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ABSTRACT 

Land snails are cornerstone organisms that contribute to properly functioning 

ecosystems.  However, habitat loss and destruction have led to these organisms being one 

of the most imperiled groups on the planet.  Due to their relatively sedentary nature, land 

snails can be susceptible to anthropogenic disturbance and habitat fragmentation.  

Because of this, old-growth forests have the potential for being premiere habitat for these 

organisms, and snails have the potential to be good indicators of old-growth habitats.  

This study compared land snail species diversity and community composition in old-

growth and second-growth forests in the Inner Bluegrass, Cumberland Plateau, and Pine 

Mountain ecoregions of Kentucky.  Study areas were selected in central and eastern 

Kentucky based on disturbance histories.  Within each study area, data regarding species 

diversity, richness, and abundance between disturbance classes was collected and 

analyzed using a random effects analysis of variance as well as non-metric 

multidimensional scaling to compare community structures.  Habitat data was analyzed 

using canonical correspondence analysis.  In the Inner Bluegrass Region, the snail 

diversity was high, and had low variability between sampling plots, but community 

composition differed significantly between the disturbance classes.  In the Cumberland 

Plateau and Pine Mountains sites, species diversity and abundance was higher in the 

undisturbed forests compared to disturbed forests.  There was also high variability in 

species composition among the sampling plots within these sites.  Non-metric 

Multidimensional Scaling highlighted variation in community structure across all study 

sites.   In the Inner Bluegrass, two distinct communities emerged with complete 

separation based on disturbance, whereas sites on the Cumberland Plateau and Pine 
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Mountain showed more overlap between disturbance regimes.  Canonical correspondence 

analysis showed that relationships between land snails and environmental factors were 

variable across all study sites as well.  Coarse woody debris, pH, soil moisture, aspect, 

duff accumulations, herbaceous cover and shrub height all had strong environmental 

relationships with the snail communities present, but differed in terms of what 

disturbance class they were correlated with across the study areas.  Eighteen species were 

shown to be statistically significant indicators of undisturbed forests.  However, these 

species were not found at all sites, so the utility of using these species as indicators across 

a broad geographical region may be limited.  However, on an ecoregional scale, micro-

snails showed more affinity for the undisturbed habitat than macro-snails.  These findings 

highlight the complexity of snail communities across ecoregions and disturbance classes, 

as well as the potential utility of land snails as indicators of ecological conditions on 

regional levels. These results also reinforce evidence of the effects of anthropogenic 

disturbances on community composition.  These findings support efforts to maintain 

ecological integrity by protecting areas with minimal historical human disturbance.  
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CHAPTER I 

INTRODUCTION 

 Disturbance-based stressors can change forest communities and alter normal 

ecosystem processes (Bormann and Likens 1979, Likens et al. 1996).  Old-growth forests 

are among the best examples of unaltered communities and ecosystems, and can be used 

as the best-available reference of historic conditions for managers and biologists. 

Although the definition of old-growth forests has been debated heavily (Hunter 1989, 

Tyrell 1992, Leverett 1996, Hunter and White 1997, Frelich and Reich 2003, Wirth et al. 

2009), these areas are often indicated by characteristics of forest structure, the landscape, 

and individual trees (Oliver and Larson 1996, Pederson 2010).  In Kentucky, old-growth 

is generally designated by canopy trees that pre-date the settlement of Kentucky (ca. 

1680) (Martin 1992). 

The effects of disturbance in forests are manifested and easily observed at the 

level of the forest floor.  The herbaceous layer of disturbed forests takes many decades 

(reports suggest 87 to >150 years) to recover to the species richness and abundances 

present in primary forests, and complete recovery may be inhibited by global change 

(Duffy and Meier 1992, Meier et al. 1995, Wyatt and Silman 2010).  By altering the 

forest floor, anthropogenic disturbances may prevent plant communities, and their 

associated animal communities from returning to pre-disturbance levels (Bormann and 

Likens 1979, Seastedt and Crossley 1981).  These community changes may cause 

additional adverse ecological effects including changes to decomposition and nutrient 

cycling of organic material on the forest floor (Coleman et al. 2004). 
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The effects of disturbance on amphibians that live on the forest floor are well 

documented.  Clear cutting results in immediate drastic declines in terrestrial salamander 

(Plethodontidae) populations followed by their absence from these areas for several 

decades (Pough et al. 1987, Ash 1988, Dupuis et al. 1995, Ford et al. 2002).  The effects 

of timber harvest on southern Appalachian salamander populations and their continued 

absence for decades thereafter suggest that it may take these populations 50-70 years to 

fully recover to pre-logging population levels (Petranka et al. 1993, Petranka et al. 1994, 

Bratton and Meier 1998, Ford et al. 2002, Semlitsch et al. 2009).  This is primarily due to 

the opening of canopies which alters conditions near the ground.  Local extinctions of 

salamanders may also be caused by the sequence of logging and fire, as well as from 

competition with other native salamanders for refugia (Pauley 2008).  Conversely, natural 

disturbances typically are less severe and smaller scale than anthropogenic disturbances 

(Greenberg 2001). 

The effects of disturbance on other groups of vertebrates are complex.  Birds and 

reptiles, as well as amphibians, can show immediate negative impacts including 

population declines in response to forest management practices (Gram et al. 2003, Knapp 

et al. 2003, Renken et al. 2004).  Edge effects created by roads have been shown to cause 

drastic decreases in salamander populations nearly 20 meters from these areas (Marsh 

and Beckman 2004).  However, in areas like parks and preserves, where walking and 

hiking trails are an important component of the landscape, coarse woody debris may be 

cleared from these trails, cut into small manageable pieces and discarded just off trial 

creating good wildlife habitat that might not be present otherwise (Davis 2007). 
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Natural disturbances may also cause seemingly contrasting effects.  Disturbances 

such as hurricanes along coastal areas play key roles in structuring breeding bird 

communities in that they alter both canopy and understory vegetation, resulting in 

decreased densities for some species, and increased densities of others (Brown et al. 

2011).  In contrast, small scale natural disturbances, such as windfall canopy gaps, have 

little effect on terrestrial salamander populations, probably because the effects occur at a  

small scale (Greenberg 2001). 

In soil invertebrates, such as earthworms, low levels of disturbance do not appear 

to have significant effects on diversity and composition (Kalisz and Powell 2000).  In 

contrast, soil disturbance and forest fragmentation alter communities, and lead to 

colonization of invasive species (Kalisz and Dotson 1989).  Again, edge effects created 

by roads have been shown to drastically effect macroinvertebrate populations up to 100 

m away from these areas (Haskell 2000), much as it does with amphibians.  Thus, 

disturbance can be both beneficial and detrimental depending on severity and species 

natural history. 

 Land snails (including slugs), along with micro-arthropods, are crucial parts of a 

properly functioning ecosystem (Caldwell 1993, Coleman et al. 2004).  These organisms 

are important in nutrient cycling (Burch and Pearce 1990), and are among some of the 

most imperiled species on the planet (Lydeard et al. 2004).  Snails can also have 

important ecological effects on terrestrial vertebrates (Harper and Guynn 1999).  As a 

food source, snails can be a vital source of calcium for birds and small mammals 

(Graveland et al. 1994, Graveland and van der Wal 1996, Hames et al. 2002, Allen 2004).  

Through ingestion and defecation, land snails may serve as potential agents of dispersal 
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for fungi, some of which are beneficial to the root systems of forest vegetation, and aid in 

decomposition of coarse woody debris (Caldwell 1993, Keller and Snell 2002).  Snails 

may also play a role in detoxification of forest soils.  As empty shells of dead mollusks 

decompose, toxic materials sequestered within those shells breakdown at a rate that 

allows consumers to metabolize these materials (Pearce 2008). 

Land snails may be useful indicators of ecosystem health and habitat quality. 

Because of their critical ecosystem services, declines in land snail communities may 

indicate broader problems with the health of the ecosystem.  For instance, acid 

precipitation and timber harvest greatly reduce calcium levels in the soil (McLaughlin 

and Wimmer 1999) and lead to declining snail populations, such declines may forewarn 

of other ecological effects (Wareborn 1992, Hotopp 2002).  Additionally, the limited 

mobility of land snails makes the presence of some species potential indicators of high 

quality, undisturbed habitats (Shimek 1930, Cameron and Williamson 1977, Watters et 

al. 2005).  Mark recapture studies have found that movements of relocated Cepea 

nemoralis Linnaeus, 1758, a land snail measuring 25 mm in diameter, averaged 2.0 m at 

four weeks, 3.4 m at fourteen weeks, and 5.5 m after one year indicating particularly 

small home ranges (Goodhart 1962).  Other research of land snail movements showed 

that gastropods similar in sizes to those studied here can move on average of 76 – 225 cm 

per day (McCracken 1976, Auffenberg and Auffenberg 1988, Pearce 1990).  A much 

larger species, Achatina fulica (Ferrusac, 1821), (~ 60 mm in diameter), can move up to 

500 m over a six month period (Tomiyama and Nakane 1993). There has been limited 

research on movements of micro-snails (< 5 mm in diameter).  One species of micro-

snail, Punctum pygmaeum (Draparnaud, 1801), moved an average distance of only 47 
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mm over a 12 hour period in a laboratory setting (Baur and Baur 1988).  It is likely that 

other micro-snails have similarly limited movements.  Passive dispersal can occur by 

attaching to the feathers and feet of birds (Huey 1936) and by human activities, such as 

attaching themselves to vehicles and being transported to new areas and by attaching 

themselves to nursery stock, but in general the importance of these mechanisms is poorly 

understood (Aubry et al. 2006). 

 Land snails are highly dependent on microhabitat conditions (Boycott 1934, 

Burch 1955, Beyer and Saari 1977), including the presence of coarse woody debris 

(CWD).  Up to 25 percent of the land snail fauna of the southeastern United States rely 

on CWD (Caldwell 1993), and this dependence appears to hold throughout the world  

(Kappes 2005).  CWD accumulations tend to be higher in areas with relatively low 

intensity of anthropogenic disturbance (Webster and Jenkins 2005).  For example, in 

areas that were not salvage-logged following the Chestnut Blight, large accumulations of 

dead and fallen Chestnuts (Castanea dentata Marsh.) persist (Muller and Liu 1991), 

creating abundant suitable land snail habitat.  Natural disturbances in old-growth forest 

can cause decadal variation in CWD abundance (Muller 2003), creating a spatially and 

temporally dynamic pattern of habitat quality for land snails. 

Landscape position factors such as slope and aspect can indirectly control the 

presence of land snails (Coney et al. 1982, Petranka 1982, Dourson and Beverly 2008).  

Land snails are most diverse and abundant in areas of high leaf litter moisture and a thick 

organic soil horizon (Nekola 2003).  This moisture is needed for basic physiological 

processes including locomotion and egg survival (Burch and Pearce 1990). 
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Lower densities of land snails have been found in early-successional forests 

compared to old-growth forests, and this pattern was correlated with soil moisture 

(Shikov 1984).  Watters (2005) did not find significant differences in snail species 

richness between reclaimed strip mines and relatively undisturbed habitat in Ohio; 

however, many of the species found in strip-mined areas belonged to families that Shikov 

(1984) identified as being well adapted to disturbance.  Watters also collected several 

non-native species in the disturbed areas suggesting that disturbance may create corridors 

for the movement and establishment of invasive snails. 

 Land snail community composition may be driven by the frequency of fire, with 

frequent fires locally eliminating some species (Severns 2005).  Re-colonization of 

burned areas may occur from external populations as well as from small refugia present 

within the burned areas, however, intense fires may severely impact these refuges and 

reduce the probability of re-colonization from within the area (Kiss and Magnin 2003).  

Regardless of the source population, the composition of the colonizing land snail 

communities will depend heavily on the habitat structure, topography, and floristic 

composition of the forest that succeeds the disturbance (Kiss and Magnin 2003). 

 The primary objective of this study was to determine if differences in land snail 

communities exist between different anthropogenic forest disturbance regimes present in 

central and eastern Kentucky.  The main anthropogenic disturbance in the forests in this 

study was logging, however, some areas studied have experienced small scale, infrequent 

forest fires, small scale agricultural practices, and contain areas that were cleared for 

human inhabitance.  I hypothesized that snail communities would differ between old-

growth and second-growth forests, and differences would be correlated with 



7 

environmental factors.  Specifically, I predicted that because land snails are specialized 

and dependent on specific microhabitats, areas having past histories of severe 

anthropogenic disturbances would support fewer species in lower numbers than areas that 

have experienced lower levels of disturbance.  Furthermore, because life history traits 

such as tolerance to desiccation, dependence on CWD, and other habitat characteristics 

related to disturbance vary among species, another goal of this research was to examine 

whether individual species could be used as indicators of forest disturbance, or 

conversely, as indicators of old-growth conditions. 

  



8 

CHAPTER II 

STUDY AREAS 

Inner Bluegrass Ecoregion: Floracliff State Nature Preserve 

 Floracliff State Nature Preserve is located in Fayette County, Kentucky (Figure 

F1, APPENDIX F) approximately 24 km south of the city of Lexington.  The 116 ha 

preserve is located along the Kentucky River Palisades adjacent to Interstate 75 and is 

bisected by Elk Lick Creek (Floracliff 2011a). 

 Floracliff is located in the Inner Bluegrass physiographic region of Kentucky 

(Figure F2) (Fenneman 1938).  This region is noted for having rich and fertile soils.  

Specifically, Floracliff is located in the Interior Plateaus ecoregion (Level III) (Figure F3) 

(EPA 2002), and Inner Bluegrass ecoregion (Level IV) of Kentucky (Figure F4) (Woods 

et al. 2002).  Geologically, the inner bluegrass area is underlain by Lexington and 

Cynthiana limestone, of the Ordovician geologic time period (McFarlan 1943). 

 Floracliff lies in a transition zone from mixed mesophytic forests to the east and 

oak-hickory forests to the west (Braun 1950).  Species present represent vegetation 

elements of both of these areas as well as some non-native species (Table A1, 

APPENDIX A).  The property where the preserve sits today has changed ownership 

several times over the last 225 years.  The vast majority of the Kentucky River palisades 

area was logged around the turn of the 20
th

 century and later used primarily for 

agricultural practices (Floracliff 2011b).  However, despite having experienced these 

anthropogenic disturbances, there are two distinct areas present at Floracliff that contain 

trees that are hundreds of years old (Figure F5).  The first of these stands contains trees 

that are greater than 200 years of age, in fact, the oldest known tree in the state, a 400 
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year old Quercus muehlenbergii Eng., is located here. The other stand contains trees that 

are less than 125 years of age. 

Cumberland Plateau ecoregion: Poll Branch and Lilley Cornett Woods 

 Poll Branch and Lilley Cornett Woods are located near the community of Skyline 

in Letcher County in the southeastern portion of Kentucky (Figure F1).  Poll Branch is 

approximately 89 hectares in size and is located just outside the boundaries of Lilley 

Cornett Woods and parallels Big Everidge Hollow (Figure F6).  Poll Branch is second-

growth forest comprised of mixed mesophytic communities (Muller and Martin 1983) 

Lilley Cornett Woods Appalachian Ecological Research Station contains both second-

growth and old-growth forests (224 ha total with 102 ha of old-growth) (Figure F7).  

Within Lilley Cornett, I sampled the 52 ha Big Everidge Hollow, which is old-growth 

forest (Martin 1975). 

These sites are located within the Appalachian Plateaus physiographic province 

(Figure F2) (Fenneman 1938), in the  Central Appalachian ecoregion (Level III) (Figure 

F3) (EPA 2002), and Dissected Appalachian Plateau (Level IV) ecoregion of Kentucky 

(Figure F4) (Woods et al. 2002).  The area is maturely dissected plateaus that are 

underlain by sandstones, shale, siltstones and coal of the Breathitt formation, from the 

middle and lower Pennsylvanian age (McFarlan 1943, Puffett 1965, Martin 1975). 

 The forests of Poll Branch and Big Everidge Hollow are principal examples of the 

mixed mesophytic forest type (Braun 1950, Martin and Shepard 1973, Muller and Martin 

1983) and have high species richness (Table A1).  Nine overstory communities have been 

recognized and mapped at Lilley Cornett Woods and are as follows: Beech, Beech-
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buckeye, Beech-sugar maple, Beech-white oak, Chestnut oak, Mixed oak, White oak, 

Hemlock, and Sugar maple-basswood-tulip poplar (Martin 1975). 

 Lilley Cornett Woods has been managed by Eastern Kentucky University’s 

Division of Natural Areas since 1969.  Since that time, the area has only experienced one 

major anthropogenic disturbance, a low intensity fire that burned approximately 28 

hectares in Big Everidge Hollow in the spring of 2010 (pers. observ.-9 June 2010).  

Otherwise, the area has been free of agriculture activities, logging, or any other fire 

events since 1969 (Galbraith and Martin 2005).  Prior to that, the area was grazed by 

domestic livestock until the 1950s and evidence of fire events in the early 20
th

 century are 

confined to older trees (Galbraith and Martin 2005) and only evident by 

dendrochronology (Pederson pers. comm.). 

Poll Branch has experienced more numerous severe anthropogenic disturbances 

than Lilley Cornett Woods.  The area regenerated naturally following a clear-cut in 1945 

(Muller and Martin 1983), and was contour-coal-mined in 1970 between 410 and 470 m 

in elevation (Muller 1982). Other disturbances include a road constructed to haul coal and 

a drained impoundment along the stream that flows through the hollow (pers. observ.-8 

July 2010). 

Pine Mountain ecoregion: Kentenia State Forest and Blanton Forest State Nature 

Preserve 

 Kentenia State Forest and Blanton Forest State Nature Preserve are located in 

Harlan County in the southeastern portion of Kentucky (Figure F1) approximately 24km 

northeast and 9 km west, respectively, of the city of Harlan.  The two forests are 8 

kilometers apart on the southeastern slope of Pine Mountain (Figure F8 and F9).  Blanton 
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Forest encompasses 1264 ha of both old-growth and second-growth forests making it the 

largest tract of old-growth forest in the state of Kentucky (Napier 2010).  Kentenia State 

Forest encompasses 1652 ha of second-growth forests.  Both sites are very diverse 

ecosystems with forest communities ranging from mountain top acid seeps (bogs) to 

mixed mesophytic deciduous forests (Napier 2010).   

 Pine Mountain lies in what is often referred to as the Eastern Coalfields, which 

are also known as the Appalachian Plateaus physiographic region (Figure F2).  Fenneman 

(1938) considered Pine Mountain to be part of the Cumberland Mountains section of the 

Appalachian Plateaus province.  Pine Mountain is located within the Central 

Appalachians ecoregion (Level III) (Figure F3) (EPA 2002),  and Cumberland Mountain 

Thrust Block (Level IV) ecoregion of Kentucky (Figure F4) (Woods et al. 2002).  The 

southeast face of Pine Mountain is composed of sandstones primarily from the Lee 

Conglomerate and all formations are mainly from the Lower Pennsylvanian geologic 

time period (McFarlan 1943). 

 The Pine Mountain study areas are diverse, but dominated by Hemlock and Oak 

species (Table A1) (Braun 1950, McIntosh 2009, Napier 2010).  Aside from small fire 

events, the old-growth portions of Blanton Forest have not experienced any major 

anthropogenic disturbances.  Several trees found at this site have been dated to the late 

1600’s (Napier 2010).  Kentenia State Forest has experienced major logging events over 

the last century as well as small scale fire events (McIntosh 2009). 
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CHAPTER III 

METHODS 

 I sampled land snails in two sites in each of three ecoregions in eastern and 

central Kentucky.  The ecoregions sampled were the Inner Bluegrass, Cumberland 

Plateau (Dissected Appalachian Plateau), and Pine Mountain (Cumberland Mountain 

Thrust Block) (Figure F4).  Sites were selected based on disturbance history.  In the Inner 

Bluegrass, two stands with different tree ages were paired (one with trees < 125 years old 

and the other with trees > 200 years old).  Cumberland Plateau and Pine Mountain sites 

had paired areas of old-growth and second-growth forests.  At each site, I sampled at 10 

points (Total N = 60 points).  The exact area of sampling differed among the points, but 

was approximately 100 m
2
.  All sampling occurred over two summer seasons from May 

2009 – September 2010.  Points were opportunistically selected based on walk-through 

surveys of the area and professional knowledge of land snail habitat.  Thus, the sampling 

approach was designed to maximize estimates of land snail abundance and species 

richness at each site.  At each point, I collected data on snail communities using searches 

and leaf litter samples.  I also measured abiotic and biotic variables at each point. 

At each point, three 17 cm x 32 cm cloth bags were filled with leaf litter and 

detritus and brought back to the lab to search for micro-snails (< 5 mm in diameter).  

Litter was haphazardly grabbed from several locations within the search area.  Litter bags 

were dried for approximately one month and then sorted using #4, 10, 16, and 35 soil 

sieves that were 30.5 cm in diameter (Coney et al. 1981).  Live and empty shells of 

macro-snails (> 5 mm in diameter) were collected using hand raking and walk through 

surveys of 20 person minutes per point.  After collection, live snails were euthanized by 
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immersion in water for 24 hours. Specimens were then placed in 95% ethyl alcohol for 24 

hours to kill bacteria and body tissue was removed from the shell.  All shells were 

identified to species based on shell morphology.  A dissecting microscope was used in 

the identification of all specimens collected. 

Taxonomic keys developed by Pilsbry (1940, 1946, 1948), Burch (1962), 

Dourson (2006, 2011), Caldwell and Dourson (2008), Branson (1973), Emberton (1988, 

1991), Nekola and Coles (2010), Thomas et al. (2010), and Slapcinsky and Coles (2004) 

were used to identify all specimens collected.  Additionally, expertise on identification 

was sought from Ronald S. Caldwell at the Cumberland Mountain Research Center – 

Lincoln Memorial University, Daniel C. Dourson at the Belize Foundation for 

Environmental Education, and John Slapcinsky at the Florida Museum of Natural 

History.  County records as well as range extensions were determined using Hubricht 

(1985), Branson (1973), Dourson (2008) and through the use of the databases available at 

the Field Museum of Chicago (Gerber 2008) and the Florida Museum of Natural History 

(FLMNH 2011).  New records are reported in Table C1, APPENDIX C.  Taxonomy was 

based on Turgeon et al. (1998) and Perez et al. (2008). 

 At each point, I established a 20 m x 20 m plot for collecting visual percent cover 

estimates of canopy, bare ground, leaf litter, rock, and coarse woody debris (CWD). 

Within each plot I also measured soil pH, soil moisture, duff depth, soil temperature, 

aspect, and slope.  Duff depth was measured as the depth of the organic soil horizon.  Soil 

temperature was taken using an Oakton Thermistor thermometer.  Soil moisture and pH 

were taken using a Kelway soil tester.  Descriptive box plots for each of these habitat 

variables are located in APPENDIX G. 



14 

Within each 20 m x 20 m plot, I nested a 4 m x 4 m plot to measure vegetation structure 

by visual estimation of percent density of shrubs 0-1 m and 1-3 m height categories, 

grasses, and herbaceous species (Capleanor 1968).  At the center of this plot, I used a 

concave spherical densiometer to estimate curved linear canopy cover (Lemmons 1956). 

Basal area was estimated with a Cruz-All with a basal area factor (BAF) of 10.  For every 

tree that fell in the BAF 10 I used a diameter tape to measure diameter at breast height 

(DBH).  Tree species were recorded and basal area was calculated.  Basal areas ± 

standard errors are reported in APPENDIX A. 

Statistical Analyses 

 I conducted rarefaction analysis on each site using Program EstimateS (Colwell 

2009).  For each study plot, I calculated Shannon-Weiner diversity (loge), Shannon-

Weiner evenness, and abundance using the Ecological Methodology software program 

(Krebs and Kenney 2009).  I also used Ecological Methodology software to calculate 

community similarity between forest disturbance classes.  I tested for differences in 

diversity, abundance, richness and evenness between forest disturbance classes using a 

random-effects factorial analysis of variance (ANOVA) in SPSS version 18.  Because the 

error terms were normal and homogeneous among groups, an identity-link was used.  I 

used a Tukey’s post-hoc test to compare each ecoregion by disturbance regime. 

I analyzed species composition using non-metric multidimensional scaling (NMS) 

(Kruskal 1964).  The NMS analysis was conducted with PC-ORD 5.10 (McCune and 

Mefford 2006), and the figures were created using PAST 2.08 
 
(Hammer et al. 2001).  

This type of ordination is an iterative approach to finding the best position of n objects in 

k dimensions.  NMS is appropriate for sparse species matrices (i.e. cells with large 
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numbers of zeroes), because it uses rank-distances and thus avoids assumptions of 

linearity (Clarke 1993, McCune and Grace 2002).  I used Bray-Curtis dissimilarity to 

construct the distance matrix with 250 iterations.  The number of axes was selected based 

on permutation analysis that compared stress values of actual runs of data with runs of 

randomized data.  I conducted this analysis separately on each ecoregion, and using all 

ecoregions combined.  

To test for differences in species composition between second-growth and old-

growth, I conducted a Multiple Response Permutation Procedure (MRPP) (Zimmerman 

et al. 1985) with a Bray-Curtis dissimilarity measure using PC Ord 5.10
 
separately on 

each ecoregion and using all ecoregions combined.  MRPP is a nonparametric procedure 

for testing the null hypothesis of no significant differences between two or more groups.  

It is used to detect differences in species concentrations between a priori groups. 

I conducted Indicator Species Analysis ( ufr ne and Legendre 1   ) for each 

disturbance class using PC Ord 5.10.  I conducted this analysis separately on each 

ecoregion, and using all ecoregions combined.  This type of analysis is useful in detecting 

and describing species that may be useful for indicating environmental conditions.  This 

analysis combines relative abundance and relative frequencies to estimate concentrations 

of species abundances and the reliability of occurrence of species to defined classes. 

Indicator values (IV) range from zero (no indication) to 100 (perfect indication).  Perfect 

indication occurs when a species is exclusively found in one class, in this case, a forest 

disturbance class. I used a Monte Carlo test with 4,999 randomizations, to test for 

statistical significance of each species as an indicator. 
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To assess habitat associations of land snails, I used Canonical Correspondence 

Analysis (CCA) (ter Braak 1986).  The CCA analysis was conducted with PC-ORD 5.10, 

and the figures were created using PAST 2.08.  I scaled the axes to visually optimize 

representation of sites.  A Monte Carlo permutations test with 999 iterations was used to 

test the null hypothesis that there was no relationship between species and habitat 

matrices.  All scores reported are weighted averages (WA).  This analysis was conducted 

on each ecoregion separately. 
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CHAPTER IV 

RESULTS 

Snail sampling yielded 3196 individual snails, representing 15 families, 35 

genera, and 70 species (Table 1).  Species found at each study site are reported in Table 

B1, APPENDIX B.  Fifty-five new county records were found and reported from Fayette, 

Letcher and Harlan counties highlighting that land snails currently are understudied in the 

literature (APPENDIX C).  One species listed as endangered by the Kentucky State 

Nature Preserves Commission was found at Lilley Cornett Woods.(KSNPC 2010). 

Table 1.  Species of land snail collected at 3 study areas during 2009 and 2010.  Species 

listed by the Kentucky State Nature Preserves Commission as endangered are shaded in 

gray. 

Species  # Collected 

CARYCHIIDAE  

Carychium clappi Hubricht, 1959 364 

Carychium exile I. Lea, 1842 401 

Carychium nannodes G.H. Clapp, 1905 332 

COCHILICOPIDAE  

Cochilicopa moreseana (Doherty, 1878) 72 

DISCIDAE  

Anguispira alternata (Say, 1816)  34 

Anguispira kochi (Pfeiffer, 1821) 54 

Anguispira mordax (Shuttleworth, 1852) 7 

Discus patulus (Deshayes, 1830) 76 

HAPLOTREMATIDAE  

Haplotrema concavum (Say, 1821) 64 

HELICARNIDAE  

Euconulus fulvus (Muller, 1774) 22 

Guppya sterkii (Dall, 1888) 51 

HELICODISCIDAE  

Helicodiscus notius Hubricht, 1962 21 

PHILOMYCIDAE  

Palifera dorsalis (A. Binney, 1885) 1 

Philomycus carolinensis (Bosc, 1802)  2 

POLYGYRIDAE  
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Table 1. (Continued) 
 

Species  # Collected 

Appalachina sayana (Pilsbry, 1906) 59 

Euchemotrema fraternum (Say, 1824) 47 

Inflectarius inflectus (Say, 1821) 25 

Inflectarius rugeli (Shuttleworth, 1852) 29 

Mesodon elevatus (Say, 1821) 26 

Mesodon normalis (Pilsbry, 1900) 18 

Mesodon thyroidus (Say, 1816) 20 

Mesodon zaleatus (A. Binney, 1837) 18 

Patera appressa (Say, 1821) 38 

Stenotrema angellum Hubricht, 1958 16 

Stenotrema barbatum (G.H. Clapp, 1904) 14 

Stenotrema stenotrema (Pfeiffer, 1842) 25 

Neohelix albolarbis (Say, 1816) 20 

Tridopsis sp. 3 

Triodopsis tridentata (Say, 1816) 59 

Xolotrema denotatum (Ferussac, 1821) 21 

POMATIOPSIDAE  

Pomatiopsis lipadaria (Say, 1817) 17 

PUNCTIDAE  

Punctum minutissimum (I. Lea, 1841) 41 

Punctum blandianum (Pilsbry, 1900) 12 

PUPILLIDAE  

Columella simplex (Gould, 1841) 68 

Gastrocopta armifera (Say, 1821) 75 

Gastrocopta contracta (Say, 1822) 93 

Gastrocopta contricaria (Say, 1816) 1 

Gastrocopta pentodon (Say, 1821) 39 

Gastrocopta procera (Gould, 1840) 71 

Pupoides albilabris (C.B. Adams, 1841) 11 

Vertigo bollesiana (E.S. Morse, 1875) 9 

Vetigo gouldii (A. Binney, 1843) 9 

Vertigo parvula Sterki, 1890 19 

Vertigo tridentata Wolf, 1870 32 

STROBILSOPSIDAE  

Stobilops aenea Pilsbry, 1926 20 

Strobilops labyrinthica (Say, 1817) 15 

SUCCINEIDAE  

Catinella oklahomarum (Webb, 1953) 18 

VALLONIADAE  

Vallonia excentrica Sterki, 1893 12 
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Table 1. (Continued) 
 

Species  # Collected 

ZONITIDAE  

Gastrodonta interna (Say, 1822) 89 

Glyphyalinia cryptomphala (G.H. Clapp, 1915) 13 

Glyphyalinia indentata (Say, 1823) 64 

Glyphyalinia wheatleyi (Bland, 1883) 91 

Hawaii miniscula (A. Binney, 1840) 62 

Mesomphix cupreus (Rafinesaue, 1831) 18 

Mesomphix inornatus (Say, 1821) 67 

Mesomphix perlaevis (Pilsbry, 1900) 30 

Paravitrea capsella (Gould, 1851) 33 

Paravitrea placentula (Shuttleworth, 1852) 3 

Striatura meridionalis (Pilsbry and Ferriss, 1906) 34 

Striatura ferrea E.S. Morse, 1864 14 

Ventridens demissus (A. Binney, 1843) 26 

Ventridens gularis (Say, 1822) 62 

Ventridens intertextus (A. Binney, 1841) 15 

Ventridens lasmodon (Phillips, 1841) 18 

Ventridens lawae (W.G. Binney, 1892) 1 

Ventridens ligera (Say, 1821) 29 

Ventridens theloides (Walker and Pilsbry, 1902) 2 

Zonitoides arboreus (Say, 1816) 22 

Zonitoides elliotti (Redfield, 1856) 2 

 TOTAL 3196 

 

Rarefaction analysis showed variation in species richness among sites, with 

apparent separation between disturbance classes (Figure 1).  Second-growth sites had 

consistently lower species diversity compared to paired old-growth sites within the same 

region.  Species richness at both Inner Bluegrass sites plateaued after just a few samples, 

suggesting that the sampling at these sites adequately represents the community, at least 

in terms of species richness (Figure H1, APPENDIX H).  However, the other sites 

continued to add new species after 10 samples per site.  Another noteworthy result is the 

high number of species found at the old-growth Cumberland Plateau site (Lilley Cornett 

Woods) compared to the second-growth site (Poll Branch) in the same area (Figure H2).  
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These two sites were similar in most abiotic and vegetation characteristics, but had 

different disturbance histories (Figure I1, APPENDIX I).  Species richness at the two 

Pine Mountain disturbance regimes was similar after several samples; however, species 

richness between the sites separated with increased sampling (Figure H3).  When 

combining all ecoregions, old-growth and second-growth sites had relatively high 

community similarities according to multiple indices (Table 2). 

 

Figure 1.  Rarefaction curves of the 6 study sites showing the rate of species 

accumulation across the sampling points.  

 

Table 2.  Similarity coefficients for second-growth vs. old-growth sites. 

Similarity Index Coefficient 

Bray-Curtis 0.61 

Euclidean 35.37 

Horn 0.90 

Morisita 0.93 

Percent Similarity 74.34 
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Species diversity (Shannon-Weiner) was higher in each of the old-growth study 

sites compared to second-growth sites in the Inner Bluegrass and Cumberland Plateau  

ecoregions  (Figure 2) (ANOVA: disturbance*region: F2, 54 = 9.29, p <0.001; Inner 

Bluegrass: q54= 4.70, p < 0.001; Cumberland Plateau: q54 = 6.96, p < 0.001).  However, 

the Pine Mountain old-growth site did not differ in diversity compared to its paired 

second-growth site (q54 = 0.939, p = 0.939). 

 

Figure 2.  Mean Shannon-Weiner species diversity ± SE between paired old-growth and 

second-growth sites. 

 

Species richness was higher in each of the old-growth sites compared to second-

growth sites in the Inner Bluegrass and Cumberland Plateau ecoregions (Figure 3) 

(ANOVA: disturbance*region F2,54 = 6.56, p = 0.003; Inner Bluegrass: q54= 5.73, p < 

0.001; Cumberland Plateau: q54= 2.23, p < 0.02) .  However, the Pine Mountain old-
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growth site did not differ in richness compared to its paired second-growth site ( q54 = 

0.74, p = 0.97). 

 

Figure 3.  Mean snail species richness between paired old-growth and second-growth 

sites. 

 

Abundance was higher in each of the old-growth study sites compared to second-

growth sites in the Inner Bluegrass and Cumberland Plateau ecoregions (Figure 4) 

(ANOVA: disturbance*region F2.54 = 9.50, p < 0.001; Inner Bluegrass:  q54 = 5.49, p< 

0.001; Cumberland Plateau:  q54 = 5.67,p < 0.001).   However, the Pine Mountain old-

growth site did not differ in abundance compared to its paired second-growth site (q54 = 

0.24, p = 1.00). 
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Figure 4.  Mean snail abundances between paired old-growth and second-growth sites. 

 

Shannon evenness values were similar across all ecoregions between the paired 

old-growth and second-growth sites (Figure 5) (ANOVA: disturbance*region F2,54 = 

0.674, p = 0.51; Inner Bluegrass: q54= 1.30, p = 0.78; Cumberland Plateau: q54 = 0.07, p = 

1.00; Pine Mountain: q54 = 2.18, p = 1.00).  This indicates that the species collected were 

evenly distributed throughout both disturbance classes within each of the ecoregions 

sampled. 



24 

 

Figure 5.  Evenness of snail species between paired old-growth and second-growth sites. 

 

The NMS ordination across 60 sites indicated strong differences in species 

composition across the three regions to demonstrate the distinctiveness of assemblages 

among the physiographic and ecological regions in central and eastern Kentucky (stress = 

21.56) (Figure 6).  The degree of separation of snail communities between disturbance 

regimes varies among the regions.  For instance, in the Inner Bluegrass, the separation 

between old-growth and second-growth is quite clear (Figure I1, APPENDIX I).  In 

contrast, there appears to be greater overlap between old-growth and second-growth in 

both the Cumberland Plateau (Figure I2) and Pine Mountain (Figure I3) sites.  However, 

it should be noted that some separation is evident in the Cumberland Plateau and Pine 

Mountain sites.  Another interesting aspect of this ordination is that one region, the Inner 

Bluegrass (i.e., Floracliff), showed much less variation among sites and habitats than the 

other regions. 
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Figure 6.  Land snail community structure in old-growth and second-growth forests based 

on Non-metric Multidimensional Scaling. 

 

For the two groups examined (N = 30 for both), MRPP analysis revealed 

significant differences in the concentrations within each (p < 0.004, chance-corrected 

within-group agreement A = 0.02).  When ecoregions were examined separately, the 

Inner Bluegrass showed significant differences in the concentrations (A = 0.17, p < 

0.001) as did the Cumberland Plateau (A = 0.06, p < 0.0001) and Pine Mountain sites (A 

< 0.001, p < 0.001). 

Indicator Species Analysis showed that no species were perfect indicators of 

either disturbance regime, when examining all ecoregions together (Table E1, 

APPENDIX E).  However, when ecoregions were examined separately, 21 species 

showed affinity for old-growth (Table 3). 
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Table 3.  Indicator species for old-growth/less disturbed conditions for three ecoregions 

of eastern and central Kentucky.  Indicator values are presented ± standard deviation for 

each ecoregion. 

Species 

Inner 

Bluegrass 

Cumberland 

Plateau 

Pine 

Mountain 

Carychium clappi 60 ± 2.47 65 ± 9.64  

Carychium exile 61 ± 2.66 90 ± 10.08 70 ± 10.00 

Carychium nannodes 60 ± 2.27 75 ± 11.57  

Cochilocopa moreseana 70 ± 6.61 56 ± 9.20  

Collumella simplex 86 ± 7.61   

Gastrocopta armifera 85 ± 7.47   

Gastrocopta contracta 87 ± 8.25   

Gastrocopta pentodon 68 ± 8.59   

Gastrocopta procera 100 ± 9.18   

Gastrodonta interna 88 ± 7.88   

Glyphyalinia indentata 64 ± 7.18 56 ± 9.02  

Glyphyalinia wheatleyi 72 ± 8.24   

Guppya sterkii 69 ± 7.89   

Haplotrema concavum 73 ± 8.15   

Hawaii miniscula 65 ± 7.18 56 ± 9.11  

Mesomphix cupreus 70 ± 8.99   

Patera appressa  50 ± 8.82 50 ± 8.58 

Punctum minutissimum  69 ± 9.54  

Striatura ferrea    

Vallonia exentrica 70 ± 8.71   

Vertigo parvula   60 ± 8.99   

 

Carychium exile I. Lea, 1842 had an indication of 65% toward old-growth forests 

(p < 0.001) (Table E1).  This was the highest percentage among the species that were 

statistically significant.  Conversely, Triodopsis tridentata (Say, 1816) showed an 

indication of 31% toward second-growth forests, higher than any other species when 

examining all ecoregions as a whole, but still not statistically significant (p = 0.17). 

Indicator values increased considerably when calculated separately for each 

ecoregion area (Table E2 - E4).  In the Inner Bluegrass, 16 species showed some affinity 

toward old-growth forests, five of which had indicator values greater than 80%, with one 
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species Gastrocopta procera (Gould, 1840) having a perfect indication value (100%) 

(Table E2).  One species in the Inner Bluegrass, Ventridens intertextus (A. Binney, 1841), 

was a statistically significant indicator of second-growth (p = 0.04).  Nine species were 

statistically significant indicators of old-growth at the Cumberland Plateau sites, with one 

species, C. exile, having an IV = 90% (Table E3).  At the Pine Mountain sites, only two 

species were statistically significant indicators of old-growth, and C. exile was again one 

of those species(Table E4). No species were significant indicators of second-growth in 

either the Cumberland Plateau or Pine Mountain ecoregion. 

For analysis of relationships between snail communities and environmental 

factors, the first two axes of the CCA for the Inner Bluegrass ecoregion explained 32.1% 

of the variance within the species and environmental matrices (Figure 7 and Table D1, 

APPENDIX D).  Monte Carlo permutation tests suggested a nearly significant 

relationship between habitat and snail communities present in the Inner Bluegrass (p = 

0.06).   Aspect, canopy cover, herbaceous cover, and soil temperature appeared to be 

important variables in explaining community structure within the tree stand that was > 

200 years old Inner Bluegrass site, whereas shrubs 0-1m in height and duff accumulation 

were important variables for the high-disturbance site.  Scores for each species collected 

are reported in Table D2.  Correlations between the snail community and each of 15 

environmental variables measured in the Inner Bluegrass are reported in Table D3. 
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Figure 7.  Canonical Correspondence Analysis of all sites sampled in the Inner Bluegrass.  

Sites are plotted in ordination space based on habitat parameters.  Black dots represent 

the tree stand that is <125 years old and gray dots represent the tree stand that is > 200 

years old. 

 

The first two axes of the CCA for the Cumberland Plateau ecoregion explained 

23.8% of the variance between snail species and environmental matrices (Figure 8 and 

Table D4).  Monte Carlo permutation tests revealed no significant relationship between 

habitat and snail communities present on the Cumberland Plateau (p = 0.61).   Coarse 

woody debris, % leaf litter, duff accumulation, canopy cover, soil moisture, and slope 

appeared to be important variables in explaining variation in the old-growth Cumberland 

Plateau site, whereas soil temperature and pH were important variables in explaining 

variation in the communities found in the second-growth site.  Scores for each species 
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collected are reported in Table D5.  Interset correlations for the 15 environmental 

variables collected on the Cumberland Plateau are reported in Table D6. 

 

Figure 8.  Canonical Correspondence Analysis of all sites sampled on the Cumberland 

Plateau.  Sites are plotted in ordination space based on habitat parameters.  Black dots 

represent second-growth sites and gray dots represent old-growth sites. 

 

The first two axes of the CCA for the Pine Mountain ecoregion explained 30.1% 

of the variance between snail species and environmental matrices (Figure 9 and Table 

D7).  Monte Carlo permutation tests revealed no significant relationship between habitat 

and snail communities present at Kentenia and Blanton Forests (p = 0.55).  Canopy 

cover, % rock, and coarse woody debris all helped to explain variation in the snail 

communities within the old-growth sites found on Pine Mountain, whereas elevation, % 
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bare ground, soil moisture, % leaf litter, slope and pH helped to explain the variation in 

the communities within the second-growth site.  Scores for each species collected are 

reported in Table D8.  Interset correlations for the 15 environmental variables collected at 

the Pine Mountain sites are reported in Table D9. 

 

Figure 9.  Canonical Correspondence Analysis of all sites sampled on Pine Mountain.  

Sites are plotted in ordination space based on habitat parameters.  Black dots represent 

second-growth sites and gray dots represent old-growth sites. 
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CHAPTER V 

DISCUSSION 

The findings of this study suggest that anthropogenic disturbance affects species 

composition and diversity of the terrestrial gastropod communities in Kentucky.  These 

patterns are strong enough to suggest that they may be general to the central and southern 

Appalachian regions.  The two Inner Bluegrass communities were quite distinct, whereas 

the Cumberland Plateau and Pine Mountain sites differed in subtle ways between 

disturbance classes (Figure H1 - H3).  While no single species served as a perfect 

indicator of undisturbed forests across the region (Table E1), 18 species were statistically 

significant indicators of low-disturbance forest when all regions were combined for 

analysis, and one species, C. exile, was a significant indicator in each of the three 

separate regional analyses.  Regional variability in snail communities likely contributed 

to the absence of a perfect indicator.  Among the 18 species that were statistically 

significant indicators of old-growth forest, 14 were micro-snails, indicating that micro-

snails may be more reliable indicators of disturbance history than macro-snails.  This 

suggests that micro-snails are probably more sensitive to disturbance due to their limited 

mobility and relatively specialized habitat requirements (Locasciulli and Boag 1987, 

Baur and Baur 1988).  It is more difficult to explain the indicator status of the remaining 

four species, all of which are macro-snails: Haplotrema concavum Say, 1821, Mesomphix 

cupreus Rafinesque, 1831, Mesomphix perlaevis Pilsbry, 1900, and Patera appressa Say, 

1821.  Because of their larger size, these species should be relatively good dispersers, in 

relation to micro-snails, and poor indicators of forest disturbance, so this result may be a 

biologically un-meaningful sampling artifact.  Alternatively, the indicator value of the 
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macro-snails might be explained by life history traits of these species, which are poorly 

understood. 

Even though several species emerged as indicators of old-growth forests on 

regional scales (Table 3 and Table E2 - E3), these results have to be interpreted with 

caution due to the fact that these species are indicators of local conditions only.  Because 

of the high variation between ecoregions and sites, it is difficult, if not impossible, to 

describe a single, perfect indicator of old-growth forest.  Because I continued to find new 

species at some sites even after 10 samples, the indicator status of some of these species 

may erode with additional sampling.  However, the relatively low richness at high-

disturbance sites and the trend towards richness reaching a plateau at all sites suggests 

that snails are promising taxa for finding good indicator species, perhaps more so than 

any previously studied group of organisms.  It may be that no single species is an ideal 

indicator, but that the presence of several high probability indicators collectively 

increases confidence for inferring disturbance, particularly if these include micro-snails.   

This research reinforces early work by highlighting differences in disturbance sensitivity 

among species of land snails (Hylander et al. 2004, Kappes 2006, Kappes et al. 2009). 

When comparing sites within regions, more species were good indicators of 

disturbance.  For example, in the Inner Bluegrass, G. procera showed perfect indication 

for the less-disturbed habitat, and 15 additional species had IV greater than 80%.  This 

suggests that within the Inner Bluegrass disturbance has played a role in shaping the 

community composition of the area.  On the Cumberland Plateau, nine species had 

significant affinity for old-growth, one of which, C. exile, had an IV = 90%, supporting 

the hypothesis that disturbance affects species composition on the Cumberland Plateau.  
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On Pine Mountain sites, C. exile, again, was the higher of the two indicators found there, 

thus strengthening the argument that this species is a good indicator of quality habitat for 

eastern and central Kentucky.  Due to the statistical significance found in the MRPP 

analysis, this also allows for the rejection of the null hypothesis that no differences exist 

between the disturbance regimes. 

The effects of anthropogenic disturbance are moderated by other factors that may 

include physiographic region, the degree of disturbance, and possibly the type of 

disturbance.  Separating these effects is challenging, and further confounded by variation 

in post-disturbance succession (Raheem et al. 2009), which was not quantified in this 

study.  Though it has been shown in Kentucky that stump and root sprouts from previous 

forests account for much of post-clear-cut growth (Muller 1990, Arthur et al. 1997), the 

severity of a disturbance likely plays a crucial role in  regeneration, and thus in the 

assemblage of organisms that inhabit a forest.  A good example of this is shown at the 

second-growth Cumberland Plateau site, a forest that has undergone severe disturbances.  

Not only have localized extinctions occurred in that area, but also the availability of 

suitable habitat has been reduced.  This has drastically altered the assemblages of land 

snails at that site. 

According to CCA results, the composition of land snail communities in the sites 

studied here were tied to environmental and habitat conditions.  Although the relative 

strength of the environmental factors varied across regions, there seemed to be a clear 

separation between disturbance classes, with strong correlation with environmental and 

habitat variables along the axis of separation.  Soil moisture, pH, CWD, shrub height, 

duff accumulation, bare ground, and herbaceous layers all helped in explaining 
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relationships with snail communities within at least one study area each, and these 

relationships provide some insight into the mechanisms underlying the separation of 

second-growth and old-growth snail communities. (Figure G1-G12).  These 

environmental factors are known to be critical in shaping communities of forest snails 

(Kappes et al. 2006). This study reinforces and clarifies our understanding of these 

patterns, and further suggests that the relationships are complex in that they differ among 

ecoregions.  Therefore, these effects are potentially driven and controlled by local 

conditions. 

The adverse effects of anthropogenic activities on land snails that were found in 

this study are similar to the few studies that have been done on this subject.  Reinink 

(1979) found that older reclaimed lands in the Netherlands supported more species than 

newer reclaimed lands. Cameron et al. (1980) found more snail species in British 

hedgerows constructed before the 20
th

 century compared to those built since.  Also, 

applications of herbicides on spruce plantations have been shown to alter densities of 

snails (Prezio et al. 1999); however, in a similar study, the effects were not detectable one 

year later  (Hawkins et al. 1997).  This suggests that the community legacy of forest 

management can have long-term effects on habitat availability and vegetation 

regeneration. Though most studies have reported negative effects of disturbance on land 

snails, at least one study showed  increased snail abundance following disturbance, but 

this change was likely attributable to a change in the vegetation community following the 

disturbance (boreal to deciduous forests) (Strayer et al. 1986).  Conversion to less 

complex habitats (e.g., tree plantations) can also be detrimental to snail diversity 

(Tattersfield et al. 2001, Bonham et al. 2002). 
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The results of this study indicate that community composition varied regionally 

across the study area.  Species diversity, richness, and abundance differed among regions 

and disturbance classes in two of the three ecoregions studied.  Evenness was similar 

across all ecoregions and disturbance classes, suggesting that differences in diversity are 

driven by species richness.  NMS analysis revealed separation in community structure 

between disturbance classes.  This separation was clearest for the Inner Bluegrass region.  

Sites on the Cumberland Plateau had more community overlap than the Inner Bluegrass, 

but showed some separation of communities between second-growth and old-growth.  

Sites on Pine Mountain showed more overlap than any other study area; however, the 

old-growth site showed a tendency for higher diversity, richness, and abundance 

compared to the second-growth site, suggesting possible biological significance.  Strong 

correlations between snail communities and habitat variables were found at each of the 

study areas, but the specific habitat variables with high correlations differed between 

study areas.  For instance, CWD and soil moisture were correlated with snail 

communities in the Cumberland Plateau and Pine Mountain ecoregion, whereas aspect 

and shrubs 0-1 m in height had high correlations in the Inner Bluegrass ecoregion.  This 

suggests that relationships between snail community composition and habitat are 

complex and variable across the ecoregions and disturbance classes studied. 

Within each ecoregion of this study, the vegetation communities differed to 

varying degrees (from oak-hickory to mixed mesophytic in the Inner Bluegrass and 

Cumberland Plateau to hemlock dominated forests on Pine Mountain).  The presence of 

some species in old-growth sites and subsequent absence of the same species in the 

second-growth sites suggests that localized extinctions occurred post-disturbance (Table 
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B1).  Although plant communities are known to indirectly influence snail community 

composition, (Burch 1956, 1957, Beyer and Saari 1977) this study did not find strong 

evidence of specific plant-snail associations.  However, other factors such as post-

disturbance micro-environmental conditions, canopy cover, and ground cover are more 

important than the plant community for controlling re-colonization (Boag 1982).  In turn, 

the density of the vegetation can affect micro-habitat conditions for snails  (Reynolds et 

al. 1997, Geiger et al. 2009).  These micro-habitat conditions will lead to the initiation of 

snail locomotor activities and promote dispersal within localized areas (Boycott 1934, 

Boag 1985, Prior 1985).  Adverse climatic conditions (e.g., drought) following 

disturbance can adversely affect micro-habitat and cause local extinctions, which may 

have played a role within the second-growth forest studied here  (Chang and Emlen 

1993).  Disturbances, followed by adverse climate conditions would lead to slow 

recovery of land snail communities.  Bormann and Likens (1979) suggested that micro-

environmental conditions recover rapidly following disturbances in northern New 

England, but in the southeastern United States, disturbance can have strong and lasting 

effects on leaf litter parameters, herbaceous layer recovery, and CWD (Ash 1995, Meier 

et al. 1995, Webster and Jenkins 2005).  These habitat parameters will influence species 

composition and potential to re-colonize an area (Hawkins et al. 1998, Barker and 

Mayhill 1999, Martin and Sommer 2004).  Leaf litter, herbaceous cover, and CWD will 

also affect desiccation rates of land snails which will determine presence or absence of a 

species (Asami 1993). 

The differences between disturbance regimes and ecoregions in terms of diversity, 

richness, and abundance of snails described in this study are likely related to the substrate 
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and forest composition.  The Inner Bluegrass is underlain by limestone, whereas the other 

two study areas are composed primarily of sandstone.  Because land snails require 

calcium sources for basic physiological and biological processes (Fournié and Chétail 

1984) and it is known that calcium availability effects the presence of land snails 

(Wareborn 1992, Johannessen and Solhoy 2001, Hotopp 2002, Skeldon et al. 2007), 

limestone areas typically have relatively high abundances of snails (Schilthuizen et al. 

2003, Dourson and Beverly 2008, Jurickova et al. 2008).  This helps explain the high 

abundance of snails at the Inner Bluegrass sites.  However, a site does not require 

limestone geology for high species richness.  For example, in this study, a site with 

sandstone geology, the old-growth Cumberland Plateau site (Lilley Cornett Woods) had 

more species (N = 54) than the Inner Bluegrass region (N = 50) (Figure 1).  The 

relatively high diversity at this site is most likely driven by favorable biotic factors and 

heterogeneous micro-climatic conditions.  Most of the sampling points in the Cumberland 

Plateau were located in cove hardwood forests (Martin 1975).  Some tree species in these 

forests, including Flowering Dogwood (Cornus florida L.), act as sources of calcium and 

play a role in its cycling through an ecosystem (Nation 2007).  This may indirectly drive 

diversity and abundance of land snails. 

Vegetation may also be a primary factor behind the relatively low snail diversity 

in the Pine Mountain region.  The Pine Mountain sampling sites were dominated by 

eastern hemlock (Tsuga canadensis L.), a forest community type that generally has low 

calcium availability (Figure 2-4).  Low calcium availability is probably one important 

factor driving the relatively low diversity and abundance at these sites; however  some 

species, such as M. perlaevis and Glyphyalinia spp., are specialists in these conditions 
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and are generally found in higher abundances in these areas (Nekola 2010).  Because of 

the expected loss of hemlock trees as the invasive Hemlock Woolly Adelgid, Adelges 

tsugae (Annand, 1928), spreads across eastern and central Kentucky, the snail community 

in these forests may change in coming decades.  Although snail diversity may increase 

locally (i.e. alpha diversity) as hemlocks are replaced, diversity between communities 

(beta diversity) will become virtually non-existent due to the homogenization of habitats, 

and regional diversity (gamma diversity) will be negatively affected.  Similar predictions 

have been made for the effects of hemlock loss on arthropod communities (Rohr et al. 

2009).  Limited sampling in the hemlock forests may have made differences between 

second-growth and old-growth provisional.  It may be that species inhabiting hemlock-

dominated stands are more tolerant than species in hardwood-dominated forests.  Because 

of this, they may be better adapted to disturbance, making them able to re-colonize 

quicker than species that inhabit hardwood forests.  Of course this relies on whether or 

not the forest that succeeds the previous forest is similar to what was present pre-

disturbance. 

Conservation and Management Implications 

Previous research on land snails has often focused on ecological processes in 

which snails may be detrimental to other organisms.  This study highlights the high 

regional biodiversity of land snails in eastern and central Kentucky, and the utility of land 

snails as indicators of habitat disturbance.  The results reported here indicate that land 

snails, especially micro-snails, are particularly sensitive to changes associated with 

human-caused disturbance.  The two sites with the highest levels of disturbance, 

Floracliff < 125 years old (Inner Bluegrass) and Poll Branch (Cumberland Plateau), 
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showed the strongest differences in communities and species when compared to paired 

sites of low-disturbance.  This suggests that community changes are proportional to 

levels of disturbance.  Also, it is possible that disturbance in adjacent habitats could have 

ecological consequences within a forest such as creating corridors for invasive species of 

plants and animals to invade an intact forest, thus altering the habitats and community 

composition within that forest (Baur and Erhardt 1995).  Disturbance may also create 

opportunities for establishment and expansion of exotic species to enter ecosystems, thus 

researchers should monitor for invasions following disturbance (Kalisz and Dotson 1989, 

Hendrix and Bohlen 2002, Kappes 2006). 

Land snails may be a good study group to better understand how anthropogenic 

activities shape species presences in an ecosystem.  The creation of roads and trails in 

forested areas reduces salamander and macroarthropod abundances within close 

proximity.  This has also been observed in land snails (Dourson pers. comm.), but more 

work is needed to understand how anthropogenic disturbances, including peripheral 

events, affect communities. 

Land snails are an important foundational component of terrestrial ecosystems 

and can be considered among the most important organisms for carrying out essential 

forest ecosystem functions.  Unfortunately, the attention paid to land snails has often 

focused on ecological processes that are detrimental to other organisms.  For example, 

land snails carry the Meningeal Worm (Parelaphostrongylus tenius Dougherty, 1945) 

and infect cervids such as white-tailed deer, elk, and moose which may lead to mortality 

(Anderson 1962, 1972, Wasel 1995, Boppel 1998, Suominen et al. 1999, Alexy 2004), 

though it is a naturally occurring parasite.  Conversely, overpopulations of cervids play a 
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role in disturbing forest floor vegetation, thus altering the distribution and composition of 

forest floor dwelling fauna and flora (Suominen 1999, Pedersen and Wallis 2004, 

Webster et al. 2005, Griggs et al. 2006, Tanentzap et al. 2011).  Future research should 

focus on examining how cervid overpopulation affects other organisms rather than how 

these organisms effect a very plentiful and unthreatened group of animals. 

The contribution of snails to maintaining properly functioning forests is poorly 

understood.  For instance, in forestry practice, green tree retention may sustain ecological 

integrity and maintain biodiversity (Hylander et al. 2004, Rosenvald and Lõhmus 2008, 

Abele 2010).  A mixed strategy of forest management that considers age of stand rotation 

as well as the scale at which forested areas are managed may be required to maintain 

biodiversity and prevent species extirpations.  This concept is demonstrated in the Inner 

Bluegrass site with the stand that was > 200 years.  The Inner Bluegrass study sites were 

selectively logged at the turn of the 20
th

 century.  The presence of older trees in those 

areas may have helped to maintain the land snail diversity, richness, and abundances 

present.  Land snails may face extinctions in forests that are managed for timber 

resources.  Because of this, forests that are undisturbed may harbor high land snail 

diversity as well as other organisms.  Thus, these areas may represent unique areas 

important for preserving biological diversity.  Old-growth forests can also serve as 

control areas that illustrate species composition in the absence of disturbance.  This 

highlights and strengthens the arguments for the high value of old-growth in terms of 

scientific research and historical significance (Whitney 1987). 

Dispersal from refugia following a disturbance is another important process 

affecting snail community composition. In areas with severe and repeated disturbances, 



41 

such as Poll Branch (the second-growth site on the Cumberland Plateau), refugia are 

likely limited.  In the habitats studied here, likely refugia included: CWD, rock talus, or 

nearby forest patches that escaped disturbance (Jacot 1935).  Rock talus is effective 

refugia for both plants and land snails from deer browsing and fire (Kiss and Magnin 

2003, Carson et al. 2005, Comisky et al. 2005).  Patches of bryophytes can also serve as 

refuge for land snails during logging events (Hylander et al. 2004).  The rate of re-

colonization of disturbed areas from refugia is poorly understood, but the frequency and 

severity of disturbance are likely important (Kiss et al. 2004).  Repeated disturbances 

may create small, isolated populations with limited gene flow, which may lead to 

localized extinctions when coupled with stochastic events.  Habitat left within the 

disturbed areas may not be suitable for populations to survive.  This could also lead to 

localized extinctions (Hylander et al. 2005).  If no refugia are present, those individuals 

left have nowhere to turn for protection.  Species will likely become extirpated from an 

area and re-colonization will depend upon dispersal from surrounding undisturbed 

forests.  Again, community composition and structure of re-colonizing species will 

depend heavily on vegetation and environmental conditions present post-disturbance. 

In the central hardwood forest, the dominant natural disturbance regime is canopy 

gaps created by tree falls due to wind or by natural die off of single or small patches of 

trees (Runkle 1981, 1982, Runkle and Yetter 1987).  These natural gaps have relatively 

short-term and low impact on most animal communities because the soil and micro-

habitats remain intact relative to most types of anthropogenic disturbance.  Management 

practices that mimic these small openings with minimal disturbance to the soil and other 

beneficial habitat characteristics, such as CWD and leaf litter, will leave potential refugia 
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for snails and increase the probability that an area will be re-colonized.  This would also 

allow for species of plants and animals to become re-established several decades earlier 

than they would if a larger disturbance were to move through a forest (Runkle 1991). 

Old-growth forests provide a reference to examine the structure and composition 

of forests as they existed prior to European settlement (Leopold 1941).  To maintain 

ecological integrity and diversity, the remaining old-growth forests should be located, 

described, and protected.  Though it would be difficult to recreate or restore many of the 

characteristics of old-growth forests (age structure, diversity of genetics, pit and mound 

topography), some features can be managed such as leaving CWD intact and creating 

small canopy gaps (Runkle 1991).  Appropriate management would provide suitable 

habitat and promote  re-colonization for many species  Land managers should make 

efforts to manage forests with minimal impact as well as try to mimic the characteristics 

of old-growth forest. 
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Table D1.  Axis summary statistics for the Inner Bluegrass ecoregion. 

  Axis 1 Axis 2 Axis 3 

Eigenvalue 0.11 0.04 0.03 

Variance in species data    

     % of variance explained 22.70 9.40 7.80 

     Cumulative % explained 22.70 32.10 39.90 

Pearson Correlation Spp-Env* 0.98 0.98 0.97 

Kendall (Rank) Corr. Spp-Env 0.83 0.92 0.84 

 

Table D2.  Species Scores and raw data totals for the Inner Bluegrass ecoregion. 

 Species Axis 1 Axis 2 Axis 3 

Raw Data 

Totals 

Anguispira alternata 2.14 -2.32 -0.41 34 

Anguispira kochi 0.72 1.73 -0.48 54 

Appalachina sayana 0.66 2.16 0.01 51 

Carychium clappi 0.32 -0.12 0.22 236 

Carychium exile 0.26 -0.66 -0.61 243 

Carychium nannodes 0.30 0.60 -0.07 233 

Catinella oklahomarum -0.28 0.42 0.25 19 

Cochilocopa moreseana -0.71 0.01 1.35 50 

Collumella simplex -1.19 -0.39 0.84 70 

Discus patulus -0.21 -0.65 -0.40 32 

Euchemotrema fraternum -0.16 1.60 0.60 42 

Euconulus fulvus 1.46 -0.07 -0.91 20 

Gastrocopta armifera -1.08 -0.81 -1.98 78 

Gastrocopta contracta -1.41 -0.06 -1.28 79 

Gastrocopta pentodon -0.52 -0.30 1.22 45 

Gastrocopta procera -2.34 0.36 0.49 71 

Gastrodonta interna -1.39 -1.15 -0.14 78 

Glyphyalinia indentata -0.53 -0.29 0.32 38 

Glyphyalinia wheatleyi -1.24 1.14 -0.99 41 

Guppya sterkii -0.77 1.18 -1.21 34 

Haplotrema concavum -0.82 -1.26 1.93 43 

Hawaii miniscula -0.42 0.68 0.54 51 

Helicodiscus notius 0.58 -0.29 2.91 22 

Inflectarius inflectus 1.47 1.62 0.83 22 

Inflectarius rugeli 0.46 0.33 0.18 17 

Mesodon elevatus 0.81 -0.66 0.11 26 

Mesodon thyroidus 0.71 -0.11 -1.48 20 

Mesodon zaleatus 0.03 -1.22 -2.54 20 

Mesomphix cupreus -2.32 -0.70 3.17 16 
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Table D2. (Continued) 
    

 Species Axis 1 Axis 2 Axis 3 

Raw Data 

Totals 

Mesomphix inornatus 0.72 0.97 0.90 23 

Mesomphix perlaevis 0.49 1.10 0.13 31 

Neohelix albolabris 1.00 -0.02 2.20 19 

Paravitrea capsella -0.09 0.92 -1.33 18 

Patera appressa 0.37 -1.05 0.47 28 

Pomatiopsis lipadaria 0.22 -0.71 2.08 15 

Punctum minutissimum 1.28 0.41 1.08 22 

Pupoides albilabris 0.84 2.23 -1.48 13 

Stenotrema angellum 1.97 -2.13 0.38 16 

Stenotrema barbatum 1.13 0.26 2.26 14 

Stenotrema stenotrema 0.58 1.24 -1.00 12 

Striatura meridionalis 0.26 -1.55 -1.33 30 

Strobilops aenea 0.69 1.83 1.24 19 

Strobilops labyrinthica 0.65 -1.96 0.68 15 

Triodopsis tridentata 2.67 -3.19 0.81 16 

Vallonia exentrica -2.40 0.62 0.51 12 

Ventridens intertextus 2.83 1.36 -1.80 15 

Ventridens ligera 1.05 0.84 -0.82 21 

Vertigo tridentata 0.49 1.28 0.50 32 

Xolotrema denotatum 1.86 -1.76 0.87 20 

Zonitoides arboreus 1.50 -0.27 -0.72 19 

 

Table D3.  Inter-set correlations for the 15 environmental variables collected in the Inner 

Bluegrass ecoregion. 

    Correlations   

Variable Axis 1 Axis 2 Axis 3 

Elevation -0.49 -0.08 -0.21 

Slope -0.35 0.02 0.15 

Aspect -0.75 0.11 0.26 

pH 0.03 -0.24 0.31 

Soil Temperature -0.70 -0.04 0.10 

Soil Moisture -0.00 -0.04 -0.24 

Duff 0.43 0.37 -0.07 

Canopy Cover -0.61 0.12 0.07 

Leaf Litter -0.04 0.20 0.34 

Bare Ground 0.05 -0.12 -0.25 

Rock 0.12 -0.22 -0.11 

CWD -0.31 0.28 -0.14 
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Table D3. (Continued) 
   

    Correlations   

Variable Axis 1 Axis 2 Axis 3 

Herbs -0.07 -0.21 -0.53 

Shrubs 0-1m 0.24 0.36 -0.17 

Shrubs 1-3m -0.01 0.23 0.06 

 

Table D4.  Axis summary statistics for the Cumberland Plateau ecoregion. 

  Axis 1 Axis 2 Axis 3 

Eigenvalue 0.31 0.21 0.17 

Variance in species data    

     % of variance explained 14.20 9.60 7.90 

     Cumulative % explained 14.20 23.80 31.70 

Pearson Correlation, Spp-Env* 0.95 0.99 0.95 

Kendall (Rank) Corr., Spp-Env 0.73 0.87 0.81 

 

Table D5.  Species scores and raw data totals for the Cumberland Plateau ecoregion. 

 Species Axis 1 Axis 2 Axis 3 

Raw Data 

Totals 

Anguispira mordax 0.41 -0.25 0.38 4 

Appalachina sayana 0.23 -0.53 0.28 5 

Carychium clappi 0.57 0.45 0.80 79 

Carychium exile 0.70 -0.50 -0.64 140 

Carychium nannodes 0.86 0.55 -0.31 87 

Cochilocopa moreseana -0.46 0.32 -0.13 20 

Collumella simplex 1.22 -3.13 -1.96 4 

Discus patulus -0.70 -1.95 -0.29 43 

Euchemotrema fraternum -0.86 0.50 0.64 6 

Euconulus fulvus -0.52 2.18 -3.59 2 

Gastrocopta armifera 0.90 0.98 -1.99 2 

Gastrocopta contracta 1.18 -0.98 -0.27 17 

Gastrocopta contricaria 0.39 2.85 3.08 1 

Gastrodonta interna -1.20 -1.96 0.57 10 

Glyphyalinia cryptomphala 0.98 -0.04 -1.98 4 

Glyphyalinia indentata -0.94 0.82 -0.94 17 

Glyphyalinia wheatleyi 1.12 0.82 1.78 30 

Guppya sterkii 1.46 0.03 1.36 21 

Haplotrema concavum -0.61 -0.34 1.43 20 

Hawaii miniscula -0.35 1.84 -0.79 15 
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Table D5. (Continued) 
    

 Species Axis 1 Axis 2 Axis 3 

Raw Data 

Totals 

Helicodiscus notius -1.22 -1.10 2.20 1 

Inflectarius inflectus -1.31 -1.39 -0.63 4 

Inflectarius rugeli -0.55 1.03 0.14 6 

Mesodon normalis -0.78 -0.49 0.66 8 

Mesodon zaleatus -1.68 -4.15 -0.80 1 

Mesomphix inornatus -1.69 -0.12 2.01 39 

Mesomphix perlaevis -1.80 3.37 -1.82 2 

Neohelix albolabris -0.99 0.68 -0.96 4 

Paravitrea capsella -1.71 -0.94 0.23 15 

Paravitrea placentula -0.93 3.47 -1.23 3 

Patera appressa 0.25 0.64 -1.66 8 

Philomycus carolinensis -2.66 5.37 -3.19 1 

Pomatiopsis lipadaria 0.99 0.04 -1.33 3 

Punctum minutissimum 0.03 -0.42 -0.13 15 

Pupoides albilabris 0.90 0.98 -1.99 1 

Stenotrema stenotrema -1.50 0.23 -1.30 13 

Striatura ferrea 1.95 1.28 2.86 4 

Striatura meridionalis 1.95 1.28 2.86 4 

Strobilops aenea 1.29 0.13 0.58 1 

Triodopsis spp. 0.99 0.43 0.68 3 

Triodopsis tridentata -0.89 0.10 0.15 43 

Ventridens demissus -1.09 3.52 -1.21 7 

Ventridens gularis -1.29 0.32 -0.35 34 

Ventridens lasmodon -3.33 2.50 -2.12 4 

Ventridens lawae -1.68 -4.15 -0.80 1 

Ventridens ligera -2.99 0.45 0.84 2 

Ventridens theloides 0.17 0.75 0.06 2 

Vertigo bollesiana 0.26 -0.86 -0.65 8 

Vetigo gouldii 1.58 -0.92 0.44 2 

Vertigo parvula -0.72 0.86 -1.16 7 

Xolotrema denotatum -1.13 -2.59 0.26 2 

Zonitoides arboreus -0.27 -0.10 -1.37 1 

Zonitoides elliotti 1.17 2.07 2.97 2 
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Table D6.  Inter-set correlations for the 15 environmental variables collected on the 

Cumberland Plateau ecoregion. 

    Correlations   

Variable Axis 1 Axis 2 Axis 3 

Elevation 0.16 0.10 0.10 

Slope 0.49 0.26 -0.17 

Aspect -0.06 -0.42 0.59 

pH -0.37 -0.44 0.42 

Soil Temperature -0.47 -0.31 0.43 

Soil Moisture 0.53 0.35 -0.18 

Duff 0.55 -0.42 -0.13 

Cover 0.71 0.07 -0.22 

Leaf Litter -0.11 0.65 0.11 

Bare Ground 0.47 0.15 0.27 

Rock 0.11 -0.46 -0.16 

CWD -0.15 -0.31 0.09 

Herbs 0.59 0.22 0.28 

Shrubs 0-1m 0.24 0.36 -0.17 

Shrubs 1-3m -0.01 0.23 0.061 

 

Table D7.  Axis summary statistics for the Pine Mountain ecorgeion. 

  Axis 1 Axis 2 Axis 3 

Eigenvalue 0.54 0.46 0.28 

Variance in species data    

     % of variance explained 16.20 13.80 8.70 

     Cumulative % explained 16.20 30.10 38.80 

Pearson Correlation, Spp-Env* 0.96 0.95 0.93 

Kendall (Rank) Corr., Spp-Env 0.68 0.83 0.71 

 

Table D8.  Species scores and raw data totals for the Pine Mountain ecoregion. 

        Raw Data 

 Species Axis 1 Axis 2 Axis 3 Totals 

Anguispira mordax -1.23 -0.13 -0.20 3 

Appalachina sayana 0.08 -0.21 0.31 5 

Carychium clappi 1.59 -0.89 0.30 51 

Carychium exile 0.55 1.54 -2.07 13 

Carychium nannodes 0.69 0.34 -1.08 12 

Cochilocopa moreseana 0.36 -0.05 -0.64 7 

Discus patulus 0.43 3.10 1.95 6 
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Table D8. (Continued) 
    

        Raw Data 

 Species Axis 1 Axis 2 Axis 3 Totals 

Euchemotrema fraternum -0.35 0.62 0.63 4 

Gastrocopta contracta 2.24 -1.97 1.20 1 

Gastrodonta interna -0.94 -0.21 0.97 2 

Glyphyalinia indentata -0.32 0.68 -1.62 11 

Glyphyalinia wheatleyi -0.66 -0.30 -1.07 17 

Haplotrema concavum 0.30 -0.58 -1.08 4 

Hawaii miniscula -0.22 -0.14 -2.25 2 

Inflectarius rugeli -0.77 -0.47 -0.91 6 

Mesodon normalis -0.48 0.41 1.65 10 

Mesomphix cupreus -1.27 0.12 1.50 2 

Mesomphix inornatus -1.05 -0.47 0.59 11 

Palifera dorsalis 0.77 4.59 1.60 1 

Paravitrea capsella -1.37 -0.91 -2.76 4 

Patera appressa 1.10 2.24 -0.03 9 

Philomycus carolinensis 0.77 4.59 1.60 1 

Pomatiopsis lipadaria 1.92 -0.85 0.06 1 

Punctum minutissimum 0.03 -0.03 1.04 7 

Stenotrema stenotrema 1.13 -0.88 0.57 4 

Triodopsis tridentata -0.46 -0.68 -0.48 6 

Ventridens demissus -1.15 -0.01 0.16 19 

Ventridens gularis -0.88 -0.31 0.32 36 

Ventridens ligera 0.85 1.45 -0.16 2 

Ventridens lasmodon -0.67 -0.84 0.74 14 

Vertigo bollesiana -0.66 0.95 1.31 9 

Xolotrema denotatum -1.52 -0.42 0.07 2 

Zonitoides arboreus 0.42 2.14 -0.06 2 

 

Table D9.  Inter-set correlations for the 15 environmental variables collected at the Pine 

Mountain ecoregion.  

    Correlations   

Variable Axis 1 Axis 2 Axis 3 

Elevation -0.52 0.03 0.39 

Slope -0.07 -0.41 0.19 

Aspect -0.18 -0.19 -0.43 

pH 0.09 -0.53 0.23 

Soil Temperature -0.19 0.01 0.15 

Soil Moisture -0.29 -0.26 -0.16 

Duff -0.21 0.07 -0.08 
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Table D9. (Continued) 
   

    Correlations   

Variable Axis 1 Axis 2 Axis 3 

Cover -0.15 0.27 -0.06 

Leaf Litter -0.30 -0.27 -0.20 

Bare Ground -0.40 -0.18 0.10 

Rock 0.23 0.28 0.49 

CWD 0.27 0.10 -0.34 

Herbs -0.13 -0.29 0.24 

Shrubs 0-1m -0.34 0.08 0.07 

Shrubs 1-3m 0.02 -0.07 0.20 
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APPENDIX E: INDICATOR SPECIES ANALYSIS TABLES FOR EACH 

ECOREGION SAMPLED. 
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Table E1.  Percent of perfect indication (% IV) based on combining values of relative 

abundance and relative frequency for all ecoregions studied.  Avg = the average number 

of individuals, Max = the maximum number of individuals, Group (% IV) = group to 

which each species was indicative (OG = old-growth, SG = second-growth), and Std. 

Dev = standard deviation.  Statistically significant species based on the Monte Carlo 

permutations test are bolded and highlighted in gray.  

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Anguispira alternata 13 20  20 4.43 0.21 

Anguispira kochi 13 16 16  4.40 0.73 

Anguispira mordax 7 12  12 3.37 0.42 

Appalachina sayana 23 30 30  5.02 0.33 

Carychium clappi 37 51 51  4.72 0.04 

Carychium exile 39 65 65  4.96 <0.001 

Carychium nannodes 34 53 53  5.12 0.01 

Catinella oklahomarum 10 14 14  4.03 0.37 

Cochilocopa moreseana 31 55 55  5.09 0.001 

Collumella simplex 18 35 35  4.38 <0.001 

Discus patulus 26 39 39  5.34 0.10 

Euchemotrema fraternum 21 34 34  5.02 0.08 

Euconulus fulvus 12 12 12  4.32 0.95 

Gastrocopta armifera 16 29 29  4.76 0.03 

Gastrocopta contracta 21 38 38  5.18 0.01 

Gastrocopta contricaria 2 3 3  0.05 1.00 

Gastrocopta pentodon 14 26 26  4.43 0.03 

Gastrocopta procera 17 33 33  3.98 0.001 

Gastrodonta interna 22 36 36  5.30 0.10 

Glyphyalinia cryptomphala 5 9  9 2.91 0.23 

Glyphyalinia indentata 28 46 46  4.85 0.01 

Glyphyalinia wheatleyi 29 38 38  5.42 0.28 

Guppya sterkii 17 31 31  4.78 0.03 

Haplotrema concavum 28 48 48  5.09 <0.01 

Hawaii miniscula 21 35 35  4.86 0.04 

Helicodiscus notius 11 18 18  4.14 0.27 

Inflectarius inflectus 13 16  16 4.36 0.76 

Inflectarius rugeli 21 21 21 21 4.67 1.00 

Mesodon elevatus 14 15 15  4.44 0.96 

Mesodon thyroidus 11 15 15  4.16 0.44 

Mesodon normalis 10 12  12 4.23 0.72 

Mesodon zaleatus 9 14 14  3.77 0.25 

Mesomphix cupreus 11 21 21  3.82 0.04 

Mesomphix inornatus 27 30  30 4.8 0.61 
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Table E1. (Continued)      

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Mesomphix perlaevis 18 32 32  4.47 0.02 

Mesomphix vulgatus 3 7 7  2.50 0.49 

Neohelix albolabris 12 13 13  4.43 0.89 

Palifera dorsalis 2 3 3  0.05 1.00 

Paravitrea capsella 17 24 24  4.52 0.25 

Paravitrea placentula 5 10 10  2.37 0.23 

Patera appressa 23 42 42  4.65 <0.01 

Philomycus carolinensis 3 7 7  2.50 0.49 

Pomatiopsis lipadaria 11 17 17  4.09 0.30 

Punctum blandianum 5 10 10  2.73 0.23 

Punctum minutissimum 23 28 28  4.86 0.46 

Pupoides albilabris 8 9 9  3.77 0.91 

Stenotrema angellum 10 16  16 3.92 0.29 

Stenotrema barbatum 8 8 8 8 3.92 1.00 

Stenotrema stenotrema 13 15 15  4.51 0.83 

Striatura ferrea 13 27 27  3.79 <0.01 

Striatura meridionalis 14 20 20  4.50 0.37 

Strobilops aenea 12 18 18  4.31 0.34 

Strobilops labyrinthica 10 12 12  4.08 0.72 

Triodopsis sp. 5 10 10  2.36 0.23 

Triodopsis tridentata 21 31  31 5.17 0.16 

Vallonia exentrica 12 23 23  3.41 0.01 

Ventridens demissus 12 18 18  4.35 0.28 

Ventridens gularis 18 20 20  4.97 0.71 

Ventridens intertextus 10 19  19 3.90 0.10 

Ventridens ligera 13 16 16  4.57 0.65 

Ventridens lasmodon 11 19  19 4.11 0.14 

Ventridens lawae 2 3 3  0.05 1.00 

Ventridens theloides 3 7 7  2.50 0.49 

Vertigo bollesiana 2 3 3  0.05 1.00 

Vertigo parvula 9 16 16  4.07 0.24 

Vertigo gouldii 11 16 16  4.32 0.40 

Vertigo tridentata 14 17 17  4.54 0.70 

Xolotrema denotatum 12 14 14  4.22 0.74 

Zonitoides arboreus 15 17 17  4.54 0.79 

Zonitoides elliotti 3 7 7  2.50 0.49 
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Table E2.  Percent of perfect indication (% IV) based on combining values of relative 

abundance and relative frequency for the Inner Bluegrass ecoregion.  Avg = the average 

number of individuals, Max = the maximum number of individuals, Group (%IV) = 

group to which each species was indicative (OG = old-growth, SG = second-growth), and 

Std. Dev = standard deviation.  Statistically significant species based on the Monte Carlo 

permutations test are bolded and highlighted in gray.  

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Anguispira alternata 39 61  61 8.47 0.07 

Anguispira kochi 40 47 47  6.68 0.55 

Appalachina sayana 43 48 48  6.43 0.65 

Carychium clappi 50 60 60  2.47 0.01 

Carychium exile 50 61 61  2.66 <0.01 

Carychium nannodes 50 60 60  2.27 <0.01 

Catinella oklahomarum 29 43 43  9.1 0.26 

Cochilocopa moreseana 45 70 70  6.61 0.01 

Collumella simplex 47 86 86  7.61 <0.001 

Discus patulus 40 62 62  7.55 0.06 

Euchemotrema fraternum 43 53 53  6.09 0.41 

Euconulus fulvus 38 48  48 7.13 0.41 

Gastrocopta armifera 48 85 85  7.47 <0.001 

Gastrocopta contracta 48 87 87  8.25 <0.001 

Gastrocopta pentodon 43 68 68  8.59 0.05 

Gastrocopta procera 50 100 100  9.18 <0.001 

Gastrodonta interna 48 88 88  7.88 <0.001 

Glyphyalinia indentata 42 64 64  7.18 0.04 

Glyphyalinia wheatleyi 41 72 72  8.24 <0.01 

Guppya sterkii 41 69 69  7.89 0.02 

Haplotrema concavum 42 73 73  8.15 <0.01 

Hawaii miniscula 42 65 65  7.18 0.03 

Helicodiscus notius 33 41 41  7.81 0.48 

Inflectarius inflectus 35 44  44 7.8 0.56 

Inflectarius rugeli 36 47 47  7.63 0.45 

Mesodon elevatus 43 45 45  5.74 0.92 

Mesodon thyroidus 31 45 45  8.74 0.28 

Mesodon zaleatus 27 39 39  9.21 0.34 

Mesomphix cupreus 35 70 70  8.99 <0.01 

Mesomphix inornatus 38 47  47 7.54 0.42 

Mesomphix perlaevis 41 52 52  6.44 0.31 

Neohelix albolabris 30 37  37 8.8 0.64 

Paravitrea capsella 31 43 43  8.61 0.40 

Patera appressa 41 51 51  6.54 0.39 
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Table E2. (Continued)      

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Pomatiopsis lipadaria 28 36 36  8.64 0.59 

Punctum minutissimum 35 38  38 8.04 0.84 

Pupoides albilabris 28 32  32 8.51 0.88 

Stenotrema angellum 30 48  48 8.4 0.16 

Stenotrema barbatum 25 25 25 25 8.91 1.00 

Stenotrema stenotrema 23 25  25 8.96 0.96 

Striatura meridionalis 40 51 51  6.89 0.37 

Strobilops aenea 34 46 46  8.14 0.33 

Strobilops labyrinthica 30 37 37  8.44 0.64 

Triodopsis tridentata 25 45  45 9.46 0.16 

Vallonia exentrica 35 70 70  8.71 <0.01 

Ventridens intertextus 31 56  56 9.07 0.04 

Ventridens ligera 33 37 37  7.75 0.87 

Vertigo tridentata 43 51 51  6.07 0.49 

Xolotrema denotatum 31 42  42 8.78 0.44 

Zonitoides arboreus 38 46  46 7.1 0.54 

 

Table E3.  Percent of perfect indication (% IV) based on combining values of relative 

abundance and relative frequency for the Cumberland Plateau ecoregion.  Avg = the 

average number of individuals, Max = the maximum number of individuals, Group 

(%IV) = group to which each species was indicative (OG = old-growth, SG = second-

growth), and Std. Dev = standard deviation.  Statistically significant species based on the 

Monte Carlo permutations test are bolded and highlighted in gray. 

      Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Anguispira mordax 10 10 10 10 8.86 1.00 

Appalachina sayana 17 32 32 2 8.09 0.30 

Carychium clappi 37 65 65 9 9.64 0.04 

Carychium exile 47 90 90 3 10.08 <0.001 

Carychium nannodes 39 75 75 2 11.27 <0.01 

Cochilocopa moreseana 31 56 56 6 9.2 <0.01 

Collumella simplex 5 10 10 0 0.14 1.00 

Discus patulus 37 46 46 28 9.61 0.59 

Euchemotrema fraternum 15 15 15 15 9.38 1.00 

Euconulus fulvus 5 10 10 0 0.14 1.00 

Gastrocopta armifera 5 10 10 0 0.14 1.00 

Gastrocopta contracta 19 38 38 1 8.89 0.08 

Gastrocopta contricaria 5 10 10 0 0.14 1.00 
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Table E3. (Continued)      

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Gastrodonta interna 20 20 20 20 9.1 1.00 

Glyphyalinia cryptomphala 10 20 20 0 6.25 0.47 

Glyphyalinia indentata 31 56 56 6 9.02 0.03 

Glyphyalinia wheatleyi 28 54 54 2 10.65 0.08 

Guppya sterkii 19 38 38 0 9.51 0.14 

Haplotrema concavum 35 39 39 31 8.19 0.83 

Hawaii miniscula 28 56 56 1 9.11 0.02 

Helicodiscus notius 5 10 0 10 0.14 1.00 

Inflectarius inflectus 10 20 20 0 7.5 0.48 

Inflectarius rugeli 22 42 42 2 9.11 0.13 

Mesodon normalis 15 19 11 19 9.31 0.77 

Mesodon zaleatus 5 10 10 0 0.14 1.00 

Mesomphix inornatus 39 41 37 41 7.33 0.86 

Mesomphix perlaevis 10 20 20 0 7.49 0.47 

Neohelix albolabris 20 40 40 0 8.91 0.08 

Paravitrea capsella 18 24 12 24 8.76 0.68 

Paravitrea placentula 15 30 30 0 6.82 0.21 

Patera appressa 25 50 50 0 8.82 0.03 

Philomycus carolinensis 5 10 10 0 0.14 1.00 

Pomatiopsis lipadaria 5 7 7 3 6.66 1.00 

Punctum minutissimum 35 69 69 1 9.54 <0.01 

Pupoides albilabris 5 10 10 0 0.14 1.00 

Stenotrema stenotrema 22 38 38 5 9.07 0.18 

Striatura ferrea 2 4 14 0 0.14 1.00 

Striatura meridionalis 5 10 10 0 0.14 1.00 

Strobilops aenea 5 10 10 0 0.14 1.00 

Triodopsis spp. 15 30 30 0 6.81 0.21 

Triodopsis tridentata 37 54 54 20 9.46 0.20 

Ventridens demissus 15 30 30 0 7.44 0.20 

Ventridens gularis 27 42 42 12 9.65 0.25 

Ventridens lasmodon 8 10 5 10 7.07 1.00 

Ventridens lawae 5 10 10 0 0.14 1.00 

Ventridens ligera 10 20 0 20 7.49 0.47 

Ventridens theloides 10 20 20 0 7.48 0.46 

Vertigo bollesiana 23 44 44 1 8.72 0.11 

Vetigo gouldii 10 20 20 0 7.49 0.47 

Vertigo parvula 30 60 60 0 8.99 0.01 

Xolotrema denotatum 5 5 5 5 7.48 1.00 

Zonitoides arboreus 5 10 10 0 0.14 1.00 
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Table E3. (Continued)      

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Zonitoides elliotti 10 20 20 0 7.49 0.47 

 

Table E4.  Percent of perfect indication (% IV) based on combining values of relative 

abundance and relative frequency for the Pine Mountain ecoregion.  Avg = the average 

number of individuals, Max = the maximum number of individuals, Group (%IV) = 

group to which each species was indicative (OG = old-growth, SG = second-growth), and 

Std. Dev = standard deviation.  Statistically significant species based on the Monte Carlo 

permutations test are bolded and highlighted in gray. 

   Group (%IV)   

Species Avg Max OG SG Std. Dev p*value 

Anguispira mordax 15 30 0 30 6.84 0.21 

Appalachina sayana 13 18 18 8 8.03 1.00 

Carychium clappi 25 31 31 20 11.14 0.71 

Carychium exile 35 70 70 0 10 <0.01 

Carychium nannodes 21 37 37 5 9.18 0.23 

Cochilocopa moreseana 17 29 29 6 8.74 0.45 

Discus patulus 9 17 17 2 7.12 0.46 

Euchemotrema fraternum 10 10 10 10 8.98 1.00 

Gastrocopta contracta 5 10 0 10 0.14 1.00 

Gastrodonta interna 10 20 0 20 7.49 0.47 

Glyphyalinia indentata 18 33 33 4 9.4 0.31 

Glyphyalinia wheatleyi 26 39 14 39 8.88 0.37 

Haplotrema concavum 15 30 30 0 7.01 0.20 

Hawaii miniscula 5 5 5 5 7.48 1.00 

Inflectarius rugeli 13 15 10 15 8.29 1.00 

Mesodon normalis 15 18 12 18 8.98 0.96 

Mesomphix cupreus 10 20 0 20 7.49 0.47 

Mesomphix inornatus 13 19 7 19 8.69 0.78 

Palifera dorsalis 5 10 10 0 0.14 1.00 

Paravitrea capsella 8 10 10 5 7.13 1.00 

Patera appressa 25 50 50 0 8.58 0.03 

Philomycus carolinensis 5 10 10 0 0.14 1.00 

Pomatiopsis lipadaria 5 10 10 0 0.14 1.00 

Punctum minutissimum 15 17 17 13 9.09 1.00 

Stenotrema stenotrema 8 10 5 10 7.11 1.00 

Triodopsis tridentata 12 20 3 20 8.55 0.58 
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Table E4. (Continued)      

   Group (% IV)   

Species Avg Max OG SG Std. Dev p*value 

Ventridens demissus 25 29 29 21 9.69 0.80 

Ventridens gularis 35 51 18 51 9.58 0.23 

Ventridens ligera 10 20 20 0 7.49 0.47 

Ventridens lasmodon 26 47 4 47 9.22 0.10 

Vertigo bollesiana 18 27 10 27 9.53 0.72 

Xolotrema denotatum 10 20 20 0 7.5 0.48 

Zonitoides arboreus 10 20 20 0 7.49 0.47 
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APPENDIX F: STUDY SITE MAPS 
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Figure F5.  Map showing the boundaries of Floracliff State Nature Preserve (heavy black 

line).  The orange and blue areas represent the different age classes present.  The green 

dots represent sampling points. 

 

 

Figure F6.  Map showing Poll Branch located just beyond the boundaries of Lilley 

Cornett Woods.  Blue dots represent sampling points. 
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Figure F7.  Map showing the boundaries of Lilley Cornett Woods Appalachian 

Ecological Research Station (heavy dark line).  Maroon dots represent sampling points. 

  

 

Figure F8.  Map showing the boundaries of Kentenia State Forest (heavy dark line).  Blue 

dots represent sampling points. 
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Figure F9.  Map showing the boundaries of Blanton Forest State Nature Preserve (heavy 

dark line).  Red dots on the map represent sampling points. 
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APPENDIX G: DESCRIPTIVE BOX PLOTS FOR HABITAT VARIABLES 

COLLECTED DURING THE STUDY. 
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Figure G1.  Soil pH for each of the study areas.  White bars represent old-growth sites 

and gray bars represent second-growth sites.  Black, center bars represent the median of 

the data set.  Bars themselves represent the middle 50% of the data and quartiles extended 

from boxes represent minimum and maximum data values. 
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Figure G2.  Soil temperature °C for each of the study areas.  White bars represent old-

growth sites and gray bars represent second-growth sites.  Black, center bars represent the 

median of the data set.  Bars themselves represent the middle 50% of the data and 

quartiles extended from boxes represent minimum and maximum data values. 
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Figure G3.  Percent soil moisture for each of the study areas.  White bars represent old-

growth sites and gray bars represent second-growth sites.  Black, center bars represent the 

median of the data set.  Bars themselves represent the middle 50% of the data and 

quartiles extended from boxes represent minimum and maximum data values. 
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Figure G4.  Duff accumulations (cm) for each of the study areas.  White bars represent 

old-growth sites and gray bars represent second-growth sites.  Black, center bars 

represent the median of the data set.  Bars themselves represent the middle 50% of the 

data and quartiles extended from boxes represent minimum and maximum data values. 
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Figure G5.  Percent curved linear cover for each of the study areas.  White bars represent 

old-growth sites and gray bars represent second-growth sites.  Black, center bars 

represent the median of the data set.  Bars themselves represent the middle 50% of the 

data and quartiles extended from boxes represent minimum and maximum data values. 
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Figure G6.  Percent leaf litter at each of the study areas.  White bars represent old-growth 

sites and gray bars represent second-growth sites.  Black, center bars represent the 

median of the data set.  Bars themselves represent the middle 50% of the data and 

quartiles extended from boxes represent minimum and maximum data values. 
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Figure G7.  Percent bare ground at each of the study areas.  White bars represent old-

growth sites and gray bars represent second-growth sites.  Black, center bars represent the 

median of the data set.  Bars themselves represent the middle 50% of the data and 

quartiles extended from boxes represent minimum and maximum data values. 
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Figure G8.  Percent rock at each of the study areas.  White bars represent old-growth sites 

and gray bars represent second-growth sites.  Black, center bars represent the median of 

the data set.  Bars themselves represent the middle 50% of the data and quartiles extended 

from boxes represent minimum and maximum data values. 
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Figure G9.  Percent coarse woody debris at each of the study areas.  White bars represent 

old-growth sites and gray bars represent second-growth sites.  Black, center bars 

represent the median of the data set.  Bars themselves represent the middle 50% of the 

data and quartiles extended from boxes represent minimum and maximum data values. 
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Figure G10.  Percent herbaceous cover at each of the study areas.  White bars represent 

old-growth sites and gray bars represent second-growth sites.  Black, center bars 

represent the median of the data set.  Bars themselves represent the middle 50% of the 

data and quartiles extended from boxes represent minimum and maximum data values. 
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Figure G11.  Percent shrubs 0-1 meters in height at each of the study areas.  White bars 

represent old-growth sites and gray bars represent second-growth sites.  Black, center 

bars represent the median of the data set.  Bars themselves represent the middle 50% of 

the data and quartiles extended from boxes represent minimum and maximum data 

values. 
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Figure G12.  Percent shrubs 1-3 meters in height at each of the study areas.  White bars 

represent old-growth sites and gray bars represent second-growth sites.   Black, center 

bars represent the median of the data set.  Bars themselves represent the middle 50% of 

the data and quartiles extended from boxes represent minimum and maximum data 

values. 
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APPENDIX H: RAREFACTION CURVES FOR EACH ECOREGION. 
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Figure H1.  Rarefaction curves for the different disturbance regimes found in the Inner 

Bluegrass ecoregion.  Gray lines represent 95% confidence intervals (CI). 

 

 

Figure H2.  Rarefaction curves for the different disturbance regimes found in the 

Cumberland Plateau ecoregion.  Gray lines represent 95% confidence intervals (CI). 
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Figure H3.  Rarefaction curves for the different disturbance regimes found in the Pine 

Mountain ecoregion.  Gray lines represent 95% confidence intervals (CI). 
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APPENDIX 1: NON-METRIC MULTIDIMENSIONAL SCALING PLOTS FOR 

EACH ECOREGION STUDIED. 
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Figure I1.  Land snail community structure in old-growth and second-growth forests 

based on Non-metric Multidimensional Scaling of the disturbance classes present in the 

Inner Bluegrass ecoregion (Stress = 17.71).  Convex hulls are polygons enclosing all 

points within each group. 
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Figure I2.  Land snail community structure in old-growth and second-growth forests 

based on Non-metric Multidimensional Scaling of the disturbance classes present at 

Lilley Cornett Woods and Poll Branch (Stress = 20.09).  Convex hulls are polygons 

enclosing all points within each group. 

-0.24 -0.16 -0.08 0 0.08 0.16 0.24 0.32 0.4

Coordinate 1

-0.24

-0.16

-0.08

0

0.08

0.16

0.24

0.32

C
o
o
rd

in
a
te

 2
       Poll Branch 

      Lilley Cornett Woods  



 

116 

 

 

 

Figure I3.  Land snail community structure in old-growth and second-growth forests 

based on Non-metric Multidimensional Scaling of the disturbance classes present at 

Blanton Forest State Nature Preserve and Kentenia State Forest (Stress = 26.38).  Convex 

hulls are polygons enclosing all points within each group. 
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