others, Also, its visual fepresentation has g mirror-like
structure. This implies that some measures will be mirror images of others, Follewing the procedure
above, one can develop the melodic theme as well as create the harmonic plan of the piece,

The musical discourse consists of four distinetive parts. The first part consists of the 16 measures
shown above. The second part consists of 32 measures where we double the length of the tones in the
original 16 measures. We can continue this process to create a 64-measure section and a 128-measure
section. Up to this point, there are 240 measures, However, these 240 measures are not the composi-
tion itself, but rather, they provide the building blocks of the compasition.

We create the musical piece using the butterfly curve again, This time we use a fooser interpretation of
the buiterfly curve for a musical purpose. In particular, the elements of the y axis correspond to

2. Using Mathematica to create computer generated musical
compositions

With Mathematicn it is easy to create sound whose amplitude is given by a function /. For example,
Play[Sin[44O*2*Jr*t} « {t, 0, 1} playsa pure tone with a frequency of 440 Hg, Hence
tools tike Mathematica can be used to create new music. Let us demonstrate how random points in a
three-dimensiona] Space or points on a parametric curve can be turned into musical compositions,

2.1 Musical representation of random points in three-dimensional space

in a simplified way, a traditional musical composition is a collection of finite tones (frequencies) that
are played at certain times for certain durations. A three-dimensional point {x, v, z} could be inter
preted as a tone thar is played at time x (measured in seconds), with frequency y (measured in Hz), for
a duration z {measured in seconds), In this fashion, a Hsr of three-dimensional points represents a
musical composition.

Here we ook at a list of twa three-dimensional points,
{10.655309, 217.4] L. 0.740096), {3.53015, 620.608, 1.63959}). The corresponding  composition
consists of two tones, The first tone is played after 0.655309 seconds, with frequency 217.411 Hz, for

1.65959 seconds,

To turn these points into a musical compasition, we first create a function, composition [t]:

ngl:= composition {t J:=
Piecewise[{{0, ¢ < 0.655309}, {Sin[217.41142 *nwt],
(t 2 0.655309) && (t < 0.655309 +0.740096)})1 +
Piecewise[{ {0, t < 3.53015%, {(8inf620.606 %2 » s t1,
{(t =2 3.53015) 5g (t <3.53015 + 1.65959) 131;

Play[Evaluate [composition [t1].
{t, 0, Max[{0.655309 + 0.740096, 3.53015 +1.65959}]3}];

Mathematica in Education e Research Vol12 Noo 2007 © iJournals.ngt




Composition and analysis of music using Mathematica 5

Of course, we might need to scale the coordinates of the three-dimensional points to reasonable values
so that the times (when tones are played), frequencies, and durations are in acceptable ranges. For
example, we do not want to include negative durations or frequencies outside the range of human
hearing. 000000000000000

Now we bring all these individual steps together into a program calied ereateMusic, which tkes
any finite list of three-dimensional points as input and turns it into a composition. As a side effect, a
three-dimensional graph of the scaled three-dimensional points will also be displayed.

ingl= Clear[createMusic};
Options [createMusic] = {TimeRange - (0.0, 30.},
FrequencyRange - {164.81, 1244.3},
DurationRange -~ {0.25, 3.0}};

createMusics:usage = "createMusic creates a
musical composition from a list of triplets";

TimeRange::usage =
"TimeRange is an option for the createMusic function.
The input for TimeRange consists of a list of
two elements, {x%,y}; where x is the time (in
seconds) when the composition begins, and y is
the time {in seconds) when the composition ends";

FreqguencyRange : :usage =

"FrequencyRange is an option for the createMusic
function. The input for FrequencyRange consists
of a list of two elements, {x,y}; where x is
the minimum frequency (in Hertz) played, and ¥y
is the maximum frequency (in Hertz) played"”;

DurationRange::usage =
"purationRange is an option for the createMusic function.
The input for DurationRange consists of a list of
two elements, {x,y}; where x is the shortest time (
in seconds)for which a tone played, where x is the
longest time (in seconds)for which a tone played.”;

createMusic::"errl” = "Invalid time range.";

It

createMusic::"err2"”
"Invalid frequency range. Min and max frequencies must be
between 100 and 20000 Hz with min freq < max freq.";

createMusic::"err3d” =
"Tnvalid tone duration range. Minimum tone duration must
be positive and less than maximum tone duration.”;

createMusicidata_, opts ] :=
Module[{ldata, events, default, whenmin, whenmax,

freqmin, fregmax, durmin, durmax, xmin, xmax, ymin,

Mathematica in Educarion and Research Yol12 No1 2007 @ ilournals.net



Chrigtopher W.Kulp, Marianelia Machade, and Dirk Schlingmann

ymax, zmin, zmax, whenscaled, whenslope, fregscaled,
freqslope, durscaled, durslope, scaleddata, sorteddata,
when, freq, dur, composition, compositionLength, t},
ldata = N[data];

events = Length[ldata];

{{whenmin, whenmax}, o
{fregmin, fregqmax}, {durmin, durmax}} =
{TimeRange, FrequencyRange, DurationRange} /. {opts} /.
Options[createMusic];

If[whenmax s whenmin || whenmin < 0,
Message [createMusic:: "errl”]; Return [$Failed] ];

1f[freqmin < 100 || freqgmax > 20000 | | fregmin =z freqmax,
Message [createMusic:: "err2"]; Return [$Failed]];

If[durmin < 0 | | durmax < durmin,
Message [createMusic::"err3"]; Return [$Failed]];

{{xmin, xmax}, {ymin, ymax}, {zmin, zmax}} =
{Min[#], Max[#]} & /@ Transpose[ldatal;

If[xmin == xmax, whenslope = 0.0,

whenmax - whenmin
whenslope = . ] f
xmax - Xxmin

If[ymin == ymax, fregslope = 0.0,

fregmax - fregmin
ymax ~ ymin ]

1£[zmin == zmax, durslope =0.0,

r

fregslope =

durmax - durmin
durslope = - ] ;
zmax - zmin

sorteddata = Sort [ ({whenslope, fregqslope, durslope}
(# - {xmin, ymin, zmin}) +
{whenmin, freqmin, durmin} &) /@ ldata];

{when, freyq, dur} = Transpose [sorteddatal;
Langth {sortaddata }

composition[t_] = Z Piecewise|
i1

{{0, £t <when[il}, (Sin[freqg[[i]l *2 s« L],
{t = when[i]) && (t < when[i] + dur[i]) }}];

compositionLength = Max [when + dur];

Show(
Graphics3D[{

Mathentarica in Education and Research Vei12 Mol 2007 © idournals.net




Composition and analysis of music using Mathematica

{Black, AbsocluteThickness[0.8],
Line[{{1, 0.01, 1} #, {1, 0.01, O} #}] & /@ sorteddata},
{Red, PointSize[0.02], Point[{1, 0.01, 1} #] & /@
sorteddata}l,
{Blue, AbsoluteThickness[1.0],
Line[({1l, 0.01, 1} 4 &) /@ sorteddatall,
Play[Evaluate [compositionft]], {t, when[1],
compositionLength}l, DisplayFunction =+ Identity,
SampleRate - 2 xMax[freqg]][1]1} 1.
ViewPoint » {1.300, -2.400, 2.000},
BoxRatios - {3, 1.5, 0.75}, ImageSize - 400,
AxesLabel + {"when (s)", "freg x 10°? Hz", "dur (s)"}];

]

in[1gl= Clear [data];

data =
Table [ {Random[Real, {-30, 30}], Random[Real, {~-50, 50}],

Random [Real, {-2&, 20}]}, {1, 1, 100}];

createMusic{data, TimeRange - {0, 10},
DurationRange -» {0.1, 0.2}, FrequencyRange -+ {100, 1000}]

when (s)

10

Fig. 5 A plot of the musical variables created from random dala.

Mathematica in Education and Research Vol12 Ng.1 2007 © iJournals.nel



8 Christopher W.Kulp, Marianella Machado, and Dirk Schiingmann

2.2 Discrete musical representation of two-dimensional parametric curves

We can also experiment with data that originates from two-dimensional parametric curves. Instead of
picking random points in a three-dimensional space as in §2.1, we choose points {t, r[t][1].
r{t]1J2]} where rft]={r[t][1], =r{tI[2]} represents any two-dimensional parametric
curve, t represents the time (when the event occurs or when the tone is played), r{t][1] represents
the frequency, and r[+] [2] tepresents the duration. Again, the ranges for r [£]1 {11 and [t} g2]
might need scaling to get reasonable frequencies and durations.

For example, here is a parametric representation of the butterfly curve, [2]. For its two- dimensional
parametric plot, see Fig. L.

In[211:’= Clear(r};
rlt_1 := {Sin{t] (™! _2Cos(4 t] +Sin[t/12]°%),
Cos[t] (e[t - 2Cos[4t] +8in[t/12]°)};

Now we create data that is used in §3 and thar is based on the parametric curve {t, r[t][i1],
e[t} [2]} where r[t] represents the butterfly curve from above. Instead of creating random times
when tones should be played, we would like a tone to be played every quarter second. A quarter
second represents a 1/ 16 note in traditional music scoring. If we would like to use 3 /4-measures, then
one 3/4-measure equals 3 seconds and has 12 (1/16) notes. To create a composition of sixteen
measures, we need 48 = 3% 16 seconds or 192 = 16x 12 (1/16) noses.

nR3)= Clearfdata, i, j];
data = Table[{j = i 0.25, =[§][38, r[il@2L}, {i, 1, 192}]1;

Here is a three-dimensional plot of the data points and the parametric curve Prepend[r[t],
ti={t, r[t]1[1], r[t][2]}.

In2sl= Clear {p3DPlot];
p3DPlot = ParametricPlot3D[Prepend[r([t], t],
{t, 0, 48}, AspectRatio + Automatic,
ViewPoint » {4.0, -0.5, 1.0}, PlotPoints - 300,
BoxRatios - {3, 0.7, 0.7}, DisplayFunction -» Identity];

Clear[points];
points = Table[ {Red, PointSize[0.02], Poxnt{datalll]]} Y,
{i, 1, Length[data]}]:

Clear[pointsPlot];
pointsPlot =
Show([Graphics3D[points], ViewPoint » {4.0, -0.5, 1.0},
BoxRatios -+ {3, 0.7, 0.7}, DisplayFunction —+ Identity];

Show [ {pointsPlet, p3DPlot},
DisplayFunction —» $§DisplayFunction, ImageSize - 188];

Marthematica in Education and Research Vol12 No.t 2007 © iJournals.ngt
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20

40

) 0 2

Fig. & A three-dimensianal rendering of the butterfly curve. The red dots denote locations on the
curve which are used o generate the composition.

Here is the musical representation of the data.,

ma2;= createMusic[datal
{» Pick the default option settings. *)

when (8)

Fig. 7 A plot of the musical variables used in the cornposition generated from Fig. 6.

Marthemarica in Education and Research Vol 12 No.1 2007 ® ilournals.net



10 Christopher W.Kulp, Marianella Machado, and Dirk Schlingmann

2.3 Continuous musical representation of parametric functions

We could alse tum the individual components of the parametric function r that created the butterfly
curve into continuous and overlapping meledies as demonstrated below. The possibilities are endless
for creating interesting and intriguing sounds and music. Explore and have fun.

inaap= Clear(f, g, t];

£lt_]=r[101];

gle_]=rftil2];

Clear[freqgmin, freqmax, xmin, xmax, xfregsqualed,
ymin, ymax, yfreqsqualed, scaledPlot];

xmin = ~-4.0;

xmax = 4.0;

ymin = -3.0;

ymax = 4.0;
fregmin = 164.81;
fregmax = 1244.5; ' -

freqmax - freqmin . .
* (x - xzmin) + £regmin;

xfregscaled[x_]

xmax - xmin
fregmax - fregmin

e —r— * (y - ymin) + freqmin;

vireqscaled{y_]

Play[S8in[2.0 % Pi »xfregscaled[f[t]] »£] +
Sin[2.0+Pi + yfregscaled[g[t]] xt], {t, 0.0, 2.0« Pi}}];

3. Using time series to find patterns in musical compositions

In this section, we study compositions in order to find some patterns which may not be apparent by
simply listening to the piece. In order to analyze the composition mathematically, we can convert it
into o time series. A time series is simply a list of numbers which are the measured value of some
physical quantity at some regular time interval, A¢. Time series are typically written in the form:

S=[5h S2s e Fiy oy Su] (l) H

where, the number s, is the vaiue of the measured quantity at a time of jArs after the initial measurement
(which, without loss of generality, we assume to be at ¢ = 0).

The methods of time series analysis provide a powerfud rool in extracting information from the measure-
ments of a physical system [4, 5]. In this section, the system of interest will be musical compositions.
Using time series analysis on musical compesitions is not new. In references [6] and [7], analysis was i
done on digital recordings of various compositions. Mathematica can easily impore digital recordings. :
However, the time series that Mathematica generates to represent the recording may not be useful in
some analyses. [n the following sections, we will discuss how to generate a time series from a composi-
tion as well as demonstrate two different anzlyses that can be done with compositions.

3.1 Generating time series from music

Mathematica can impors digitally recorded music, in the form of .wav files, and convert them into a
time series. The time series produced by Mathematica contains information about the amplitude of the
sound measured at the sampling rate at which the music was recorded. For many spplications, this is

Mathematica in Edneation and Research Vol.12 Npo.i 2007 © iJournals.nat




Compaosition and analysis of music using Mathematica 11 .

sufficient. However, the amplitude information is performer-dependent, meaning that the performer
has a large influence on the value of the amplide at any give time. Different performers may play the
same pieee at different amplitudes leading to twe different time series for the same piece! This can be
a problem if one is searching for patterns in compositions written by one composer, or if one is compar-
ing compositions by various composers, In order to do such comparisons, we need a time series
representation of the piece which is performer-independent. As we will see, we can produce such a
time series directly from the piece’s sheet music.

We demonstrate how to generaie a time series from sheet music by using the exampie illustrated in
Fig. 8.

f“h’
\)

Fig. 8 Three measures of a song from which we wili generate a time serigs.

We begin by noting that our time interval between elements of the time series will be, &7 =1/16 nose.
A quarter-note, for example, will be represented by four sequential elements in the time series.
Because this composition is in 3 /4 time, each measure will produce {2 elements of the time series. We
chose 1/ 16 note for our interval because this is the shortest note that is most commonly used, Convert-
ing to a time interval of a 1/32 note is straightforward. The clements of the time series are the fre-
quency of each note, The first measure contains: one A4 (440 Hz) 1/8 note which makes up two
sequential elements of the time series, one Cs (523.35 Hz) 1/8 note which makes up two elements,
and two |/ 4 rests (0 Hz) each consisting of four elements. The time series for the first measure is:

Inj47}= Measurel = {440, 440, 523.35, 523.35, 0, G, 0, 0, 0, O, O, 0};

It is clear that for longer compositions, this process can be quite tedious. We can use Mathematica to
speed up this process. Let’s begin by identifying the notes that nppear in the composition and their
corresponding frequencies. The other notes that appear are: Gy (392 Hz) and E; (65%.25 Hz). We
assign each note its frequency value:

infad)= Ry = 440; Cs = 523.35; G, = 392; E; = 659.25;

Next, we write each measure in Mathemarica. Each measure is represented as a list of ordered pairs.
The first element of each ordered pair is the note, and the second element is the number of I/ }6-notes
for which the note is played: 5

n[4o}= measure = Table[Null, {i, 1, 31];
measure[l] = {{A;, 2}, {Cs, 2}, {0, 4}, {0, 2}};
measure[2] = {{Cs, 8}, {Gs, 4}};
measure[3] = {{&q, 4}, {Es, 4}, {Gy, 41};

Next, we expand each measure into a variable called BxpandedMeasure. For example, measure][
17 should be expanded into ExpandedMeasure[1] which should be equal 10 Measurel.

inf53):= padNotes[{note_, len_}] := PadRight[{}, len, note];
ExpandedMeasure = Flatten /& Map[padNotes, measure, {2}];

Mathematicn in Education and Research V¥ol12 No.1 2007 ® iJournais.net



12 Christopher W.Kulp, Marianella Machado, and Dirk Schiingmann

Next, we form the time series for the whole song:

5= plece = Flatten[ExpandedMeasure];
ListPlot[plece,
FrameLabel » {"n", " Frequency"}, PlotJoined —» Truel;

600 |
500

B
o
S

[ )
o
(=)

Frequency

200 ¢
100 ¢

5 i0 15 20 25 30 35
n

Fig. 9 The time series generated from Fig. B.

Using this technique, we can then begin to analyze and compare the time series generated from various
musical compositions. We note that using this technique we can not distinguish between, say, an Aq
[/2-note and two consecutive Ay 1/4-notes. Including such information would complicate the time
series. However, including such information is an interesting problem for future research.

3.2 Visualization of compaositions

In this section, we will produce visualizations of compositions produced from the butterfly curve in §1
and 2 using a method similar to that used in [6] and [7].

Consider the time series in eqn (1). To embed 2 time series, we need to create a coordinate syster
from the time series. This is done by forming & list of ordered pairs from the time series,

{{s1s Starh {51, Saerly won [Su-r- sa)l 2

How do we choose which two elements of a time series to pair-up as coordinates (i.e. how do we
choose 1. also known as the delay)? One method to determine T is to use the first minimum of the
average mutual information [8}:

psis Sier) ),

MI(T) = Z p(s;,5i+r)l°gz{m

ST

)

whete p(s;) is the probability that the element 5; appears in S, and the joint probability, pls;, Sir) 8
the probability that the pair {s;, 5;+r} appears in the time series. The logarithm is taken fo base two 10
give units of bits. One way of interpreting eqn (3} is that it telis us how much information (in bits) on
the average is known about the measurement Su.c. when a measurement of s; is made. Coordinates in
R* are composed of independent quantities; hence, we want the coordinates for our visualization to
also contain guantities which are as independent as possible but are aiso closely related in time. By
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convention, the first value of 7 for which there is a local minimum of MI{7) is the delay used for the
embedding.

There is one more note that needs to be made about computing the average mutual information.
Typically one symbolizes the time series before performing calculations. For example, in this article
we symbolize a data set by choosing some number which serves as a threshold. If an element has a
value preater than the threshold, that element is assigned the value (or symbol) of I; otherwise, it is
assigned a value {or symbol) of 0. For this paper, we will choose the threshold which maximizes the
resulting binary series Shannon Entropy [9, 10]. Symbolizing time series is done for many reasons,
such ns speeding up calculations for larger series. For more information on symbolization, the inter-
ested reader is referved to [11].

We begin by looking ar the visualization of the |6-measurc theme created from the butterfly curve
without using Mathematica (§1). The time series representation of this piece is created from the weble
staff of the piece using the second method discussed in §3.1.

Inj57)= songtrad = Flatten[Import["bftradtrebel .xls"]};
ListPlot [songtrad, FrameLabel -+ {"i", "frequency”}];

1200
1000 |
o)
o 800 |
[}
&
& 600}
400 |
200
0 50 100 150

Fig. 168 The time series generated from the part of the composition discussed in §1.

Nex1, we will compute the mutial information for this series to find the proper lag for the embedding.
We begin this process by binning up the series songfrad into a binary series, using the threshold which
maximizes the Shannon Entropy of the binary series.

&
v

injsaj= threshold = 3B1;
s = Table[IntegerPart [1f[songtrad[i] > threshold, 1, 0]],
{i, 1, Length([songtrad]}];

(» probability that element x appears in the time series *)
p[x_] := Count[s, x] /Length([s};

po[U = Table[ (s[i], s[i + z]}, {i, 1, Length[s] - t}];
pilx_, y_} == Count[U, {x, y}] /Length[U];
(» pj computes the joint probability «)

(+ ML, is the mutual information for delay r «)
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MI, =Sum[1f[Pj [il j] =0, 0,
pjli, jl «Logl2, pjli, 31/ (P[] +*P[ID)1],
{i, 0, 1}, {3, 0, 1}], {=, 0, 20}]

mutualinfo = Table [N[MI., 3], {t, 0, 20}];
ListPlot [mutualinfo,

FrameLabel + {"Time Delay + 1", "Mutual Information"},
PlotStyle - PointSize[0.02]];

1 F

Mutual Information
o o o
P 4>} o

o
o

5 10 15 20
Time Delay + 1

Fig. 11 A plot of the mutual information as a function of time delay from the time series generated i
from the composition discussed in §1. !

It is difficult to tell where the first minimum of the mutual information occurs in Fig. 11. However, we
can use the below calculation te show that the first minimum occurs at v = 8. Using this time lag, we
can create our visualization.

Inlgs)= First[Flatten[Position[mutualinfo, Min[mutualinfo]]]) - 1;
Ingsl= € = 8;
phase2Dt = Table[ {songtrad[i], songtradfi + tl},
{i, 1, Length[songtrad] - t}];

ListPlot [phase2Dt, FrameLabel -» {"s;", "s:1.8"}1;

Mathematica in Education and Research Vol12 Na.1 2007 @ iournais.net




Composition and analysis of music using Mathematica 15
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Fig. 12 A visualization of the composition from Saclion 1.

Next, we will repeat the process for the piece composed using Mathematica in Section 2.

Ingo}= songmath = Flatten [Import["bflymath.-x1s"]];
ListPlot [songmath, FrameLabel -+ {"i", “freguemey'}];

1200
1000
800 |

600

frequency

400

200

0 50 100 150
i

Fig. 13 The lime series generated from the compositian developed in Fig. 7.

Using a similar process as above, we can compute the mutual information and create 8 vig)ualization.
We found that the first minimum of the mumal information in this case is at T =3. Note that the
threshold we used for converting this data into a binary series is 707. Although the first minimum
occurs at T = 3, we find that a more interesting visualization is made when we choose T = 5, the second

minimum of the mutual information.

In71]= T = 5;
phase2Dt = Table[{songmath[i], songmath{i + tl},
{i, 1, Length[songmath] - t}];

ListPlot [phaselbt, PlotStyle - PointSize[0.02],
FrameLabel -» {"s;", "Si.s"}];
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Fig. 14 A visualization of the composition from Fig. 7.

[t is important to note that using the first minimum of the mutual information is simply a guide for
choosing the delay. Choosing different delays is equivalent to choosing different coordinate systems
for the visualization. Since the goal here is the creation of a visualization and not an approximation of
the system’s phase space, we can be flexible with our choice of delay,

3.3 Transfer entropy and piano music

Once a composition has been reduced to a time series, there are many calculations which can be
performed to extract inforrnation about the structure of the composition. For example, piano music
contains two staves. One staff is known as the reble staff (top staff) and is usually played by the riglt
hand. The other is known as the bass staff (bottom staff} and is usually played by the left hand.
Together, these are known as the grand siaff. Usually, the melody is provided by the treble staff and
the harmony is provided by the bass staff.

A natural question io ask is, “Can we demonstrate whether the notes played by one hand influence the
notes played by the other?” This question can be answered by computing something known as the
transfer entropy [12]:

plti, i, b plt)

TB-T)= ). plhws. i, b)log, FTRSITRNL @)

| TPy

plbicy, &, Biyp(hy)

Nr-=58= Z p{b.-n,!nbs)loggm- (5)

By o lri By

The transfer entropy computes how much information is exchanged between two time series B and T
and in which direction that information is exchanged. The {irst (second) equation gives the number of
bits of predictability given to series 7'(8), by series B(T). Hence, if T(B — T is large, then the series 8
greatly influences (or drives) series T. When computing the transfer entropy between time series, we
must symbolize the series just like in the mutual information calculation. For more information on the
transfer entropy, the interested reader is referred to [12].

We will compute the transfer entropies for part of Beethoven’s Fur Elise (sheet music freely available
at [13]). We generate the time series from the ¢reble (T) and bass (8) staves as described in §2. We
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then symbolize each series into a binary one using the threshold which maximizes the Shannen
Entropy.

Inf74}= T = IntegerPart [Flatten [Import ["furelisebinarytreb .x1s"11];
B = IntegerPart [Flatten [Import ["furelisebinarybass.xls"]]];
TT = Table[ {Tfi + 11, T[il}, {i, 1, Length[T] - 1}1;
BB = Table[{B[i+ 17, B[iJ}, {i, 1, Length[B] -1}];
TB = Table[{T[i], BEil}, {i, 1, Length[T]}];
T8 = Table [{T[i + 1], T[il, BLiJ}, {i, 1, Length[T] - 1}};
BTB = Table[{B[i + 1], T[i], BIil}, {i, 1, Length{T] - 1}};

Next, we generate the probability functions:

Ingil= Pt[z_] := Count [T, z] /Length[T];
Pb[z_] :=Count[B, z] /Length[B];
Pttfu_, v_] := Count[TT, {u, v}] /Length[TT];
Pbh[u_, v_] i= Count[BB, {u, v}] /Length[BB];
Ptb[u_, v_] := Count[TB, {u, v}] /Length[TB];
Pttb[u_, v_, w_] := Count {TTB, {u, v, w}] /Length[TTB];
Pbtb{u_, v_, w_] := Count [BTB, {u, v, w}] /Length[BTB];

where Pt = pl;), Pb = p(b;), Ptt = pltiaq, ), Pbb = p(bi1. b)), Btb = p(t, b)),
Pttbh = P("i-i-l: Iis bj), and Pbtb = p(b,'.,,] s diy b,)

Next, we compute the transfer entropy in each direction.
mge)= Needs ["Graphics Graphices™"];

{(x T(B=T) %)
Tht = Sum[If[Pttb[i, j, k] =0, 0, Pttb[i, j, k] »
Log[2, (Pttb[i, j, kI +Pt[j])/ (Ptb[], k] «Pte[i, j1)]1],
{i, o0, 1}, {3, O, 1}, {k, O, 1}];
{x T(T=B) )
Ttb = Sum[If[Pbtb[i, j, k] =0, O, Pbtb[i, j, k]
Log[2, (Pbtb[i, j, k] *Pb{k]) / (Pth[j. k] +Pbb{i, k])11,
{i, 0, 13}, {i, 0, 1}, {k, 0, 1}];

BarChart[[{Tht, Ttb}, BarLabels » {"T(B-T)}", "T(T-B)"}]1;*
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Fig. 15 A plot of the transfer entropies between the time series generated from the bass (B) and
trable {T) staff of the first part of Fur Elise.

From the transfer entropy calculation, we can see that the bass influences the treble much more
strongly than the treble influences the bass. In terms of predictability, the bass gives almost ten times
as many bits to the treble as the treble does to the bass. While further studies are required, the rransfer
entropy may be one way to demonstrate how a composer’s musical style changes with time. [t may
also serve as a means of identifying the composer or type of piano music.

As we can see, there are many different analyses that can be done to a composition once it has been
converted to a time series. One of the furure goals of this research is to identify means of classifying
classical music by its composer. While we believe that we have a basic tool for converting the composi-
tion into a time series, we must continue to work to find the method of analysis which will serve as the

classifier.

4. Conclusions

We have shown that 2 musical composition can be created using a curve., The composition can be
created using either traditional means, as demonstrated in §1, or by using Mathematica, as demon-
strated in §2. Further, musical compositions can be analyzed using the methods of nonlinear time
series analysis in the Mathematica computing environment. Using these analytical methods, we can go
beyond visualization and begin 10 study the structure of the music itself {e.g. the transfer entropy

calculation of Fur Elise).
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