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RESEARCH ARTICLE Open Access

From algae to angiosperms–inferring the
phylogeny of green plants (Viridiplantae) from
360 plastid genomes
Brad R Ruhfel1*, Matthew A Gitzendanner2,3,4, Pamela S Soltis3,4, Douglas E Soltis2,3,4 and J Gordon Burleigh2,4

Abstract

Background: Next-generation sequencing has provided a wealth of plastid genome sequence data from an
increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of
numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all
green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000
species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life
forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring
a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data.

Results: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete
or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered
well-supported backbone relationships and strong support for relationships that were not observed in previous analyses
of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In
several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus
amino acid characters, and the considerable variation in GC content among lineages and within single genomes
affected the phylogenetic placement of several taxa.

Conclusions: Analyses of the plastid sequence data recovered a strongly supported framework of relationships for
green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii)
a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms
and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade
(Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the
challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for
future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly
emphasize the importance of exploring the effects of different partitioning and character coding strategies.

Keywords: Composition bias, Phylogenomics, Plastid genome sequences, Plastomes, RY-coding, Viridiplantae

Background
Viridiplantae, or green plants, are a clade of perhaps

500,000 species [1-6] that exhibit an astounding diversity

of life forms, including some of the smallest and largest

eukaryotes [3,7]. Fossil evidence suggests the clade is at

least 750 million years old [8-10], while divergence time

estimates from molecular data suggest it may be more

than one billion years old [11-14]. Reconstructing the

phylogenetic relationships across green plants is challen-

ging because of the age of the clade, the extinction of

major lineages [15-17], and extreme molecular rate and

compositional heterogeneity [18-22]. Most phylogenetic

analyses of Viridiplantae have recovered two well-

supported subclades, Chlorophyta and Streptophyta

[23,24]. Chlorophyta contain most of the traditionally

recognized “green algae,” and Streptophyta contain the

land plants (Embryophyta), as well as several other

lineages also considered “green algae”. Land plants
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include the seed plants (gymnosperms and angiosperms;

Spermatophyta), which consist of ~270,000 to ~450,000

species [1,3].

While many of the major green plant clades are well

defined, questions remain regarding the relationships

among them. For example, the closest relatives of land

plants have varied among analyses [23,25-29], as have

the relationships among the three bryophyte lineages

(mosses, liverworts, and hornworts) [29-35]. The rela-

tionships among extant gymnosperms also remain con-

tentious, particularly with respect to the placement of

Gnetophyta [20,36-43].

Most broad analyses of green plant relationships based

on nuclear gene sequence data have relied largely on

18S/26S rDNA sequences [30,37,44,45], although recent

analyses have employed numerous nuclear genes [40,46].

Some studies have used mitochondrial gene sequence

data, often in combination with other data [29,47,48].

However, investigations of green plant phylogeny typic-

ally have either largely or exclusively employed chloro-

plast genes (e.g., [29,49-52]). Sequence data from the

plastid genome have transformed plant systematics and

contributed greatly to the current view of plant relation-

ships. With the plastid genome present in high copy

numbers in each cell in most plants, and with relatively

little variation in gene content and order [53], as well as

few reported instances of gene duplication or horizontal

gene transfer [54,55], the plastid genome provides a

wealth of phylogenetically informative data that are rela-

tively easy to obtain and use [56,57]. Although early

phylogenetic studies using one or a few chloroplast loci

provided fundamental insights into relationships within

and among green plant clades, these analyses failed to

resolve some backbone relationships [56-59]. These

remaining enigmatic portions of the green plant tree of life

ultimately motivated the use of entire, or nearly entire,

plastid genome sequences for phylogenetic inference.

Complete sequencing of the relatively small (~150 kb)

plastid genome has been technically feasible since the

mid-1980s [60,61], although few plastid genomes were

sequenced prior to 2000 (see [62,63]). Next-generation

sequencing (NGS) technologies, such as 454 [62] and

Illumina [64-67], greatly reduced the cost and difficulty

of sequencing plastid genomes, and consequently, the

number of plastid genomes available on GenBank in-

creased nearly six-fold from 2006 to 2012 [68]. Phylogen-

etic analyses based on complete plastid genome sequences

have provided valuable insights into relationships among

and within subclades across the green plant tree of life (re-

cently reviewed in [26,35,68,69]). Still, studies employing

complete plastid genomes generally have either focused

on subclades of green plants or have had relatively low

taxon sampling. Thus, they have not addressed the major

relationships across all green plants simultaneously.

We assembled available plastid genome sequences to

build a phylogenetic framework for Viridiplantae that

reflects the wealth of new plastid genome sequence data.

Furthermore, we highlight analytical challenges for re-

solving the green plant tree of life with this type of data.

We performed phylogenetic analyses of protein-coding

data on 78 genes from 360 taxa, exploring the effects of

different partitioning and character-coding protocols for

the entire data set as well as subsets of the data. While

our analyses recover many well-supported relationships

and reveal strong support for some contentious relation-

ships, several factors, including base composition biases,

can affect the results. We also highlight the challenges

of using plastid genome data in deep-level phylogenomic

analyses and provide suggestions for future analyses that

will incorporate plastid genome data for thousands of

species.

Results
Data set

We assembled plastid protein-coding sequences from 360

species (Additional file 1) for which complete or nearly

complete plastid genome sequences were available on Gen-

Bank. Of the 360 species, there were 258 angiosperms

(Angiospermae), 53 gymnosperms (Acrogymnospermae, in-

cluding three Gnetophyta), seven monilophytes (Monilo-

phyta), four lycophytes (Lycopodiophyta), three liverworts

(Marchantiophyta), one hornwort (Anthocerotophyta), two

mosses (Bryophyta), six taxa from the paraphyletic strepto-

phytic algae, and 26 chlorophytic algae (Chlorophyta). The

phylogenetic character matrices contained sequences from

78 genes and the following number of alignment positions:

58,347 bp for the matrix containing all nucleotide positions

(ntAll) and the RY-coded (RY) version of the ntAll matrix;

38,898 bp in the matrix containing only the first and sec-

ond codon positions (ntNo3rd), and 19,449 amino acids

(AA). The number of genes present per taxon varied from

18 to 78 (mean = 70), while the number of taxa present per

gene ranged from 228 to 356 (mean = 322; see Additional

file 2). Taxa with few genes present, such as Helicospori-

dium (18 genes) and Rhizanthella (19 genes), represent

highly modified complete plastid genomes of non-

photosynthetic species [70,71]. The percentage of missing

data (gaps and ambiguous characters) was ~15.6% for

each of the four data sets. The pattern of data across each

of the four matrices is decisive, meaning that it can

uniquely define a single tree for all taxa [72]. The data

contain 100% of all possible triplets of taxa, and are de-

cisive for 100% of all possible trees. All alignments have

been deposited in the Dryad Data Repository [73].

GC bias

GC content varied considerably both among lineages

and also within single genomes, and chi-square tests
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rejected the null hypothesis of homogeneous base fre-

quencies (Table 1). The average GC content in the ntAll

matrix was 38.9%, and it ranged from 54.3% in Selagin-

ella uncinata to 27.5% in Helicosporidium sp. (Figure 1,

Additional file 3). Also, the average GC content varied

among first, second, and third codon positions, with by

far the most variation among lineages at the third codon

position (Figure 1, Additional file 3). Although there was

extensive heterogeneity in GC content across all species,

there was relatively little variation among the seed plant

taxa (Figure 2). There also was significant correlation

between nucleotide composition and amino acid com-

position. Plastid genomes that are GC-rich had a signifi-

cantly higher percentage (Figure 3; p < 0.001) of amino

acids that are encoded by GC-rich codons (i.e., G, A, R,

and P). Similarly, GC-rich plastid genomes had a signifi-

cantly lower percentage (Figure 4; p < 0.001) of amino acids

that are coded by AT-rich codons (i.e., F, Y, M, I, N, and K).

Phylogenetic analyses

In the phylogenetic analyses of all data sets and parti-

tioning schemes, the partitioning strategy with the most

partitions consistently fit the data best based on the

AICc (Table 2). These best-fit models partitioned the

AA matrix by gene (78 partitions) and the nucleotide

(ntAll, ntNo3rd) and RY matrices by codon position and

gene (234 partitions). All a posteriori bootstopping ana-

lyses indicated that convergence of support values had

been reached after 100 replicates, and thus our choice of

200 replicates was more than sufficient to obtain reliable

bootstrap values.

We will focus on reporting the relationships of major

clades of Viridiplantae shown in the 50% maximum like-

lihood (ML) majority-rule bootstrap consensus summary

trees for each data set: ntAll (Figure 5), ntNo3rd (Figure 6),

RY (Figure 7), and AA (Figure 8). These summary trees

collapse some clades for ease of viewing the major rela-

tionships within Viridiplantae. A summary of important

results and conflicts among these four data sets is given in

Table 3. We provide full majority-rule bootstrap consen-

sus trees for the ntAll (Figures 9, 10, 11, 12, 13, and 14),

ntNo3rd (Additional file 4), RY (Additional file 5), and AA

(Additional file 6) data sets. ML trees with branch lengths

and BS values are also provided: ntAll (Additional file 7),

ntNo3rd (Additional file 8), RY (Additional file 9), and

AA (Additional file 10). Average support values among

all internal nodes in the ML trees were slightly higher

in the ntAll phylogeny (~94% bootstrap support [BS];

Additional file 7) compared to the other data sets

(~90-91% BS; Additional files 8, 9, and 10). The ntAll

phylogeny also had the most clades resolved with ≥

70% BS (92%; 327 bipartitions resolved out of 357 pos-

sible) while the ntNo3rd, RY, and AA data sets had 87%,

87%, and 86% of the possible bipartitions resolved at ≥

70% BS, respectively. All resulting trees have been depos-

ited in the Dryad Data Repository [73].

The monophyly of Chlorophyta receives 100% BS in

all analyses. Prasinophyceae are consistently not mono-

phyletic. Instead, the prasinophyte Nephroselmis is sister

to all other Chlorophyta (Figure 9; Additional files 4, 5,

and 6), while remaining Prasinophyceae form a clade

that is variously supported (ntAll 97% BS, ntNo3rd 78%

BS, RY 93% BS, and AA 68% BS) and is sister to a clade

of the remaining Chlorophyta. Chlorophyceae are

monophyletic (100% BS in all analyses), but Trebouxio-

phyceae and Ulvophyceae are not monophyletic, and the

relationship of Chlorophyceae to these lineages is

unresolved.

We consistently recovered a single set of relationships

among the streptophytic algae subtending the land plant

clade. Zygnematophyceae are sister to land plants, Coleo-

chaetophyceae are sister to Zygnematophyceae + Embryo-

phyta, Charophyceae are sister to Coleochaetophyceae +

(Zygnematophyceae + Embryophyta), and a clade of

Mesostigmatophyceae +Chlorokybophyceae is sister to all

other Streptophyta. Each of these relationships has ≥86%

BS support (Figures 5, 6, 7, and 8).

The branching order of the non-vascular land plant

lineages differs among analyses. In analyses of the ntAll

and RY data sets, Marchantiophyta (liverworts), followed

by Bryophyta (mosses), and then Anthocerotophyta

(hornworts) are the earliest-branching land plant

lineages, with Anthocerotophyta the immediate sister

to the vascular plants (Tracheophyta; Figures 5 and 7).

In the ntAll and RY analyses, these relationships had ≥89%

BS support except for the Bryophyta + (Anthocerophyta+

Tracheophyta) relationship in the ntAll analysis, which

received only 69% BS (Figure 5). In contrast, in the ntNo3rd

and AA analyses, Bryophyta and Marchantiophyta formed a

clade (78% BS [Figure 6] and 99% BS [Figure 8], respect-

ively), followed by Anthocerophyta as sister to Tracheophyta

(94% [Figure 6] and 53% BS [Figure 8], respectively).

Within Tracheophyta, the ntNo3rd, RY, and AA data

sets all place Lycopodiophyta sister to a Euphyllophyta

clade (Monilophyta + Spermatophyta; ≥89% BS, Figures 6,

7, and 8). However, the analysis of the ntAll data set

places Monilophyta sister to a clade of Lycopodiophyta +

Spermatophyta (75% BS, Figures 5, 6, 7, 8, 9, and 10).

Table 1 Chi-square tests of nucleotide composition

homogeneity among lineages

Data χ2 df p

ntAll 31350.257185 1077 < 0.0001

ntNo3rd 11968.002464 1077 < 0.0001

ntAll (Position 1) 8366.331439 1077 < 0.0001

ntAll (Position 2) 6003.338041 1077 < 0.0001

ntAll (Position 3) 46288.248785 1077 < 0.0001
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Our analyses of Monilophyta generally reveal strong sup-

port for a clade of Equisetales+ Psilotales as sister to Mar-

attiales+ leptosporangiate ferns (represented by Cyatheales

and Polypodiales). The lowest support obtained was for

Equisetales + Psilotales in the ntNo3rd analysis (84% BS;

Figure 6) and ntAll (89% BS; Figure 5); all other nodes

in all analyses received > 90% BS, with Marattiales +

leptosporangiate ferns receiving ≥ 99% BS.

Within Spermatophyta, all analyses place the extant

gymnosperms (Acrogymnospermae) sister to Angiosper-

mae with 100% BS. Within extant gymnosperms, Cyca-

dales and Ginkgoales form a clade (≥ 98% BS in ntAll,

ntNo3rd, and AA; 51% BS in RY) that is sister to a clade

in which Gnetophyta (100% BS in all analyses) are nested

within the paraphyletic conifers. There is generally high

support (100% BS in ntAll [Figure 5], ntNo3rd [Figure 6],

and AA [Figure 7]; 87% BS [Figure 8] in RY) placing

Gnetophyta as sister to a clade of Araucariales +Cupres-

sales. This “Gnecup” clade [sensu 16, 30, 41] is then sis-

ter to Pinales, which has 100% BS in all analyses.

In all analyses, Angiospermae receive 100% BS, and

Amborella (Amborellales) is sister to all other angio-

sperms, followed by Nymphaeales, and then Austrobai-

leyales. These relationships are mostly supported by

100% BS. However, Nymphaeales + (Austrobaileyales +

Mesangiospermae) receives 81% BS (Figure 6) in the

ntNo3rd analyses and 70% BS (Figure 8) in the AA ana-

lyses. The remaining angiosperms (Mesangiospermae) re-

ceive 100% BS in all analyses. Within Mesangiospermae,

the relationships among Monocotyledoneae, Magnoliidae,

Eudicotyledoneae, and Ceratophyllum (Ceratophyllales)

are not well supported and vary depending on the analysis.

The strongest support for the placement of Ceratophyllales

is 75% BS as sister to Eudicotyledoneae in the RY analysis

(Figure 7).

Chloranthales receive 61-69% BS as sister to the well-

supported (100% BS in ntAll, RY; 83% BS in ntNo3rd)

Magnoliidae. However, Magnoliidae are not monophy-

letic in the AA analyses, where Piperales are sister to

Ceratophyllales (67% BS; Figure 8).

Figure 1 Box plots of percent GC content in the ntAll and ntNo3rd data sets as well as in the first, second, and third codon positions

of the ntAll data set.
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Figure 3 Correlation between percent GC nucleotide content in the ntAll matrix and percent of amino acids in the AA matrix that are

coded for by GC-rich codons (G, A, R, and P).

Figure 2 Box plots of percent GC content in seed plants (Spermatophyta; on left) and the data set as a whole (Viridiplantae; on right) in

the ntAll and ntNo3rd data sets as well as the first, second, and third codon positions of the ntAll data set. For each pair of box plots,
values for seed plants (Spermatophyta) are on the left, and values for all green plant taxa (Viridiplantae) are on the right.
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Within the monocot clade (Monocotyledoneae), Acorales,

followed by Alismatales, have 100% BS in all analyses as

subsequent sisters to the remaining monocots. In three of

our analyses (ntAll, ntNo3rd, and AA), a variously sup-

ported clade (72%, 69%, and 80% BS, respectively) of

Liliales + (Pandanales +Dioscoreales) is sister to a clade

(>95% BS in these three analyses) of the remaining

monocots (Asparagales +Commelinidae). However, in the

RY-coded analysis, Pandanales +Dioscoreales (100% BS) is

sister to a clade of Liliales + (Asparagales +Commelinidae),

which receives 69% BS (Figure 7). Here Asparagales +

Commelinidae is supported by 80% BS.

Within the eudicots (Eudicotyledoneae), which receive

100% BS in all analyses, Ranunculales are sister to the

Figure 4 Correlation between percent GC nucleotide content in the ntAll matrix and percent of amino acids in the AA matrix that are

coded for by AT-rich codons (F, Y, M, I, N, and K).

Table 2 AICc scores for each of the phylogenetic matrix partitioning strategies

Matrix Number of
characters

Partitioning strategy Number of
partitions

Log-likelihood AICc ΔAICc

ntAll 58,347 OnePart 1 −3135739.544116 6272952.811161 114533.884536

CodonPart 3 −3099273.099639 6200056.468462 41637.541838

GenePart 78 −3120195.077316 6243312.241766 84893.315142

CodonGenePart 234 −3076219.426792 6158418.926624 0

RY 58,347 OnePart 1 −1239354.453402 2480173.246480 21572.787069

CodonPart 3 −1235533.368070 2472537.854401 13937.394990

GenePart 78 −1234706.178899 2471197.311314 12596.851903

CodonGenePart 234 −1228081.159986 2458600.459411 0

ntNo3rd 38,898 OnePart 1 −1387913.034830 2777313.721117 30326.016847

CodonPart 2 −1385570.086154 2772645.570816 25657.866546

GenePart 78 −1376158.263023 2755293.787916 8306.083646

CodonGenePart 156 −1371218.716450 2746987.704270 0

AA 19,449 OnePart 1 −1418038.152084 2837614.101717 8353.616354

GenePart 78 −1413039.660496 2829260.485363 0

Partitioning strategies judged to be the best by the AICc are in bold.
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Figure 5 (See legend on next page.)
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remaining taxa. In the ntAll, ntNo3rd, RY, and AA ana-

lyses, the clade of these remaining taxa receives 100%,

85%, 100%, and 62% BS, respectively. Relationships vary

among Sabiaceae, Proteales, and a clade of the remaining

taxa, depending on the analysis. In the ntAll and ntNo3rd

analyses, Proteales + Sabiaceae are supported as a clade,

although with only 63% and 60% BS, respectively. How-

ever, in the RY analysis, Proteales are sister to a clade con-

taining Sabiaceae plus the remaining taxa, which has 79%

BS. In the AA analysis, relationships among these three

clades are unresolved.

Among the remaining eudicots, we consistently recov-

ered Trochodendrales as sister to Buxales + Pentapetalae

and Gunnerales as sister to the remaining lineages of

Pentapetalae: Dilleniaceae, Superrosidae, and Superas-

teridae. The placement of Dilleniaceae remains uncer-

tain. The family is sister to Superrosidae in the ntAll

(95% BS), ntNo3rd (77% BS), and RY (57% BS) analyses,

but appears as sister to Superasteridae (70% BS) in the

AA analysis.

Within Superrosidae, a clade of Vitales + Saxifragales

is supported in the ntAll (75% BS), ntNo3rd (70% BS),

and AA (78% BS) analyses. In the RY analysis, the rela-

tionship among Saxifragales, Vitales, and remaining

Rosidae (Fabidae +Malvidae) is unresolved. Fabidae

and Malvidae are both recovered with ≥ 99% BS in the

ntAll and RY analyses. However, each clade receives

only 70% BS in the ntNo3rd analysis. In the AA ana-

lysis neither clade is monophyletic; Zygophyllales are

embedded (68% BS) within a clade of Malvidae taxa.

The COM clade (Celastrales, Oxalidales, Malpigh-

iales) is sister to a clade of Fagales, Cucurbitales,

Rosales, and Fabales in Fabidae in the AA (69% BS;

Figure 8), RY (82% BS; Figure 7), and ntAll (81% BS;

Figure 5) trees and forms a trichotomy with Zygophyllales

and the clade of Fagales, Cucurbitales, Rosales, and Fabales

in the ntNo3rd tree (70% BS; Figure 6). Zygophyllales are

sister to Geraniales (69% BS; Figure 8) in the AA tree and

sister to all other Fabidae in the ntAll and RY trees (with

100% [Figure 5] and 99% BS [Figure 7], respectively).

Superasteridae (Santalales, Berberidopsidales, Caryo-

phyllales, and Asteridae) are recovered in all analyses.

This clade receives 100% BS in the ntAll and RY ana-

lyses, 95% BS in the ntNo3rd analysis, and 66% BS in

the AA analysis. Santalales and Berberidopsidales are

strongly supported as subsequent sisters to Caryophyl-

lales +Asteridae. Within Asteridae, Cornales, followed

by Ericales, are subsequent sisters to a strongly sup-

ported clade that comprises strongly supported Campa-

nulidae and Lamiidae clades. Within Lamiidae, the

placement of Boraginaceae is weak among the various

analyses. Boraginaceae are sister to Gentianales (59% BS;

Figure 8) in the AA tree, part of a trichotomy (100% BS;

Figure 5) with Lamiales and Solanales +Gentianales in

the ntAll tree, and sister to a weakly supported clade in-

cluding Gentianales, Lamiales, and Solanales in the

ntNo3rd (Figure 6) and RY (Figure 7) trees.

Analysis of only the third codon positions (nt3rdOnly,

Additional file 11) resulted in several very strong con-

flicts along the backbone of Viridiplantae when com-

pared to the topology from the ntNo3rd analyses. These

conflicts include the backbone relationships within Chloro-

phyta, the placements of Cycadales and Lycopodiophyta,

the relationships of the three major bryophyte lineages,

and backbone relationships within Poales. Removal of four

taxa (Epifagus, Helicosporidium, Neottia, and Rhizanthella)

with elevated rates of molecular evolution and few genes

present in the data sets did not significantly affect the

resulting topologies.

Discussion
While the enormous phylogenetic data sets that result

from new genome or transcriptome sequencing efforts

can ameliorate the effects of random or stochastic error,

they also may exacerbate the effects of systematic error,

or error resulting from problems in the analysis, such as

model inaccuracy. The high amount of agreement

among our various analyses and strong support for re-

sults generally consistent with previous studies (many of

which also used plastid genes) suggest that plastid gen-

ome sequence data hold much promise for resolving re-

lationships throughout the green plants. However,

several areas of conflict between analyses using different

character-coding strategies demonstrate that plastid gen-

ome phylogenetics is also susceptible to systematic error.

Here we evaluate the phylogenetic results, emphasizing

areas of agreement and concern, and then address some

of the methodological issues raised by our results.

Evaluation of phylogenetic relationships

Historically,Chlorophyta have been divided into Prasinophy-

ceae, Trebouxiophyceae, Chlorophyceae, and Ulvophyceae

based on the ultrastructure of the flagellar apparatus and

features related to cytokinesis [74,75]. The current status of

(See figure on previous page.)
Figure 5 Fifty percent maximum likelihood majority-rule bootstrap consensus summary tree of Viridiplantae inferred from the all

nucleotide positions (ntAll) analysis. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%).
Bootstrap support values ≥ 50% are indicated. Terminals with a triangle represent collapsed clades with > 2 taxa. Note position of Lycopodiophyta as
sister to Spermatophyta is likely caused by base composition bias (see text). See Figures 9, 10, 11, 12, 13, and 14 for the complete tree and
Additional file 1 for taxonomy. Lami. = Lamiidae; Campanuli. = Campanulidae; Lyco. = Lycopodiophyta.

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 8 of 27

http://www.biomedcentral.com/1471-2148/14/23



Figure 6 (See legend on next page.)

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 9 of 27

http://www.biomedcentral.com/1471-2148/14/23



green algae phylogenetics (Chlorophyta and streptophytic

algae) has been reviewed recently [26,76,77]. The most com-

parable study to ours in terms of data and taxon sampling is

by Lang and Nedelcu [26], who constructed a phylogeny of

green algae with plastid genome sequence data. However,

they analyzed only an amino acid data set using Bayesian in-

ference and the CAT model [78,79]. We found a paraphy-

letic Prasinophyceae (not including Pedinomnas; Figures 5,

6, 7 and 8), which agrees with previous molecular analyses

[26,76,77]. However, Lang and Nedelcu [26] recovered a

monophyletic Prasinophyceae, albeit with little support.

Chlorophyceae are monophyletic (100% BS in all of our ana-

lyses), which agrees with the results of Lang and Nedelcu

[26]. We also find that Trebouxiophyceae and Ulvophyceae

are not monophyletic, and that the relationship of Chloro-

phyceae to these lineages is unresolved. The branching order

of the various Trebouxiophyceae, Ulvophyceae, and Chloro-

phyceae lineages within Chlorophyta, unresolved in our ana-

lyses, was also uncertain in earlier analyses (reviewed in

[26,76,77]). Similarly in Lang and Nedelcu [26], Trebouxio-

phyceae and Ulvophyceae were not supported as monophy-

letic, although unlike our results, almost all nodes in their

phylogeny were maximally supported.

Our analyses provide consistent, strong support for the

relationships of streptophytic algae to land plants, and all

analyses support Zygnematophyceae as the sister to land

plants (Figures 5, 6, 7, and 8). Relationships among these

lineages and the closest relatives of land plants have varied

in previous studies depending on taxon sampling and gene

choice. Some studies agree with our results placing Zygne-

matophyceae as sister to land plants [25,27,80-82], while

other phylogenetic analyses indicate that Charophyceae

[23,83,84] or Coleochaetophyceae [26,40,85,86] occupy this

position. Depending on the analysis, Zhong et al. [87]

found either Zygnematophyceae alone or a clade of Zygne-

matophyceae +Coleochaetophyceae as sister to land plants.

In particular, the results of Lang and Nedelcu [26] conflict

with our results regarding the sister group to Embryophyta.

While we find a clade of Coleochaetophyceae + (Zygnema-

tophyceae + Embryophyta), their results strongly support

Zygnematophyceae + (Coleochaetophyceae + Embryophyta).

Phylogenetic relationships among bryophytes (mosses,

hornworts, and liverworts) are also contentious, and

nearly every possible relationship among these lineages

has been reported, often with strong support. Most

studies have shown the bryophytes as paraphyletic with

respect to Tracheophyta rather than as a clade [30-33].

As recovered in our ntAll and RY analyses (Figures 5

and 7), liverworts (Marchantiophyta) often are placed

sister to all other land plants, followed by mosses

(Bryophyta), and with hornworts (Anthocerotophyta)

sister to Tracheophyta [29,34,47,50,88,89]. A sister re-

lationship between mosses and liverworts, found in

our ntNo3rd and AA analyses (Figures 6 and 8), was

proposed previously based on morphological [90-93]

and molecular data [27,30,94,95] and has been recov-

ered with numerous nuclear genes (Wickett et al., in

review). This relationship was also recovered in ana-

lyses of complete plastid genome data by Karol et al.

[34] when divergent taxa (i.e., Selaginella spp.) were

excluded from phylogenetic analyses and also by Wolf

and Karol [35] when third positions were excluded.

Our results placing Lycopodiophyta sister to Euphyllo-

phyta in all but the ntAll analysis agree with most mo-

lecular phylogenetic analyses [29,96,97]. This split is also

supported by analyses of morphological characters in

fossil [15] and extant taxa [98]. Monilophyta and Sper-

matophyta also possess a 30-kb inversion in the large

single-copy region of the plastid genome not found in

Lycopodiophyta and the three bryophyte clades [99]. In

the ntAll analysis, Euphyllophyta are not monophyletic

(Figure 5); Lycopodiophyta, rather than Monilophyta, are

sister to Spermatophyta. This relationship has been re-

ported previously [34]; however, it likely is a phylogen-

etic artifact, perhaps related to base composition bias

(see below). The plastid genome of the lycophyte Sela-

ginella has an especially high GC content [21], with

Selaginella unicata having the highest GC content in

our ntAll data set (54.3%; Figure 1).

In some previous studies, relationships among lineages

of Monilophyta have not been well resolved or supported

(e.g., [29,89,96-98]). As a result, the relationships among

Equisetales, Psilotales, Marattiales, and leptosporangiate

ferns are often represented as a polytomy (e.g., [35]). In

contrast, most of our analyses recovered strong support for

a clade of Equisetales + Psilotales as sister to Marattiales +

leptosporangiate ferns (represented here by Cyatheales and

Polypodiales). These relationships agree with recent studies

of monilophyte relationships based on plastid genome se-

quence data [34,35], although support is stronger here. Un-

fortunately, Ophioglossales, which often appear as sister to

Psilotales, lacked a sequenced plastome at the time of our

analyses. However, plastid genome data for Ophioglossales

have subsequently been published and analyzed in a phylo-

genetic context [100], with strong support for Ophioglos-

sales as sister to Psilotales and weak support for this clade

(See figure on previous page.)
Figure 6 Fifty percent maximum likelihood majority-rule bootstrap consensus summary tree of Viridiplantae inferred from the first and

second codon positions (ntNo3rd) analysis. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 38,898 bp;
missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. Terminals with a triangle represent collapsed clades with > 2 taxa. See
Additional file 4 for the complete tree and Additional file 1 for taxonomy. Lami. = Lamiidae; Campanuli. = Campanulidae.
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as sister to Equisetales. Results from that study with regard

to Marattiales and leptosporangiate ferns agree with the

relationships presented here.

Relationships among the lineages of extant seed plants,

and especially the placement of Gnetophyta, have long

been debated [38,39,43,51,89,101]. Gnecup trees, found

in all of our analyses, were initially recovered by Nickrent

et al. [30], and then more recently by Zhong et al. [41].

However, Zhong et al. [41] suggested that the support for

Gnecup may be the result of long-branch attraction; by

removing highly variable proteins, support for Gnecup

decreased. Furthermore, by removing what they consid-

ered parallel substitutions between lineages leading to

Gnetophyta and to Cryptomeria (the sole Cupressales in

their analyses), a Gnepine topology was recovered. Al-

though several different placements for Gnetophyta have

been recovered and strongly supported, many studies in-

volving multiple genes have placed Gnetophyta sister to

Pinales (Gnepine; [38,39,43,89], Wickett et al., in review).

Using both coalescent and concatenation analyses, Xi

et al. [102] found that the phylogenetic placement of

Gnetophyta differs between the nuclear and plastid ge-

nomes. In their analyses using nuclear data, the Gnepine

hypothesis is supported, while their analyses of plastid

data support the Gnecup hypothesis. In contrast, Lee et al.

[46] found strong support for Gnetophyta sister to the

remaining gymnosperms [(Cycadales +Ginkgoales) +

conifers)] in an ML analysis of 22,833 sets of nuclear

gene orthologs from 101 land plant genera.

The backbone relationships among angiosperm (Angio-

spermae) lineages generally agree with results from recent

analyses, including a 17-gene analysis of 632 angiosperms

[103] and previous analyses of plastid genome data sets

[63,104-106]. The position of Ceratophyllum (Ceratophyl-

lales), and thus the relationships among Monocotyledo-

neae, Eudicotyledoneae, and Magnoliidae, varies among

our analyses, although without strong support. This con-

trasts with several other large, multi-gene analyses in

which Monocotyledoneae are sister to Ceratophyllales +

Eudicotyledoneae [63,103,106]. Interestingly, the strongest

support for the placement of Ceratophyllales sister to

Eudicotyledoneae is in the RY analysis (75% BS; Figure 7).

However, in that analysis, the relationships among

Ceratophyllales + Eudicotyledoneae, Monocotyledoneae,

and Magnoliidae are unresolved.

Within the angiosperms, some relationships that have

been uncertain, particularly at deep levels (reviewed in

[103,107]), receive moderate to strong support in at least

some of our analyses. For example, the placement of

Myrtales and Geraniales in the Malvidae is supported

with 70% BS (Figure 6) in the ntNo3rd tree and ≥ 99%

BS in the RY (Figure 7) and ntAll (Figure 5) trees. Myr-

tales and Geraniales are also placed in a clade with the

Malvidae taxa in the AA analysis (68% BS; Figure 8);

however, Zygophyllales are also included within this

clade, making Malvidae non-monophyletic. Likewise,

Chloranthales are sister to Magnoliidae in all trees, but

with weaker support (61% BS for RY and ntNo3rd, 68%

BS for ntAll, and 69% BS for AA, but with Piperales

removed from Magnoliidae in the latter). In two cases,

all analyses but RY resolve relationships (although often

with only moderate support), with RY producing a

polytomy that does not conflict with the resolutions

found in the other analyses. These two cases are as

follows: (1) Vitales + Saxifragales supported by ≥ 70% BS

in all analyses but RY, with Saxifragales, Vitales, and

remaining Rosidae forming a polytomy in the RY tree

(Figure 7); (2) Dasypogonaceae +Arecales in all but RY

(52%, 78%, and 80% BS in the ntNo3rd, AA, and ntAll

trees, respectively) and a trichotomy of Dasypogonaceae,

Arecales, and Poales + (Zingiberales +Commelinales) in

the RY tree (Figure 7). In two additional cases when RY

is compared to the other three analyses, the RY analysis

produced either stronger support for the placement of a

taxon or a different placement altogether. First, in the

ntAll, ntNo3rd, and AA analyses, the position of

Sabiaceace among the early-diverging lineages of Eudi-

cotyledoneae is weakly supported. However, in the RY

analysis, Sabiaceae receive moderate support (79% BS;

Figure 7) as sister to a strongly supported (100% BS;

Figure 7) clade of Trochodendrales+ (Buxales (Gunnerales+

Pentapetalae)). This contrasts with previous studies that

often place Sabiaceae as sister to Proteales [103]. An

example of a different placement of a taxon in the RY ana-

lysis when compared to the other analyses involves Liliales.

The ntAll, ntNo3rd, and the AA analyses support Liliales as

sister to a clade of Dioscoreales+ Pandanales with 72%, 69%,

and 80% BS, respectively. This placement of Liliales was also

recovered in Barrett et al. [108]. In contrast, in the RY ana-

lysis, Liliales are placed in a clade with Asparagales+Com-

melinidae with moderate support (69% BS; Figure 7). This

latter placement of Liliales was strongly supported in an ana-

lysis with much better taxon sampling [103].

Some taxa that have been problematic in previous

studies (e.g., Boraginaceae, Ceratophyllales, the COM

clade, Dilleniaceae, and Zygophyllaceae) continue to defy

(See figure on previous page.)
Figure 7 Fifty percent maximum likelihood majority-rule bootstrap consensus summary tree of Viridiplantae inferred from the RY-coded

(RY) analysis. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support
values ≥ 50% are indicated. Terminals with a triangle represent collapsed clades with > 2 taxa. See Additional file 5 for the complete tree and
Additional file 1 for taxonomy. Lami. = Lamiidae; Campanuli. = Campanulidae.
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definitive placement. Their positions vary among our

analyses, although they are generally not well supported

in some, or all, of the trees. Despite its general place-

ment of the COM clade in Fabidae in these and other

plastid analyses, this clade is more closely related to

Malvidae in some analyses, particularly those using

mitochondrial gene sequences (reviewed in [103]). Re-

cent analyses of plastid, mitochondrial, and nuclear data

suggest that the COM clade may represent ancient re-

ticulation involving Fabidae and Malvidae during the

rapid radiation of Rosidae (Sun et al., in prep.).

Methodological issues of plastid phylogenomic analyses

To address potential systematic error in large-scale

phylogenetic analyses, scientists often either try to improve

the fit of models to the data or change or remove problem-

atic data. With increasing sequence length and number of

genes, it is more likely that a sequence alignment will con-

tain regions with heterogeneous processes of molecular

evolution. We see evidence of this high heterogeneity with

our model-fitting experiments, which always favor the

most parameter-rich models (Table 2). Thus, defining par-

titioning schemes and models that can accurately reflect

the true processes of molecular evolution while not over-

parameterizing the analysis remains critically important for

phylogenetic analyses of large plastid data sets. Although

we assessed models that account for heterogeneity in pat-

terns of molecular evolution among genes and in some

cases codon positions, our model selection tests only eval-

uated a small selection of possible models and partitioning

(See figure on previous page.)
Figure 8 Fifty percent maximum likelihood majority-rule bootstrap consensus summary tree of Viridiplantae inferred from the amino

acid (AA) analysis. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 19,449 AAs; missing data ~15.6%). Bootstrap
support values ≥ 50% are indicated. Terminals with a triangle represent collapsed clades with > 2 taxa. See Additional file 6 for the complete tree and
Additional file 1 for taxonomy. Lami. = Lamiidae; Campanuli. = Campanulidae.

Table 3 Summary of selected similarities and conflicts between bootstrap consensus topologies derived from the four

data sets

Taxon ntAll ntNo3rd RY AA

Amborellales sister to all other
Angiospermae
(100%/100%)

sister to all other Angiospermae
(100%/81% )

sister to all other
Angiospermae
(100%/100%)

sister to all other Angiospermae
(100%/70%)

Anthocerotophyta sister to Tracheophyta
(100%/100%)

sister to Tracheophyta
(94%/100%)

sister to Tracheophyta
(95%/100%)

sister to Tracheophyta (53%/90%)

Ceratophyllales sister to Eudicotyledoneae
(52%/100%)

sister to Monocotyledoneae +
Eudicotyledoneae (52%/54%)

sister to Eudicotyledoneae
(75%/100%)

sister to Piperales (67%)

COM clade within Fabidae (100%) within Fabidae (70%) within Fabidae (99%) sister to a clade including
Cucurbitales, Rosales, Fabales,
Fagales (69%/100%; Fabidae
not monophyletic)

Dilleniales sister to Superrosidae
(95%/100%)

sister to Superrosidae
(77%/100%)

sister to Superrosidae
(57%/100%)

sister to Superasteridae
(70%/66%)

Ginkgoales sister to Cycadales
(98%/100%)

sister to Cycadales
(100%/100%)

sister to Cycadales
(51%/100%)

sister to Cycadales (100%/100%)

Gnetophyta sister to Cupressales +
Araucariales (100%/100%)

sister to Cupressales +
Araucariales (100%/100%)

sister to Cupressales +
Araucariales (87%/100%)

sister to Cupressales + Araucariales
(100%/100%)

Marchantiophyta sister to all other Embryophyta
(100%/69%)

sister to Bryophyta (78%/100%) sister to all other
Embryophyta
(100%/89%)

sister to Bryophyta (99%/100%)

Monilophyta sister to Lycopodiophyta +
Spermatophyta (100%/75%)

sister to Spermatophyta
(93%/100%)

sister to Spermatophyta
(100%/100%)

sister to Spermatophyta
(89%/100%)

Prasinophyceae not monophyletic; Nephroselmis
sister to all other Chlorophyta
(100%/87%)

not monophyletic; Nephroselmis
sister to all other Chlorophyta
(100%/78%)

not monophyletic;
Nephroselmis sister to all
other Chlorophyta
(100%/92%)

not monophyletic; Nephroselmis
sister to all other Chlorophyta
(100%/96%)

Zygnematophyceae sister to Embryophyta
(97%/100%)

sister to Embryophyta
(99%/100%)

sister to Embryophyta
(86%/100%)

sister to Embryophyta
(93%/100%)

Bootstrap support (BS) values >50% are shown as percentages. When sister groups for the taxon of interest are listed, bootstrap support (BS) values on the left

are for the clade including the taxon of interest and its sister group within Viridiplantae, while BS values on the right are for the more inclusive clade excluding

the taxon of interest. If only one BS value is given for a sister relationship, only two terminals are involved (see also Figures 5, 6, 7, and 8).
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schemes. It is possible that other partitioning schemes

could enable simpler models.

Most conventional phylogenetic models, like those used

in our analyses, also assume homogeneous processes of

evolution throughout the tree. Yet when the branches of

the phylogeny encompass over one billion years of evolu-

tionary history, as likely do those in the green plants, the

patterns of evolution almost certainly differ among

lineages and through time. This is apparent from the often

good fit of covarion models (which may better describe

rate shifts through time) to plastid genes [109,110] and

the presence of nucleotide compositional heterogeneity,

which can confound conventional phylogenetic analyses

(e.g., [111,112]). Also, our models do not account for shifts

in selective pressure or instances of positive selection that

will affect nucleotide and amino acid substitution patterns

(e.g., [113,114]).

Nucleotide compositional heterogeneity remains a con-

cern for green plant plastid genome analyses. This vari-

ation is most evident in non-seed plant taxa (Figure 2), and

thus it has not been a focus of many previous phylogenetic

analyses of plastid genome sequences. A GC bias in itself is

not necessarily problematic for phylogenetic analyses, but

nearly all commonly used models for likelihood-based

phylogenetic analyses assume single equilibrium nucleotide

frequencies. Given that GC content appears to vary by

Figure 9 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide

positions (ntAll) analysis. Portion of tree showing Chlorophyta, Chlorokybophyceae, Mesostigmatophyceae, Charophyceae,

Coleochaetophyceae, Zygnematophyceae, Marchantiophyta, Bryophyta, and Anthocerotophyta. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a
summary tree of major Viridiplantae clades and Additional file 1 for taxonomy. Tree continued in Figure 10.
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codon position in plants (Figures 1 and 2) [115-117], a par-

titioning scheme that estimates separate nucleotide fre-

quencies for each codon position may account for some of

the spatial heterogeneity in GC content in the plastid gen-

ome, but it does not address the differences in GC fre-

quency among lineages.

A commonly used strategy to reduce the effects of GC

heterogeneity across lineages is RY-coding, in which the

purines (A and G) are coded as Rs and the pyrimidines

(C and T) are coded as Ys [118]. RY-coding can reduce

the compositional variability among lineages, improve the

fit of models, and increase the signal for internal branches

[118-121]. An obvious disadvantage to RY-coding is that

by coding the sequences with two character states instead

of four, it reduces the amount of information in the se-

quences. In general, we see little overall reduction, and

even some gains, in bootstrap support when using RY-

coding compared to the use of all nucleotide data (ntAll),

Figure 10 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide

positions (ntAll) analysis. Portion of tree showing Monilophyta, Lycopodiophyta, and Acrogymnospermae. Data set derived from 78
protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also
Figure 5 for a summary tree of major Viridiplantae clades and Additional file 1 for taxonomy. Note position of Lycopodiophyta as sister to Spermatophyta

is likely caused by base composition bias (see text). Tree continued in Figures 9 and 11.

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 16 of 27

http://www.biomedcentral.com/1471-2148/14/23



suggesting that the benefits of RY-coding make up for any

potential costs of information loss. Perhaps the biggest

topological difference in the RY phylogeny (Figure 7) com-

pared to ntAll (Figure 5) is the placement of Monilophyta

rather than Lycopodiophyta as sister to seed plants. The

unexpected placement of Lycopodiophyta as the sister to

seed plants in the ntAll analysis (Figure 5) is almost cer-

tainly an artifact of systematic error; several other lines of

evidence support Monilophyta as the sister group of seed

plants (see above).

Approaches to reducing systematic errors by excluding

problematic data, which often include fast-evolving or

saturated sites, also have been suggested for plastid gen-

ome analyses [20,41,80,110,122]. With the proper model

of molecular evolution and adequate taxon sampling,

fast sites are not necessarily problematic; they are only

problematic insofar as they are difficult to model. Yet with

heterogeneous processes of molecular evolution through-

out the tree, the fast-evolving or saturated sites can pro-

duce a significant non-phylogenetic signal (e.g., [123]).

Indeed, the third codon positions appear to have especially

high levels of compositional heterogeneity, potentially

causing systematic error (Figures 1 and 2), and an analysis

of just the third codon positions (nt3rdOnly) conflicts

with the analyses of other data sets in several critical parts

of the tree (Additional file 11). However, third codon posi-

tions also represent a large proportion of the variable sites

in the alignment, and removing them may exclude much

of the phylogenetic information in some parts of the tree.

With regard to backbone relationships in our phylogeny,

excluding the third position sites (ntNo3rd) produces sev-

eral interesting changes in contrast to ntAll: 1) it supports

the sister relationship of mosses and liverworts, 2) monilo-

phytes, not lycophytes, are placed sister to seed plants as

expected, and 3) support for some of the backbone angio-

sperm relationships is reduced. Thus, the effects of remov-

ing the third codon position sites appear to vary in

different parts of the tree.

Another strategy for overcoming potential error associ-

ated with fast-evolving sites is to code the sequences as

amino acids rather than nucleotides. This does not neces-

sarily eliminate problems of compositional heterogeneity,

as the GC bias also may bias amino acid composition

(Figures 3 and 4) [124]. Regarding backbone green

plant relationships, the AA analysis provided similar

results to analyses of only first and second codon posi-

tions. AA analysis also produced some weakly sup-

ported, questionable relationships among angiosperm

lineages (i.e., Piperales + Ceratophyllales; Figure 8). In

previous deep-level plant analyses, analyses of amino

acid data have resulted in arguably more problematic

or questionable relationships than analyses of nucleo-

tide data [29,80]. However, these results are likely due

to inappropriate models of amino acid evolution [125],

and with better models, optimized for plastid evolu-

tion, amino acid data may be a valuable source of

phylogenetic information.

Taxon sampling is also important for plastid phyloge-

nomic studies, especially when the model of evolution is

inadequate [56,58,126-131], and genome-scale analyses

Figure 11 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide

positions (ntAll) analysis. Portion of tree showing Amborellales, Nymphaeales, Austrobaileyales, Chloranthales, and Magnoliidae. Data set
derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are
indicated. See also Figure 5 for a summary tree of major Viridiplantae clades and Additional file 1 for taxonomy. Tree continued in Figures 10 and 12.
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 Iris virginica

 Neoastelia spectabilis

 Agrostis stolonifera

 Phalaenopsis aphrodite

 Rhynchoryza subulata

 Acorus calamus

 Puelia olyriformis

 Curculigo capitulata

 Thamnochortus insignis

 Spirodela polyrhiza

 Sorghum bicolor

Georgeantha hexandra

 Musa acuminata

 Fosterella caulescens

 Potarophytum riparium

 Asparagus officinalis

 Ecdeiocolea monostachya

 Elaeis oleifera

 Lolium perenne

 Oryza australiensis

 Sparganium eurycarpum

 Belosynapsis ciliata
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often have limited taxon sampling. New methods for rapid

and inexpensive plastid genome sequencing (e.g., [132])

may ameliorate the effects of insufficient sampling of ex-

tant taxa; however, many major lineages of green plants

are now extinct, precluding their inclusion in analyses of

molecular data (but see [133-136]). In addition, ancient,

rapid radiations abound within portions of the green plant

tree of life, creating extremely difficult phylogenetic prob-

lems no matter the taxon sampling [63,69,107,137].

Furthermore, even in the absence of systematic error,

it is possible that a tree built from plastid genome data

will not reflect species relationships. The plastid genome

represents a single locus of linked genes (i.e., a single co-

alescent history). For phylogenetic analyses, this can be

beneficial because combining genes with different evolu-

tionary histories into a single character matrix can lead

to phylogenetic error [138-140]. However, incomplete

lineage sorting or ancient reticulation could lead to con-

flict between the plastid gene tree and the species phyl-

ogeny [141]. For this reason, it will be interesting to

compare phylogenetic hypotheses from the plastid gen-

ome with independent phylogenetic estimates from nu-

merous nuclear and mitochondrial loci.

Finally, while full plastid genome sequence data pro-

vide much power for resolving difficult phylogenetic re-

lationships, it is not clear that they can resolve all plant

relationships. Theoretical work suggests that extremely

large data sets may be necessary to resolve some rela-

tionships when the internal nodes are separated by very

short branches [142], and recent analyses indicate that

full plastid genomes are not sufficient to reject alterna-

tive topologies among monocots [108]. Indeed, the unre-

solved or conflicting parts of the green plant phylogeny

in our analyses are generally associated with short in-

ternal branch lengths (see Additional files 7, 8, 9, 10,

and 11). Thus, even if the model of evolution accurately

reflects the true process of molecular evolution, and

there is no systematic error, plastid genome data alone

may not be sufficient to resolve all parts of the green

plant tree of life. That is, the topology may not be identi-

fiable with the plastid data alone. A recent analysis using

a new diagnostic test for phylogenetic identifiability

based on data cloning suggested that a backbone top-

ology of angiosperms was identifiable from plastid se-

quence data using the GTR + Γ model [143], but the tree

in this paper is much larger and the models more com-

plex. In any case, it will be necessary to include perspec-

tives from the nuclear genome and phenotypic data

before we are confident about all deep-level relationships

among green plants.

Conclusions
Our diverse analyses provide a first approach to address-

ing some of the difficult issues associated with plastid

phylogenetic analyses at this evolutionary depth and

level of taxon sampling. The results of the analyses using

different models, character-coding strategies, and char-

acter subsets suggest that much of the tree is robust to

many different phylogenetic approaches, and they high-

light regions of the tree that need more scrutiny (i.e.,

those relationships not consistent across analyses). More

sophisticated modelling approaches may more accurately

characterize the heterogeneous processes of molecular

evolution, but it is also crucial that the parameters of these

complex models can be estimated by the data at hand

[143]. While it may be impossible for any model to reflect

perfectly the complexities of molecular evolution, as we

better characterize these processes it will be possible to

examine through simulations their possible effects on

phylogenetic analyses and to recognize phylogenetic error

caused by model misspecification.

Methods
Taxon and sequence sampling

Protein-coding data, including nucleotides and their cor-

responding amino acid sequences, for all Viridiplantae

taxa that had complete or nearly complete plastid gen-

ome sequences were downloaded from GenBank on

February 28, 2012. If there were multiple genome se-

quences from the same taxon, we included the se-

quence with the most data. Our sampling included

most major lineages of Viridiplantae. A complete list

of taxa and GenBank accession numbers is available in

Additional file 1.

Taxonomic names (Additional file 1) follow various

references. Four classes of chlorophytic algae (Chloro-

phyta) are recognized following a traditional classifica-

tion [26,76]. Classes of streptophytic algae and orders

for both chlorophytic and streptophytic algae follow

Leliaert et al. [76]. Names for the three main bryophyte

clades follow recent classifications: mosses (Bryophyta

[144]), hornworts (Anthocerotophyta [145]), and liver-

worts (Marchantiophyta [146]). Major clades of tracheo-

phytes follow Cantino et al. [147] and Soltis et al. [103].

Familial and ordinal names within major clades of land

plants follow these references: Bryophyta [144];

(See figure on previous page.)
Figure 12 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide

positions (ntAll) analysis. Portion of tree showing Monocotyledoneae. Data set derived from 78 protein-coding genes of the plastid genome
(ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a summary tree of major Viridiplantae
clades and Additional file 1 for taxonomy. Tree continued in Figures 11 and 13.
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Figure 13 (See legend on next page.)
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Anthocerotophyta [145]; Marchantiophyta [146]; lycophytes

(Lycopodiophyta) and ferns (Monilophyta) [148]; gymno-

sperms (Acrogymnospermae [149]); and angiosperms

(Angiospermae [150]). All scientific names are italicized to

distinguish common names from scientific names [147,151].

Building the phylogenetic character matrix

To build the phylogenetic matrix, first we used a cluster-

ing approach to identify homologous gene sequences.

Amino acid sequences from all downloaded genomes

were compared to each other using BLASTP v.2.2.26

[152]. Significant BLAST hits were defined as those hav-

ing a maximum e-value of 1.0e-5 and having the hit re-

gion cover at least 40% of the target and query

sequences. Based on the BLAST hits, we formed clusters

of putative homologs using single-linkage clustering.

This approach identified groups of sequences that had a

significant BLAST hit with at least one other sequence

in the cluster and were connected to each other by a

path of significant BLAST hits. The resulting clusters

were modified in two ways. First, clusters that contained

two or more different genes from a single taxon were re-

clustered at a more stringent e-value to separate the

genes. Second, when it appeared that a single gene was

split into multiple clusters, we combined them. Some

clusters contained multiple sequences from the same

species when the gene was present in the inverted repeat

region in the plastid genome. If the sequences were

identical, only one was retained for analysis. In cases

where the two sequences differed slightly, we removed

both sequences. Only clusters containing sequences

from at least 50% of the 360 taxa were retained for the

phylogenetic analyses.

Each remaining amino acid cluster (78 total) was

aligned with MAFFT v. 6.859 [153] using the L-INS-i

algorithm, and subsequently, poorly aligned regions were

removed using trimAl v.1.2rev59 [154]. After using

trimAl, we also visually inspected the trimmed align-

ments and removed poorly aligned regions. The nucleo-

tide sequences for each cluster were aligned with

PAL2NAL v.14 [155] to correspond to the trimmed

amino acid alignment and ensure that the correct read-

ing frame was maintained. We checked for anomalous

sequences by building ML trees from each of the aligned

clusters with RAxML [156,157] following the search strat-

egies outlined below. These topologies were visually ex-

amined, and sequences in obviously spurious locations in

the tree were removed. If any sequences were removed

from a cluster alignment, we realigned and edited the

cluster’s untrimmed data as described above. Alignments

for each gene were concatenated using FASconCAT v.1.0

[158].

From this data set, we generated an amino acid (AA)

alignment, two nucleotide alignments, and a binary char-

acter alignment. The first nucleotide alignment con-

tained all nucleotide positions (ntAll), while the second

contained only the first and second codon positions

(ntNo3rd). The binary character alignment was an RY-

coded version (RY) of the ntAll data set. RY-coding

[159] involves recoding the nucleotides as binary charac-

ters, either purines (A or G = R) or pyrimidines (C or T =

Y). RY-coding has been used to ameliorate biases caused

by saturation, rate heterogeneity, and base composition

[119,160,161]. To determine if the data sets were decisive

using our selected partitioning schemes (see below), we

followed the approach used in Sanderson et al. [72].

We assessed base composition bias in the nucleotide

data set (ntAll) by conducting a chi-square test using

PAUP* v.4.0b10 [162] to determine if the base frequen-

cies across taxa were homogeneous. To determine if

base composition of the nucleotide sequences in the

ntAll matrix could affect the composition of amino acid

sequences in the AA matrix, we conducted linear regres-

sions in R [163]. We examined the relationship of per-

cent GC content to the percent of amino acids that are

coded for by GC-rich codons (i.e., G, A, R, and P) as

well as the relationship of percent GC content to the

percent of amino acids that are coded for by AT-rich

codons (i.e., F, Y, M, I, N, and K).

Phylogenetic analyses

All ML phylogenetic analyses were implemented with

RAxML v. 7.3.0 [156,157]. The optimal partitioning

scheme for each alignment was chosen from among sev-

eral commonly used partitioning strategies using the

corrected Akaike information criterion (AICc) [164,165].

This penalizes models for additional parameters and

should account for the trade-off between increased model

fit and over-parameterization when choosing the best

model. For the nucleotide (ntAll and ntNo3rd) and

RY-coded data, we examined four possible partitioning

strategies: 1) no partitioning, 2) partitioning by each

codon position (three partitions), 3) partitioning by

gene (78 partitions), and 4) partitioning by each codon

(See figure on previous page.)
Figure 13 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide

positions (ntAll) analysis. Portion of tree showing Ceratophyllales, Ranunculales, Sabiaceae, Proteales, Trochodendrales, Buxales,

Gunnerales, and Superasteridae. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing
data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a summary tree of major Viridiplantae clades and
Additional file 1 for taxonomy. Tree continued in Figures 12 and 14.
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position within each gene (234 partitions). For the AA

data, we tested two partitioning strategies: 1) no parti-

tioning, and 2) partitioning by gene (78 partitions). A

novel approach for determining partitions of phyloge-

nomic data sets a posteriori using a Bayesian mixture

model has recently been proposed [69]. Additionally,

the program PartitionFinder [166] allows for the statis-

tical comparison of multiple a priori partitioning

schemes. We explored both of these methods, but we

were unable to complete the analyses due to computa-

tional limitations resulting from the large size of our

data set.

To determine which partitioning scheme was optimal

for each data set, we first obtained the optimal ML tree

for each data set under each partitioning scheme as fol-

lows. For the nucleotide (ntAll, ntNo3rd) and RY-coded

data, we ran 10 ML searches from different starting

trees. We used the GTR+Γ model of evolution for each

partition in the nucleotide data set and the binary model

of evolution (BINGAMMA) for the RY data set. For the

AA data, we ran 3 ML searches from different starting

trees. To select the best amino acid substitution model

for each partition of the AA data set, we used the Perl

script (ProteinModelSelection.pl) included in the RAxML

distribution package. For each ML search, we estimated a

separate substitution rate matrix for each partition but a

single set of branch length parameters for all partitions.

We then optimized the model and branch lengths on each

resulting ML tree using RAxML (-f e). AICc values for

each partitioning scheme were then calculated by using

the log-likelihood, number of estimable parameters, and

sample size given by RAxML. The optimal partitioning

strategy for each data set was then used in subsequent ML

bootstrap analyses. Bootstrap searches (200 replicates for

each matrix) were executed separately from the search for

the best ML tree using the standard bootstrap option in

RAxML. To determine if 200 replicates were adequate for

estimating bootstrap values, we conducted a posteriori

bootstopping analyses (-I autoMRE) as implemented in

RAxML and described in Pattengale et al. [167]. All trees

were rooted at the branch between Chlorophyta and

Streptophyta [23,24].

To further explore our data, we conducted the follow-

ing phylogenetic analyses using the methods described

above unless otherwise noted. To determine if there is

conflict between the phylogenetic signal in the ntNo3rd

data set and the data set containing only third positions

(nt3rdOnly), we analyzed the nt3rdOnly data partitioned

by gene region. We also conducted phylogenetic ana-

lyses on each of the four main data sets (ntAll, ntNo3rd,

RY, and AA) with four taxa removed: Neottia nidus-avis

and Rhizanthella gardneri (mycoheterotrophic orchids),

Epifagus virginiana (a parasitic flowering plant), and

Helicosporidium sp. (a parasitic green alga). These taxa

have elevated rates of molecular evolution and relatively

few genes present in the data sets (see Additional file 2).

We removed them to ensure that their inclusion did not

cause any phylogenetic artifacts.

Availability of supporting data
The data sets supporting the results of this article are

available in the Dryad Digital Repository: http://doi.org/

10.5061/dryad.k1t1f.

Additional files

Additional file 1: Taxon sampling. Taxa included in this study, their
GenBank accession numbers, original publications, and their higher taxonomy.

Additional file 2: Genes sampled and missing data for each taxon.

Information on taxa sampled for each gene included, and the percent of
missing data for each taxon in each data set. Number of genes present
per taxon and number of taxa present per gene are also given.

Additional file 3: GC content for each taxon in the ntAll and

ntNo3rd data sets as well as in the first, second, and third codon

positions of the ntAll data set.

Additional file 4: Fifty percent maximum likelihood majority-rule

bootstrap consensus summary tree of Viridiplantae inferred from

the first and second codon positions (ntNo3rd) analysis. See also
Figure 6 for a summary tree of major Viridiplantae clades and
Additional file 1 for taxonomy. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360, 38,898 bp, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Additional file 5: Fifty percent maximum likelihood majority-rule

bootstrap consensus tree of Viridiplantae inferred from the RY-

coded (RY) analysis. See also Figure 7 for a summary tree of major
Viridiplantae clades and Additional file 1 for taxonomy. Data set derived
from 78 protein-coding genes of the plastid genome (ntax = 360,
58,347 bp, missing data ~15.6%,). Bootstrap support values ≥ 50% are
indicated.

Additional file 6: Fifty percent maximum likelihood majority-rule

bootstrap consensus tree of Viridiplantae inferred from the amino

acid (AA) analysis. See also Figure 8 for a summary tree of major
Viridiplantae clades and Additional file 1 for taxonomy. Data set derived
from 78 protein-coding genes of the plastid genome (ntax = 360, 19,449
AAs, missing data ~15.6%,). Bootstrap support values ≥ 50% are
indicated.

Additional file 7: Maximum likelihood tree of Viridiplantae inferred

from the all nucleotide positions (ntAll) analysis. Cladogram of the
maximum likelihood bipartition tree is shown on the left with bootstrap
values indicated above the branches. The phylogram of same tree is
shown on the right. Data set derived from 78 protein-coding genes of
the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap
support values ≥ 50% are indicated.

(See figure on previous page.)
Figure 14 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide

positions (ntAll) analysis. Portion of tree showing Dilleniaceae and Superrosidae. Data set derived from 78 protein-coding genes of the
plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a summary tree
of major Viridiplantae clades and Additional file 1 for taxonomy. Tree continued in Figure 13.
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Additional file 8: Maximum likelihood tree of Viridiplantae inferred

from the first and second codon positions (ntNo3rd) analysis.

Cladogram of the maximum likelihood bipartition tree is shown on the
left with bootstrap values indicated above the branches. The phylogram
of same tree is shown on the right. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360, 38,898 bp, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Additional file 9: Maximum likelihood tree of Viridiplantae inferred

from the RY-coded (RY) analysis. Cladogram of the maximum
likelihood bipartition tree is shown on the left with bootstrap values
indicated above the branches. The phylogram of same tree is shown on
the right. Data set derived from 78 protein-coding genes of the plastid
genome (ntax = 360, 58,347 bp, missing data ~15.6%,). Bootstrap support
values ≥ 50% are indicated.

Additional file 10: Maximum likelihood tree of Viridiplantae

inferred from the amino acid (AA) analysis. Cladogram of the
maximum likelihood bipartition tree is shown on the left with bootstrap
values indicated above the branches. The phylogram of same tree is
shown on the right. Data set derived from 78 protein-coding genes of
the plastid genome (ntax = 360, 19,449 AAs, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Additional file 11: Maximum likelihood tree of Viridiplantae

inferred from the third codon position (nt3rdOnly) analysis.

Cladogram of the maximum likelihood bipartition tree is shown on the
left with bootstrap values indicated above the branches. The phylogram
of same tree is shown on the right. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360, 19,449 bp, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BRR conceived the study. BRR, PSS, DES, and JGB participated in the design
of the study. BRR, MAG, and JGB analyzed the data. BRR, PSS, DES, and JGB
wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

This research was supported in part by the iPlant Tree of Life Project (iPlant
Collaborative, funded by NSF grant DBI-0735191) and the Open Tree of Life
Project (NSF grant #DEB-12008809). We would also like to thank E. L. Braun
and Z. Xi for their input regarding aspects of our data analyses and E. V.
Mavrodiev for help with the figures.

Author details
1Department of Biological Sciences, Eastern Kentucky University, Richmond,
KY 40475, USA. 2Department of Biology, University of Florida, Gainesville, FL
32611-8525, USA. 3Florida Museum of Natural History, University of Florida,
Gainesville, FL 32611-7800, USA. 4Genetics Institute, University of Florida,
Gainesville, FL 32610, USA.

Received: 21 June 2013 Accepted: 13 January 2014

Published: 17 February 2014

References

1. Govaerts R: How many species of seed plants are there? - a response.

Taxon 2003, 52(3):583–584.
2. Govaerts R: How many species of seed plants are there? Taxon 2001,

50(4):1085–1090.
3. Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ: Plant

systematics : a phylogenetic approach. 3rd edition. Sunderland, MA: Sinauer
Associates; 2008.

4. Charophycean green algae. [http://www.life.umd.edu/labs/delwiche/
Charophyte.html]

5. AlgaeBase. [http://www.algaebase.org]
6. Guiry MD: How many species of algae are there? J Phycol 2012,

48(5):1057–1063.

7. Courties C, Vaquer A, Troussellier M, Lautier J, Chretiennot-Dinet MJ, Neveux J,
Machado C, Claustre H: Smallest eukaryotic organism. Nature 1994,
370(6487):255.

8. Butterfield NJ: Modes of pre-Ediacaran multicellularity. Precambrian Res

2009, 173(1–4):201–211.
9. Butterfield NJ, Knoll AH, Swett K: Paleobiology of the Neoproterozoic

Svanbergfjellet Formation, Spitsbergen. Fossils Strata 1994, 34:1–84.
10. Halverson GP, Maloof AC, Schrag DP, Dudas FO, Hurtgen M: Stratigraphy

and geochemistry of a ca 800 Ma negative carbon isotope interval in

northeastern Svalbard. Chem Geol 2007, 237(1–2):5–27.
11. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D: A molecular

timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 2004,
21(5):809–818.

12. Hedges SB, Blair JE, Venturi ML, Shoe JL: A molecular timescale of

eukaryote evolution and the rise of complex multicellular life. BMC Evol

Biol 2004, 4:2.
13. Herron MD, Hackett JD, Aylward FO, Michod RE: Triassic origin and early

radiation of multicellular volvocine algae. Proc Natl Acad Sci USA 2009,
106(9):3254–3258.

14. Parfrey LW, Lahr DJG, Knoll AH, Katz LA: Estimating the timing of early

eukaryotic diversification with multigene molecular clocks. Proc Natl Acad

Sci USA 2011, 108(33):13624–13629.
15. Kenrick P, Crane PR: The origin and early evolution of plants on land.

Nature 1997, 389:33–39.
16. Doyle JA: Seed ferns and the origin of angiosperms. J Torrey Bot Soc 2006,

133(1):169–209.
17. Hilton J, Bateman RM: Pteridosperms are the backbone of seed-plant

phylogeny. J Torrey Bot Soc 2006, 133(1):119–168.
18. Rothfels CJ, Larsson A, Kuo LY, Korall P, Chiou WL, Pryer KM: Overcoming

deep roots, fast rates, and short internodes to resolve the ancient rapid

radiation of eupolypod II ferns. Syst Biol 2012, 61(3):490–509.
19. Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG: Rate

heterogeneity among lineages of tracheophytes: integration of

molecular and fossil data and evidence for molecular living fossils.

Proc Natl Acad Sci USA 2002, 99(7):4430–4435.
20. Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA,

Nikiforova SV, Lockhart PJ: Systematic error in seed plant phylogenomics.

Genome Biol Evol 2011, 3:1340–1348.
21. Smith DR: Unparalleled GC content in the plastid DNA of Selaginella.

Plant Mol Biol 2009, 71(6):627–639.
22. Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life

history in flowering plants. Science 2008, 322(5898):86–89.
23. Karol KG, McCourt RM, Cimino MT, Delwiche CF: The closest living relatives

of land plants. Science 2001, 294:2351–2353.
24. Lemieux C, Otis C, Turmel M: Ancestral chloroplast genome in Mesostigma

viride reveals an early branch of green plant evolution. Nature 2000,
403(6770):649–652.

25. Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M,
Becker B: Origin of land plants: do conjugating green algae hold the key?

BMC Evol Biol 2011, 11:104.
26. Lang BF, Nedelcu AM: Plastid genomes of algae. In Genomics of

Chloroplasts and Mitochondria, Volume 35. Edited by Bock R, Knoop V.
Netherlands: Springer; 2012:59–87.

27. Turmel M, Otis C, Lemieux C: The chloroplast genome sequence of Chara

vulgaris sheds new light into the closest green algal relatives of land

plants. Mol Biol Evol 2006, 23(6):1324–1338.
28. Turmel M, Pombert J, Charlebois P, Otis C, Lemieux C: The green algal

ancestry of land plants as revealed by the chloroplast genome. Int J Pl

Sci 2007, 168(5):679–689.
29. Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O,

Lee J, Kent L, Rest J, et al: The deepest divergences in land plants inferred

from phylogenomic evidence. Proc Natl Acad Sci USA 2006,
103(42):15511–15516.

30. Nickrent DL, Parkinson CL, Palmer JD, Duff RJ: Multigene phylogeny of

land plants with special reference to bryophytes and the earliest land

plants. Mol Biol Evol 2000, 17:1885–1895.
31. Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett

JG: Bryophyte phylogeny: advancing the molecular and morphological

frontiers. Bryologist 2007, 110(2):179–213.
32. Mishler BD, Churchill SP: A cladistic approach to the phylogeny of the

“bryophytes”. Brittonia 1984, 36:406–424.

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 24 of 27

http://www.biomedcentral.com/1471-2148/14/23

http://www.biomedcentral.com/content/supplementary/1471-2148-14-23-S8.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-14-23-S9.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-14-23-S10.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-14-23-S11.pdf
http://www.life.umd.edu/labs/delwiche/Charophyte.html
http://www.life.umd.edu/labs/delwiche/Charophyte.html
http://www.algaebase.org


33. Shaw J, Renzaglia K: Phylogeny and diversification of bryophytes. Amer J

Bot 2004, 91(10):1557–1581.
34. Karol KG, Arumuganathan K, Boore JL, Duffy AM, Everett KDE, Hall JD,

Hansen SK, Kuehl JV, Mandoli DF, Mishler BD, et al: Complete plastome

sequences of Equisetum arvense and Isoetes flaccida: implications for

phylogeny and plastid genome evolution of early land plant lineages.

BMC Evol Biol 2010, 10:321.
35. Wolf PG, Karol KG: Plastomes of bryophytes, lycophytes and ferns. In

Genomics of Chloroplasts and Mitochondria, Volume 35. Edited by Bock R,
Knoop V. Netherlands: Springer; 2012:89–102.

36. Crane PR: Phylogenetic analysis of seed plants and the origin of

angiosperms. Ann Missouri Bot Gard 1985, 72:716–793.
37. Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH: Molecular phylogeny of

extant gymnosperms and seed plant evolution: analysis of nuclear 18S

rRNA sequences. Mol Biol Evol 1997, 14(1):56–68.
38. Bowe LM, Coat G, dePamphilis CW: Phylogeny of seed plants based on all

three genomic compartments: extant gymnosperms are monophyletic

and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 2000,
97(8):4092–4097.

39. Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD: Seed plant

phylogeny inferred from all three plant genomes: monophyly of extant

gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci

USA 2000, 97(8):4086–4091.
40. Finet C, Timme RE, Delwiche CF, Marleta F: Multigene phylogeny of the

green lineage reveals the origin and diversification of land plants. Curr

Biol 2010, 20(24):2217–2222.
41. Zhong B, Yonezawa T, Zhong Y, Hasegawa M: The position of Gnetales

among seed plants: overcoming pitfalls of chloroplast phylogenomics.

Mol Biol Evol 2010, 27(12):2855–2863.
42. Mathews S: Phylogenetic relationships among seed plants: persistent

questions and the limits of molecular data. Amer J Bot 2009, 96(1):228–236.
43. Burleigh JG, Mathews S: Phylogenetic signal in nucleotide data from seed

plants: implications for resolving the seed plant tree of life. Amer J Bot

2004, 91(10):1599–1613.
44. Bhattacharya D, Medlin L: Algal phylogeny and the origin of land plants.

Plant Physiol 1998, 116(1):9–15.
45. Soltis PS, Soltis DE, Wolf PG, Nickrent DL, Chaw S-M, Chapman RL: The

phylogeny of land plants inferred from 18S rDNA sequences: pushing

the limits of rDNA signal? Mol Biol Evol 1999, 16:1774–1784.
46. Lee EK, Cibrian-Jaramillo A, Kolokotronis S-O, Katari MS, Stamatakis A, Ott M,

Chiu JC, Little DP, Stevenson DW, McCombie WR, et al: A functional

phylogenomic view of the seed plants. PLoS Genet 2011, 7(12):e1002411.
47. Qiu YL, Cho Y, Cox JC, Palmer JD: The gain of three mitochondrial introns

identifies liverworts as the earliest land plants. Nature 1998, 394:671–674.
48. Duff RJ, Nickrent DL: Phylogenetic relationships of land plants using

mitochondrial small-subunit rDNA sequences. Amer J Bot 1999, 86:372–386.
49. Qiu YL, Palmer JD: Phylogeny of early land plants: insights from genes

and genomes. Trends Plant Sci 1999, 4(1):26–30.
50. Qiu YL: Phylogeny and evolution of charophytic algae and land plants.

J Syst Evol 2008, 46(3):287–306.
51. Magallon S, Sanderson MJ: Relationships among seed plants inferred from

highly conserved genes: Sorting conflicting phylogenetic signals among

ancient lineages. Amer J Bot 2002, 89(12):1991–2006.
52. Smith S, Beaulieu J, Donoghue M: Mega-phylogeny approach for

comparative biology: an alternative to supertree and supermatrix

approaches. BMC Evol Biol 2009, 9(1):37.
53. Wicke S, Schneeweiss G, dePamphilis C, Müller K, Quandt D: The evolution

of the plastid chromosome in land plants: gene content, gene order,

gene function. Plant Mol Biol 2011, 76(3):273–297.
54. Palmer JD, Nugent JM, Herbon LA: Unusual structure of geranium

chloroplast dna - a triple-sized inverted repeat, extensive gene duplications,

multiple inversions, and 2 repeat families. Proc Natl Acad Sci USA 1987,
84(3):769–773.

55. Stegemann S, Keuthe M, Greiner S, Bock R: Horizontal transfer of
chloroplast genomes between plant species. Proc Natl Acad Sci USA 2012,
109(7):2434–2438.

56. Soltis DE, Soltis PM: Choosing an approach and an appropriate gene for

phylogenetic analysis. In Molecular Systematics of Plants II. Edited by Soltis
DE, Soltis PM, Doyle J. Boston: Kluwer; 1998:1–42.

57. Olmstead RG, Palmer JD: Chloroplast DNA systematics - a review of

methods and data-analysis. Amer J Bot 1994, 81(9):1205–1224.

58. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR,
Price RA, Hills HG, Qiu Y-L, et al: Phylogenetics of seed plants: An analysis of

nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard

1993, 80:528–580.
59. Savolainen V, Chase MW: A decade of progress in plant molecular

phylogenetics. Trends Gen 2003, 19(12):717–724.
60. Shinozaki K, et al: The complete nucleotide sequence of tobacco chloroplast

genome: its gene organization and expression. EMBO J 1986, 5:2043–2049.
61. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K,

Shiki Y, Takeuchi M, Chang Z, et al: Chloroplast gene organization

deduced from complete sequence of liverwort Marchantia polymorpha

chloroplast DNA. Nature 1986, 322(6079):572–574.
62. Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE:

Rapid and accurate pyrosequencing of angiosperm plastid genomes.

BMC Plant Biol 2006, 6:17.
63. Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE: Phylogenetic analysis of

83 plastid genes further resolves the early diversification of eudicots.

Proc Natl Acad Sci USA 2010, 107(10):4623–4628.
64. Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J:

Targeted enrichment strategies for next-generation plant biology. Amer J

Bot 2012, 99(2):291–311.
65. Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T: Multiplex

sequencing of plant chloroplast genomes using Solexa sequencing-

by-synthesis technology. Nucleic Acids Res 2008, 36(19):1–11.
66. Parks M, Cronn R, Liston A: Increasing phylogenetic resolution at low

taxonomic levels using massively parallel sequencing of chloroplast

genomes. BMC Biol 2009, 7:84.
67. Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A:

Navigating the tip of the genomic iceberg: next-generation sequencing

for plant systematics. Amer J Bot 2012, 99(2):349–364.
68. Jansen RK, Ruhlman TA: Plastid genomes of seed plants. In Genomics of

Chloroplasts and Mitochondria, Volume 35. Edited by Bock R, Knoop V.
Netherlands: Springer; 2012.

69. Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK,
Matthews ML, Stevens PF, Mathews S, et al: Phylogenomics and a posteriori

data partitioning resolve the Cretaceous angiosperm radiation Malpighiales.

Proc Natl Acad Sci USA 2012, 109(43):17519–17524.
70. de Koning AP, Keeling PJ: The complete plastid genome sequence of the

parasitic green alga Helicosporidium sp. is highly reduced and structured.

BMC Biol 2006, 4:10.
71. Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I: Rampant

gene loss in the underground orchid Rhizanthella gardneri highlights

evolutionary constraints on plastid genomes. Mol Biol Evol 2011,
28(7):2077–2086.

72. Sanderson MJ, McMahon MM, Steel M: Phylogenomics with incomplete

taxon coverage: the limits to inference. BMC Evol Biol 2010, 10:13.
73. Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG: Data from:

from algae to angiosperms:–inferring the phylogeny of green plants

(Viridiplantae) from 360 plastid genomes. Dryad Data Repository 2014: .
doi:10.5061/dryad.k1t1f.

74. Lewis LA, McCourt RM: Green algae and the origin of land plants. Amer J

Bot 2004, 91(10):1535–1556.
75. Mattox KR, Stewart KD: Classification of the green algae: a concept based

on comparative cytology. In The Systematics of Green Algae. Edited by Irvin
DEG, John DM. London, UK: Academic Press; 1984:29–72.

76. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De
Clerck O: Phylogeny and molecular evolution of the green algae. CRC Crit

Rev Plant Sci 2012, 31(1):1–46.
77. Leliaert F, Verbruggen H, Zechman FW: Into the deep: New discoveries at

the base of the green plant phylogeny. Bioessays 2011, 33(9):683–692.
78. Lartillot N, Brinkmann H, Philippe H: Suppression of long-branch attraction

artefacts in the animal phylogeny using a site-heterogeneous model.

BMC Evol Biol 2007, 7:14.
79. Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities

in the amino-acid replacement process. Mol Biol Evol 2004, 21:1095.
80. Lemieux C, Otis C, Turmel M: A clade uniting the green algae Mesostigma

viride and Chlorokybus atmophyticus represents the deepest branch of

the Streptophyta in chloroplast genome-based phylogenies. BMC Biol

2007, 5:2.
81. Rodriguez-Ezpeleta N, Philippe H, Brinkmann H, Becker B, Melkonian M:

Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 25 of 27

http://www.biomedcentral.com/1471-2148/14/23



data sets support the placement of Mesostigma in the Streptophyta. Mol

Biol Evol 2007, 24(3):723–731.
82. Timme RE, Bachvaroff TR, Delwiche CF: Broad phylogenomic sampling and

the sister lineage of land plants. PLoS ONE 2012, 7(1):e29696.
83. Turmel M, Otis C, Lemieux C: An unexpectedly large and loosely packed

mitochondrial genome in the charophycean green alga Chlorokybus

atmophyticus. BMC Genomics 2007, 8:12.
84. Cocquyt E, Verbruggen H, Leliaert F, De Clerck O: Evolution and cytological

diversification of the green seaweeds (Ulvophyceae). Mol Biol Evol 2010,
27(9):2052–2061.

85. Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C: The chloroplast

genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus

shed new light on the evolutionary history of prasinophytes and the

origin of the secondary chloroplasts of euglenids. Mol Biol Evol 2009,
26(3):631–648.

86. Turmel M, Otis C, Lemieux C: The chloroplast genomes of the green algae

Pedinomonas minor, Parachlorella kessleri, and Oocystis solitatia reveal a

shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol

Evol 2009, 26(10):2317–2331.
87. Zhong B, Xi Z, Goremykin VV, Fong R, Mclenachan PA, Novis PM, Davis CC,

Penny D: Streptophyte algae and the origin of land plants revisited using

heterogeneous models with three new algal chloroplast genomes. Mol

Biol Evol 2014, 31(1):177–183.
88. Groth-Malonek M, Pruchner D, Grewe F, Knoop V: Ancestors of trans-splicing

mitochondrial introns support serial sister group relationships of hornworts

and mosses with vascular plants. Mol Biol Evol 2005, 22(1):117–125.
89. Qiu YL, Li L, Wang B, Chen Z, Dombrovska O, Lee JH, Kent L, Li RQ, Jobson

RW, Hendry TA, et al: A nonflowering land plant phylogeny inferred from

nucleotide sequences of seven chloroplast, mitochondrial, and nuclear

genes. Int J Pl Sci 2007, 168(5):691–708.
90. Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ: Vegetative and

reproductive innovations of early land plants: implications for a unified

phylogeny. Philos Transs R Soc Lon B 2000, 355:769–793.
91. Renzaglia KS, Garbary DJ: Motile gametes of land plants: diversity,

development, and evolution. CRC Crit Rev Plant Sci 2001, 20(2):
107–213.

92. Garbary DJ, Renzaglia KS, Duckett JG: The phylogeny of land plants-a

cladistic analysis based on male gametogenesis. Pl Syst Evol 1993,
188:237–269.

93. Garbary DJ, Renzaglia KS: Bryophyte phylogeny and the evolution of

land plants: evidence from development and ultrastructure. In
Bryology for the twenty-first century. Edited by Bates JW, Ashton NW,
Duckett JG. Leeds, U.K: Maney Publishing and British Bryological Society;
1998:45–63.

94. Nishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, Wakasugi T,
Yamada K, Yoshinaga K, Yamaguchi K, et al: Chloroplast phylogeny
indicates that bryophytes are monophyletic. Mol Biol Evol 2004,
21(10):1813–1819.

95. Goremykin VV, Hellwig FH: Evidence for the most basal split in land

plants dividing bryophyte and tracheophyte lineages. Pl Syst Evol 2005,
254(1–2):93–103.

96. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD:
Horsetails and ferns are a monophyletic group and the closest living

relatives to seed plants. Nature 2001, 409:618–622.
97. Pryer KM, Schneider H, Magallón S: The radiation of vascular plants. In

Assembling the Tree of Life. Edited by Cracraft J, Donoghue MJ. New York:
University Press; 2004:138–153.

98. Kranz HD, Huss VAR: Molecular evolution of pteridophytes and their

relationship to seed plants: evidence from complete 18S rRNA gene

sequences. Pl Syst Evol 1996, 202(1–2):1–11.
99. Raubeson LA, Jansen RK: Chloroplast DNA evidence on the ancient

evolutionary split in vascular land plants. Science 1992, 255(5052):1697–1699.
100. Grewe F, Guo W, Gubbels E, Hansen AK, Mower J: Complete plastid

genomes from Ophioglossum californicum, Psilotum nudum, and

Equisetum hyemale reveal an ancestral land plant genome structure and

resolve the position of Equisetales among monilophytes. BMC Evol Biol

2013, 13(1):8.
101. Soltis DE, Soltis PS, Zanis MJ: Phylogeny of seed plants based on evidence

from eight genes. Amer J Bot 2002, 89(10):1670–1681.
102. Xi Z, Rest J, Davis CC: Phylogenomics and coalescent analyses resolve

extant seed plant relationships. PLoS ONE 2013, 8(11):e80870.

103. Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF,
Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, et al: Angiosperm
phylogeny: 17 genes, 640 taxa. Am J Bot 2011, 98(4):704–730.

104. Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H: Complete plastid genome

sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at

least two independent transfers of rpl22 to the nucleus. Mol Biol Evol

2011, 28(1):835–847.
105. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J,

Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, et al: Analysis of 81
genes from 64 plastid genomes resolves relationships in angiosperms

and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA

2007, 104:19369–19374.
106. Moore MJ, Bell CD, Soltis PS, Soltis DE: Using plastid genome-scale data to

resolve enigmatic relationships among basal angiosperms. Proc Natl Acad

Sci USA 2007, 104(49):19363–19368.
107. Soltis DE, Soltis PS, Endress PK, Chase MW: Phylogeny and evolution of

angiosperms. Sunderland, Mass: Sinauer Associates; 2005.
108. Barrett CF, Davis JI, Leebens-Mack J, Conran JG, Stevenson DW: Plastid

genomes and deep relationships among the commelinid monocot

angiosperms. Cladistics 2013, 29(1):65–87.
109. Ane C, Burleigh JG, McMahon MM, Sanderson MJ: Covarion structure in

plastid genome evolution: a new statistical test. Mol Biol Evol 2005,
22(4):914–924.

110. Goremykin VV, Nikiforova SV, Biggs PJ, Zhong BJ, Delange P, Martin W,
Woetzel S, Atherton RA, McLenachan PA, Lockhart PJ: The evolutionary

root of flowering plants. Syst Biol 2013, 62(1):50–61.
111. Foster PG: Modeling compositional heterogeneity. Syst Biol 2004,

53(3):485–495.
112. Jermiin LS, Ho SYW, Ababneh F, Robinson J, Larkum AWD: The biasing

effect of compositional heterogeneity on phylogenetic estimates may

be underestimated. Syst Biol 2004, 53(4):638–643.
113. Erixon P, Oxelman B: Whole-gene positive selection, elevated

synonymous substitution rates, duplication, and indel evolution of the

chloroplast clpP1 gene. PLoS ONE 2008, 3(1):10.
114. Guisinger MM, Kuehl JV, Boore JL, Jansen RK: Genome-wide analyses of

Geraniaceae plastid DNA reveal unprecedented patterns of increased

nucleotide substitutions. Proc Natl Acad Sci USA 2008, 105(47):18424–18429.
115. Cai ZQ, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW,

Boore JL, Jansen RK: Complete plastid genome sequences of Drimys,

Liriodendron, and Piper: implications for the phylogenetic relationships

of magnoliids. BMC Evol Biol 2006, 6:20.
116. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL,

Jansen RK: Comparative chloroplast genomics: analyses including new

sequences from the angiosperms Nuphar advena and Ranunculus

macranthus. BMC Genomics 2007, 8:27.
117. Guisinger MM, Kuehl JV, Boore JL, Jansen RK: Extreme reconfiguration of

plastid genomes in the angiosperm family Geraniaceae: rearrangements,

repeats, and codon usage. Mol Biol Evol 2011, 28(1):583–600.
118. Phillips MJ, Penny D: The root of the mammalian tree inferred from

whole mitochondrial genomes. Mol Phylogenet and Evol 2003, 28(2):171–185.
119. Phillips MJ, Delsuc F, Penny D: Genome-scale phylogeny and the

detection of systematic biases. Mol Biol Evol 2004, 21:1455.
120. Ishikawa SA, Inagaki Y, Hashimoto T: RY-coding and non-homogeneous

models can ameliorate the maximum-likelihood inferences from

nucleotide sequence data with parallel compositional heterogeneity.

Evol Bioinform 2012, 8:357–371.
121. Delsuc F, Phillips MJ, Penny D: Comment on “Hexapod origins:

monophyletic or paraphyletic?”. Science 2003, 301(5639):1482.
122. Parks M, Cronn R, Liston A: Separating the wheat from the chaff:

mitigating the effects of noise in a plastome phylogenomic data set

from Pinus L. (Pinaceae). BMC Evol Biol 2012, 12(1):100.
123. Jeffroy O, Brinkmann H, Delsuc F, Philippe H: Phylogenomics: the

beginning of incongruence? Trends Genet 2006, 22(4):225–231.
124. Foster PG, Hickey DA: Compositional bias may affect both DNA-based

and protein-based phylogenetic reconstructions. J Mol Evol 1999,
48(3):284–290.

125. Mathews S, Clements MD, Beilstein MA: A duplicate gene rooting of seed

plants and the phylogenetic position of flowering plants. Philos Trans R

Soc B-Biol Sci 2010, 365(1539):383–395.
126. Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, Chase MW, Farris JS,

Stefanovic S, Rice DW, Palmer JD, et al: Genome-scale data, angiosperm

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 26 of 27

http://www.biomedcentral.com/1471-2148/14/23



relationships, and “ending incongruence”: a cautionary tale in

phylogenetics. Trends Plant Sci 2004, 9(10):477–483.
127. Graybeal A: Is it better to add taxa or characters to a difficult

phylogenetic problem? Syst Biol 1998, 47:9–17.
128. Hillis DM: Taxonomic sampling, phylogenetic accuracy, and investigator

bias. Syst Biol 1998, 47(1):3–8.
129. Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces

phylogenetic error. Syst Biol 2002, 51:588–598.
130. Hillis DM, Pollock DD, McGuire JA, Zwickl DJ: Is sparse taxon sampling a

problem for phylogenetic inference? Syst Biol 2003, 52:124–126.
131. Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW,

Boore JL, Jansen RK, dePamphilis CW: Identifying the basal angiosperm

node in chloroplast genome phylogenies: sampling one’s way out of the

Felsenstein Zone. Mol Biol Evol 2005, 22(10):1948–1963.
132. Stull GW, Moore MJ, Mandala VS, Douglas NA, Kates H-R, Qi X, Brockington

SF, Soltis PS, Soltis DE, Gitzendanner MA: A targeted enrichment strategy

for massively parallel sequencing of angiosperm plastid genomes. Appl

Plant Sci 2013, 1(2):1200497.
133. Wiens JJ: Missing data, incomplete taxa, and phylogenetic accuracy. Syst

Biol 2003, 52(4):528–538.
134. Wiens JJ, Moen DS: Missing data and the accuracy of Bayesian

phylogenetics. J Syst Evol 2008, 46(3):307–314.
135. Ruhfel BR, Stevens PF, Davis CC: Combined morphological and molecular

phylogeny of the clusioid clade (Malpighiales) and the placement of the

ancient rosid macrofossil Paleoclusia. Int J Pl Sci 2013, 174(6):910–936.
136. Wiens JJ: Paleontology, genomics, and combined-data phylogenetics:

can molecular data improve phylogeny estimation for fossil taxa? Syst

Biol 2009, 58(1):87–99.
137. Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis

CC, Latvis M, Manchester SR, Soltis DE: Rosid radiation and the rapid rise

of angiosperm-dominated forests. Proc Natl Acad Sci USA 2009,
106(10):3853–3858.

138. Kubatko LS, Degnan JH: Inconsistency of phylogenetic estimates from

concatenated data under coalescence. Syst Biol 2007, 56(1):17–24.
139. Matsen FA, Steel M: Phylogenetic mixtures on a single tree can mimic a

tree of another topology. Syst Biol 2007, 56(5):767–775.
140. Penny D, White WT, Hendy MD, Phillips MJ: A bias in ML estimates of

branch lengths in the presence of multiple signals. Mol Biol Evol 2008,
25(2):239–242.

141. Maddison WP: Gene trees in species trees. Syst Biol 1997, 46(3):523–536.
142. Mossel E, Steel M: How much can evolved characters tell us about the

tree that generated them? In Mathematics of Evolution and Phylogeny.

Edited by Gascuel O, Steel M. Oxford: Oxford University Press; 2005:384–412.
143. Ponciano JM, Burleigh JG, Braun EL, Taper ML: Assessing parameter

identifiability in phylogenetic models using data cloning. Syst Biol 2012,
61(6):955–972.

144. Goffinet B, Buck WR, Shaw AJ: Morphology and classification of the

Bryophyta. In Bryophyte Biology. 2nd edition. Edited by Goffinet B, Shaw AJ.
Cambridge, UK: Cambridge University Press; 2008:55–138.

145. Stotler RE, Crandall-Stotler B: A revised classification of the Anthocerotophyta

and a checklist of the hornworts of North America, north of Mexico.

Bryologist 2005, 108(1):16–26.
146. Crandall-Stotler B, Stotler RE, Long DG: Phylogeny and classification of the

Marchantiophyta. Edinb J Bot 2009, 66(1):155–198.
147. Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, Soltis

PS, Donoghue MJ: Towards a phylogenetic nomenclature of

Tracheophyta. Taxon 2007, 56(3):1E–44E.
148. Christenhusz MJM, Zhang X-C, Schneider H: A linear sequence of extant

families and genera of lycophytes and ferns. Phytotaxa 2011, 19:7–54.
149. Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW: A

new classification and linear sequence of extant gymnosperms.

Phytotaxa 2011, 19:55–70.
150. III A: An update of the Angiosperm Phylogeny Group classification for

the orders and families of flowering plants: APG III. Bot J Linn Soc 2009,
161(2):105–121.

151. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawkworth DL,
Herendeen PS, Knapp S, Marhold K, Prado J, et al: International code of
nomenclature for algae, fungi, and plants (Melbourne code); adopted by the

Eighteenth International Botanical Congress, Melbourne, Australia, July 2011.

Königstein, Germany: Koeltz Scientific Books; 2012.

152. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ:
Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic Acids Res 1997, 25(17):3389–3402.
153. Katoh K, Misawa K, Kuma KÄ, Miyata T: MAFFT: a novel method for rapid

multiple sequence alignment based on fast Fourier transform. Nucleic

Acids Res 2002, 30(14):3059–3066.
154. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for

automated alignment trimming in large-scale phylogenetic analyses.

Bioinformatics 2009, 25(15):1972–1973.
155. Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein

sequence alignments into the corresponding codon alignments. Nucleic

Acids Res 2006, 34(suppl 2):W609–W612.
156. Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models. Bioinformatics 2006,
22(21):2688–2690.

157. Ott M, Zola J, Aluru S, Stamatakis A: Large-scale maximum likelihood-

based phylogenetic analysis on the IBM BlueGene/L. In Proceedings of

IEEE/ACM Supercomputing (SC2007) conference: 2007. Reno, Nevada, USA:
ACM; 2007.

158. Kuck P, Meusemann K: FASconCAT: Convenient handling of data matrices.

Mol Phylogenet Evol 2010, 56(3):1115–1118.
159. Woese CR, Achenbach L, Rouviere P, Mandelco L: Archaeal phylogeny:

reexamination of the phylogenetic position of Archaeoglobus fulgidus in

light of certain composition-induced artifacts. Syst Appl Microbiol 1991,
14:364.

160. Delsuc F, Brinkmann H, Philippe H: Phylogenomics and the reconstruction

of the tree of life. Nat Rev Genet 2005, 6(5):361–375.
161. Philippe H, Delsuc F, Brinkmann H, Lartillot N: Phylogenomics. Annu Rev

Ecol Evol Syst 2005, 36(1):541–562.
162. Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (*and Other

Methods). Version 4b10. Sunderland, MA: Sinauer Associates; 2003.
163. Team RC: R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing; 2012.
164. Hurvich CM, Tsai CL: Regression and time-series model selection in small

samples. Biometrika 1989, 76(2):297–307.
165. Posada D, Buckley TR: Model selection and model averaging in

phylogenetics: advantages of Akaike Information Criterion and Bayesian

approaches over likelihood ratio tests. Syst Biol 2004, 53(5):793–808.
166. Lanfear R, Calcott B, Ho SYW, Guindon S: PartitionFinder: combined

selection of partitioning schemes and substitution models for

phylogenetic analyses. Mol Biol Evol 2012, 29(6):1695–1701.
167. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A: How

many bootstrap replicates are necessary? J Comput Biol 2010, 17(3):337–354.

doi:10.1186/1471-2148-14-23
Cite this article as: Ruhfel et al.: From algae to angiosperms–inferring
the phylogeny of green plants (Viridiplantae) from 360 plastid genomes.
BMC Evolutionary Biology 2014 14:23.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 27 of 27

http://www.biomedcentral.com/1471-2148/14/23


	From Algae to Angiosperms – Inferring the Phylogeny of Green Plants ( Viridiplantae ) from 360 Plastid Genomes
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Data set
	GC bias
	Phylogenetic analyses

	Discussion
	Evaluation of phylogenetic relationships
	Methodological issues of plastid phylogenomic analyses

	Conclusions
	Methods
	Taxon and sequence sampling
	Building the phylogenetic character matrix
	Phylogenetic analyses

	Availability of supporting data
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

