
Eastern Kentucky University Eastern Kentucky University 

Encompass Encompass 

EKU Faculty and Staff Scholarship Faculty and Staff Scholarship Collection 

2017 

Trial 1 versus Trial 2 of the Test of Memory Malingering: Trial 1 versus Trial 2 of the Test of Memory Malingering: 

Evaluating Accuracy Without a “Gold Standard” Evaluating Accuracy Without a “Gold Standard” 

Douglas Mossman 
University of Cincinnati College of Medicine 

Dustin B. Wygant 
Eastern Kentucky Univeristy, dustin.wygant@eku.edu 

Roger O. Gervais 
University of Alberta - Neurobehavioural Associates 

Kathleen J. Hart 
Xavier University, Cincinnati, OH 

Follow this and additional works at: https://encompass.eku.edu/fs_research 

 Part of the Psychological Phenomena and Processes Commons 

Recommended Citation Recommended Citation 
Mossman, Douglas and Wygant, Dustin B. and Gervais, Roger O. and Hart, Kathleen J., Trial 1 Versus Trial 
2 of the Test of Memory Malingering: Evaluating Accuracy Without a 'Gold Standard' (January 3, 2017). 
Psychological Assessment, Forthcoming. 

This Article is brought to you for free and open access by the Faculty and Staff Scholarship Collection at 
Encompass. It has been accepted for inclusion in EKU Faculty and Staff Scholarship by an authorized administrator 
of Encompass. For more information, please contact Linda.Sizemore@eku.edu. 

https://encompass.eku.edu/
https://encompass.eku.edu/fs_research
https://encompass.eku.edu/fs_scholarship
https://encompass.eku.edu/fs_research?utm_source=encompass.eku.edu%2Ffs_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/914?utm_source=encompass.eku.edu%2Ffs_research%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Linda.Sizemore@eku.edu


 Electronic copy available at: https://ssrn.com/abstract=2898221 

TOMM Trial 1 versus Trial 2 1 
 

 

 

Trial 1 versus Trial 2 of the Test of Memory Malingering: 

Evaluating Accuracy without a “Gold Standard”  

 

Douglas Mossman, M.D. 

Department of Psychiatry and Behavioral Neuroscience 

University of Cincinnati College of Medicine, Cincinnati, Ohio, USA 

 

Dustin B. Wygant, Ph.D. 

Department of Psychology, Eastern Kentucky University, Richmond, Kentucky, USA 

 

Roger O. Gervais, Ph.D. 

University of Alberta and Neurobehavioural Associates, Edmonton, Alberta, Canada 

 

Kathleen J. Hart, Ph.D. 

School of Psychology, Xavier University, Cincinnati, Ohio, USA 

 

 

Address correspondence to Dr. Mossman: 

Department of Psychiatry and Behavioral Neuroscience, UC College of Medicine 

260 Stetson Street, Suite 3200, Cincinnati, Ohio  45219 

Telephone: (513) 558-4423 • Fax: (513) 558-3823 • douglas.mossman@uc.edu 

 

 

Accepted 6 January 2017 for publication in Psychological Assessment.  

This article may not exactly replicate the authoritative document published in 

Psychological Assessment. It is not the copy of record.



 Electronic copy available at: https://ssrn.com/abstract=2898221 

TOMM Trial 1 versus Trial 2 2 
 

 

 

Abstract 

This study examines the accuracy of the Test of Memory Malingering (TOMM), a 

frequently administered measure for evaluating effort during neurocognitive testing. In the 

last few years, several authors have suggested that the initial recognition trial of the TOMM 

(Trial 1) might be a more useful index for detecting feigned or exaggerated impairment 

than Trial 2, which is the source for inference recommended by the original instruction 

manual (Tombaugh, 1996). We used latent class modeling (LCM) implemented in a 

Bayesian framework to evaluate archival Trial 1 and Trial 2 data collected from 1198 

adults who had undergone outpatient forensic evaluations. All subjects were tested with 

two other performance validity tests (the Word Memory Test and the Computerized 

Assessment of Response Bias), and for 70% of the subjects, data from the California Verbal 

Learning Test–Second Edition Forced Choice trial were also available. Our results suggest 

that not even a perfect score on Trial 1 or Trial 2 justifies saying that an evaluee is 

definitely responding genuinely, although such scores imply a lower-than-base-rate 

probability of feigning. If one uses a Trial 2 cut-off higher than the manual’s 

recommendation, Trial 2 does better than Trial 1 at identifying individuals who are almost 

certainly feigning while maintaining a negligible false positive rate. Using scores from both 

trials, one can identify a group of definitely feigning and very likely feigning subjects who 

comprise about two-thirds of all feigners; only 1 percent of the members of this group 

would not be feigning.  

Keywords: malingering; Test of Memory Malingering; gold standard; receiver operating 

characteristic; latent class methods; Bayesian models 

 

Introduction 

After completing all the steps that comprise an evaluation, the fundamental question 

a mental health professional tries to answer is, “Given the evidence that I have assembled, 

what should I conclude?” In assessments done for treatment purposes, asking this question 

and responding to it are rarely explicit processes; instead, the clinician usually has as a set 

of tacit hypotheses about the patient that are tested and reconsidered as the patient 

undergoes treatment to alleviate whatever problems led to the clinical encounter.  

In forensic mental health assessments, however, the evaluator is much more likely 

to ask, “What should I conclude?” explicitly (Wills, 2008). One reason is that forensic 

assessments typically are efforts to reach conclusions that can be stated with “reasonable 

medical (or scientific) certainty.” Also, to the extent that an evaluator’s truth-seeking 

efforts may not lead to the outcome the forensic evaluee desires, the forensic evaluee has 

an external motive to deceive the evaluator. The Third, Fourth, and Fifth Editions of the 
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Diagnostic and Statistical Manual of Mental Disorders therefore recommend having a 

heightened suspicion of malingering in any evaluation that takes place in a “medicolegal 

context.” 

To decide whether an evaluee is feigning or exaggerating mental symptoms or 

cognitive impairment, mental health evaluators use three approaches, either separately or 

in combination. First, mental health professionals compare what an evaluee reports or says 

about symptoms to what patients who have no motive to look impaired say about mental 

problems (see, e.g., Resnick & Knoll, 2008). Second, evaluators sometimes can identify 

inconsistencies between an evaluee’s report and what appears in records or in other 

persons’ outside-the-office observations (Resnick, West, & Payne, 2008). Third, mental 

health evaluators can use symptom validity tests (SVTs; e.g., the Structured Interview of 

Reported Symptoms-2 [Rogers, Sewell, & Gillard, 2010]) or performance validity tests 

(PVTs; e.g., the Validity Indicator Profile [Frederick & Crosby, 2000]) developed specifically 

to detect dishonest symptom reporting or less-than-full cognitive effort during the 

evaluation. 

Of these approaches to detecting feigned symptoms or impairment, SVTs and PVTs 

are the best candidates for generating quantitative answers to the forensic evaluator’s 

question, “What should I conclude?” The reason: SVTs and PVTs produce numerical results 

that could help evaluators make mathematical statements about the probability of feigning, 

given the evidence. If, for example, a PVT designer had previously assembled data about 

PVT scores from evaluees who were known for certain to have answered honestly and 

from evaluees known for certain to have feigned or exaggerated their impairment, the 

evaluator could use those data to calculate likelihood ratios or other accuracy statistics; 

these statistics, combined with base rate information, would lead to numerical conclusions 

about the probability of less-than-full effort (Mossman & Hart, 1996; Mossman, 2000).  

The Test of Memory Malingering (TOMM; Tombaugh, 1996) is a popular PVT for 

reasons that include its relative ease of administration and the logic behind its design. Yet 

many authors have noted that the TOMM has limited sensitivity in detecting suboptimal 

effort if the results are interpreted in accordance with the standard scoring rule prescribed 

by the test manual (i.e., classify feigning if the Trial 2 score falls below 90% correct). This 

may be because savvy evaluees (or their attorneys) learn about SVTs and PVTs from legal 

citations (Kaufmann, 2009) and Internet resources—such as a Wikipedia article (“Test of 

Memory Malingering,” 2016)—and can decide that during the administration of the TOMM, 

they should take care to not do too poorly. Other evaluees who intend to display subtle-

but-phony impairment may realize by Trial 2 that the task is not as difficult as it first 

seems, or they may discern the purpose of the TOMM by mentally comparing it with other 

measures. In this respect, the TOMM likely shares a limitation with other effort measures 

(Denning, 2012; Guilmette, Whelihan, Hart, Sporadeo, & Buongiorno, 1996; Marshall et al., 

2010). 
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For these reasons, several recent articles have suggested that the initial recognition 

trial of the TOMM (Trial 1) might be a more useful index for detecting feigned impairment 

(Denning, 2012; Denning, 2014; Kulas, Axelrod, & Rinaldi, 2014; Schroeder, Baade, Peck, & 

Heinrichs, 2011). Denning (2012) reviewed and summarized more than 20 studies 

available as of 2012 that report cut-off scores or accuracy indices for Trial 1, and he 

described findings from his own data to suggest that Trial 1 might be a more satisfactory 

PVT.  

In all these studies and those published since, however, investigators have examined 

Trial 1 using a less-than-perfect criterion for non-genuine responding. Most commonly, the 

criterion has been another effort measure (such as the Medical Symptom Validity Test 

[Green, 2004]; see Denning, 2012 for an example), other sections of the TOMM (e.g., 

Armistead-Jehle & Hansen, 2011), or combinations of measures (e.g., Kulas, Axelrod, & 

Rinaldi, 2014; Schroeder et al., 2013). In some cases, investigators excluded cases that did 

not meet their criteria for unambiguously “poor effort” or “good effort” (e.g., failing at least 

two other PVTs, versus “passing” all other PVTs; see Kulas et al., 2014, p. 238). In other 

studies, investigators have tried to establish a specific, single Trial 1 cut-off score based on 

some independent criterion, such as perfect specificity when compared to a particular Trial 

2 score (see Denning, 2012, Table 1 for examples) or “acceptable” specificity, usually >90% 

when compared with the study’s criterion of truth (see Gunner, Miele, Lynch, & McCaffrey, 

2012, Schroeder et al., 2013, and Kulas et al., 2014 for recent examples).  

Although all the methods described in the previous paragraph represent reasonable 

approaches, they share a limitation: all require using an imperfect “gold standard” for the 

true status of subjects and/or an arbitrary, single cut-off to classify subjects. Because of 

this, the resulting accuracy indices incorporate systematic misclassification errors that 

potentially bias and limit findings. In this article, we describe results from applying latent 

class modeling (LCM) methods similar to those used by Mossman, Wygant, and Gervais 

(2012) to examine “real-world” Trial 1 responses from 1198 forensic evaluees. Our hope 

was that LCM techniques would let us make inferences about the diagnostic properties of 

Trial 1 and compare these to Trial 2 without having to use an imperfect “gold standard” to 

categorize study subjects. 

 

Method 

Study Subjects 

Because the present research used de-identified archival data, it received a 

designation of “exempt” from the institutional review board of the University of Cincinnati. 

The data originated from 2627 consecutive evaluees who underwent outpatient 

assessment at the third author’s office practice. Nothing in pre-evaluation information or 
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the third author’s evaluation findings suggested that any evaluee had a severe cognitive 

impairment (e.g., dementia or intellectual disability) that would have required special 

cautions beyond those normally applicable to a psychological evaluation. 

Our statistical methods (discussed later in this section) required that individuals 

have undergone evaluation with multiple measures that test for a similar type of 

impression management. We therefore focused on individuals in the dataset whose 

evaluations included administration of the TOMM, the Computerized Assessment of 

Response Bias (CARB; Allen, Conder, Green, & Cox, 1997), and the Word Memory Test 

(WMT; Green, Allen, & Astner, 1996; Green, 2003). This requirement removed just over 

half the evaluees (i.e., 1326 individuals) from the subject pool. The remaining 1301 

evaluees included 28 persons who did not speak English well enough to take the PVTs in 

English. We excluded these persons from the analysis. We also excluded individuals who 

had undergone evaluations for treatment purposes and were not evaluated in a forensic 

context (e.g., Worker’s Compensation Board). The treatment-oriented evaluees included 15 

widows of workers who had been killed on the job or who had died from a progressive 

work-related condition (e.g., mesothelioma), and 60 individuals who were not seeking 

compensation and underwent evaluation to guide psychological treatment. The resulting 

sample thus included 2627 – (1326+28+15+60) = 1198 evaluees who underwent 

assessment related to worker’s compensation claims (n = 897, 74.9%), their involvement 

in civil litigation (e.g., plaintiffs in personal injury cases, n = 224, 18.7%), both worker’s 

compensation and lawsuits (n = 7, 0.6%), disability insurance claims (n = 64, 5.3%), and 

pension claims (n = 6, 0.5%).  

Most (n = 730, 60.9%) persons in the sample were men. The sample’s mean age was 

40.4 (SD = 11.0) years; the mean education level was 11.6 (SD = 2.5) years. One-eighth (n 

= 148, 12.4%) of the sample subjects spoke languages other than English (including 

Punjabi, Mandarin, Arabic, Spanish, Polish, and Ukrainian) as their primary language, 

although all these evaluees completed the PVTs in English. In these 148 individuals, the 

mean WAIS-IV Verbal IQ score was 83.2 (SD = 11.6), mean Performance IQ was 86.7 (SD = 

14.5), and mean Full Scale IQ score was 83.2 (SD = 11.6). Their scores were lower than the 

scores of the native English speakers: Verbal IQ = 97.2 (SD = 12.7), Performance IQ = 

101.8 (SD = 14.4), and Full Scale IQ = 99.1 (SD = 13.2).  

Motor vehicle accidents were the reported source of injury for 238 members 

(19.9%) of the sample; 893 individuals (74.5%) reported being injured at work. The 

reported physical problems were mainly musculoskeletal and orthopedic injuries. Primary 

sites of pain as specified on the Multidimensional Pain Inventory (Kerns, Turk, & Rudy, 

1985) were head, face, or mouth (n = 121, 10.1%); neck (n = 136, 13.6%); shoulders or 

upper extremities (n = 223, 18.6%); lower back (n = 289, 24.1%); and lower extremities 

(n = 117, 9.8%). Primary psychiatric diagnoses  were rendered by the third author in 

accordance with then-current DSM-IV or DSM-IV-TR criteria using referral documentation 
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and all data gleaned from the assessments, which included findings from detailed clinical 

interviews of the evaluees plus the psychological test results.  

Four-fifths of the sample had diagnoses of chronic pain (32%), anxiety or 

posttraumatic stress disorder (30%), or depression (17%). As the previous paragraph 

notes, one-tenth of the sample had primary pain sites that involved the head and face, and 

about one-half these individuals reported physical problems that could have involved brain 

trauma. The remaining evaluees had problems such as temporomandibular joint pain. After 

accounting for other psychiatric conditions, 15 (1.3%) members of the total subject group 

had primary diagnoses of head injury, and two (0.2%) had other neurological conditions. 

These 17 subjects were not undergoing evaluations for purposes of neuropsychological 

assessment. They had already undergone detailed neuropsychological evaluations 

elsewhere that had detected no neurological or neuropsychological impairment severe 

enough to prevent them from returning to work, but the presence of other, comorbid 

psychological issues had not necessarily been evaluated. These subjects (along with the 

others in our sample) had no apparent, neurologically based reason for not being able to 

“pass” performance validity tests. None had obvious impairments in conversation, and all 

were community-living outpatients (i.e., they did not come from residential or hospital 

treatment settings) who traveled independently or with relatives for their assessments. 

Test Data  

The WMT, CARB, and TOMM yield several scores from which an evaluator might 

make judgments about possible feigned cognitive impairment. For this study, we used: 

 a total WMT score obtained by combining the immediate recognition (IR), delayed 

recognition (DR), and consistency scores;  

 a final CARB score calculated from all three blocks of the instrument, with imputed 

scores based on the stopping rules if evaluees scored 100% on a block;  

 the simple numerical results from Trial 1 and Trial 2 of the TOMM.  

Most (843, or 70.4%) of the subjects also had test data available for an additional proposed 

measure of malingering, the Forced Choice trial of the California Verbal Learning Test–

Second Edition (CVLTFC; Delis, Kramer, Kaplan, & Ober, 2000), and we included these 

subjects’ numerical scores in our analyses.  

Approaching the Data without a Gold Standard 

Because forensic mental health professionals rarely know for certain whether a 

given evaluee has responded genuinely, investigators have tried to assess the accuracy of 

PVTs and SVTs in two ways. In so-called “known group” or “criterion” studies, investigators 

evaluate discrimination power of validity measures by comparing the responses of 

evaluees believed to be responding genuinely with evaluees believed to be feigning or 
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exaggerating problems. In “simulation” studies, investigators ask non-symptomatic 

(“healthy”) subjects to answer test items as the subjects believe persons with mental 

disorders or cognitive impairments would. The investigators then compare these subjects’ 

simulated responses to those of persons who actually are mentally ill or cognitively 

compromised but who have no known motivation to look more ill or impaired than they 

really are.  

Each of these methods has limitations, however. Because no gold standard 

establishes the truth in known-group studies, investigators must either exclude ambiguous 

cases or accept that some feigning or non-feigning subjects may be misclassified. In 

simulation studies, subjects’ true status is known, but investigators do not know how well 

simulators’ behavior resembles the efforts of real feigners who undergo real forensic 

evaluations. 

To get around these problems, Mossman and colleagues (2012) used an approach 

based on principles of latent class modeling (LCM) (Uebersax & Grove, 1990), which has 

helped investigators in several areas of medicine (Henkelman, Kay, & Bronskill, 1990) and 

in related fields (e.g., Choi, Johnson, Collins, & Gardner, 2006; Jafarzadeh, Johnson, & 

Gardner, 2016 [cattle infections]). Broadly, this approach involves developing a data model 

that includes the accuracy parameters, then obtaining data from subjects who have 

undergone evaluation for a condition with more than one diagnostic method. If the 

resulting number of data categories exceeds the number of parameters in the data model, it 

may be possible to identify those model parameters—which would mean that the 

investigator could specify the diagnostic methods’ accuracy parameters without ever 

knowing the true status of the subjects.  

ROC Analysis 

Most reports on efforts measures refer to a single PVT score or “cut-off.” For 

example, the standard interpretation of the TOMM is that a Trial 2 score below 90% 

indicates feigned memory impairment, and reports on the accuracy of the TOMM typically 

refer to single values of sensitivity and specificity associated with this cut-off. In our view, 

however, this approach to interpreting results omits two key considerations relevant to 

understanding the information that PVTs produce.  

First, PVTs have several possible scores, and the lower a score, the stronger the 

evidence for non-genuine responding. Use of receiver operating characteristic (ROC) 

analysis allows the investigator to evaluate the discrimination characteristics of a PVT at 

several cut-offs and to quantify trade-offs between sensitivity and specificity as the cut-off 

is moved through the test’s full range of possible operating points. Knowing sensitivity and 

specificity at several cut-offs allows one to create a ROC graph for a test, which is a plot of 

the test’s true positive rate (tpr, which equals test sensitivity) as a function of the false 

positive rate (fpr = 1 – test specificity). Because a finite number of cut-offs is actually used, 
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the points that represent (fpr, tpr) pairs may be connected by line segments, and the areas 

underneath each segment (calculated using the trapezoidal rule) can be summed to find a 

nonparametric estimate of the total area under the ROC curve (AUC). AUC is a useful 

summary of accuracy that, in the present application, equals the probability that the PVT 

will correctly classify two randomly chosen subjects—one feigning and one responding 

honestly—by assigning a lower score to the feigning subject. An AUC of 1.0 would imply 

perfect sorting, and an AUC of 0.5 would imply no-better-than-chance discrimination 

between invalidly responding and validly responding subjects. 

Second, PVT results are evidence that, if used optimally, should alter or revise one’s 

belief about the probability that the evaluee is feigning impairment. This Bayesian 

interpretation of a PVT result implies that we would like information about the tests that 

let an evaluator answer the question, “Now that I have this result, what should I believe 

about this evaluee?” If we can somehow establish the values of the ROC parameters for the 

PVT, the answer to this question will follow directly. 

Our analyses used a Bayesian framework to locate values for the ROC parameters of 

the PVTs we studied. Essentially, our data analysis asked, “Given these subjects’ PVT 

results, what should we make of them? Given our study data, what should we believe about 

the ROC accuracy parameters for these PVTs?” To answer this question, we set about 

obtaining estimates of (fpr, tpr) pairs using the nonparametric model described by Albert 

(2007) and used in previous studies by Mossman and colleagues (Mossman et al., 2010; 

Mossman et al., 2012). Bayesian estimation methods summarize knowledge about 

unknown parameter values using ‘‘posterior’’ distributions that represent the probability 

that a parameter has a particular value, given the observed data.  

Bayes’s Rule states that the posterior probability of a parameter’s value is 

proportional to the likelihood of observing the data given that parameter value, multiplied 

by a “prior” probability of the parameter’s value. This approach is somewhat like maximum 

likelihood estimation (which provides point estimates for the parameter values that are 

most likely to have generated the observed data), and when priors are chosen so as to be 

“non-informative,” Bayesian and MLE results are often numerically similar (Carlin & Louis, 

2009). Bayesian results differ from MLE results in an important theoretical way, however. 

MLE results tell us things like, “We can have 95% confidence that a confidence interval 

constructed with this estimation method will contain the true value of a parameter.” 

Bayesian estimation summarizes what we should believe about a parameter’s true value 

via its “credible interval,” which represents a direct probability statements about the 

parameters—for example, “the probability is 95% that parameter θ for PVT j lies between x 

and y” or “given John Doe’s PVT result, the probability that he feigned impairment is 

greater than 95 percent.” 
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 We ran our Bayesian analyses in OpenBUGS, a free, open-source software program 

that is one of the successors to WinBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009). Like 

WinBUGS, OpenBUGS lets investigators use Markov chain Monte Carlo (MCMC) methods 

(Gelfand & Smith, 1990; Geman & Geman, 1984; Metropolis, Rosenbluth, Rosenbluth, 

Teller, & Teller, 1953) to generate posterior distributions from which the investigators 

draw Bayesian inferences about the parameter values. MCMC methods lead to inferences 

about posterior distributions for parameters of complex models if (as we hoped would be 

true for our data) mild regularity conditions are met such that a Markov chain will 

converge to a unique ‘‘target’’ distribution. This target distribution consists of the most 

plausible ranges for the parameters of interest—here, the parameters that, taken together, 

describe the accuracy of the PVTs we studied. 

 To use MCMC methods for our Bayesian analysis, we prepared OpenBUGS code 

modified from the WinBUGS code used by Mossman and colleagues (2012). The transition 

kernel made the target distribution of the resulting Markov chain the joint posterior 

distribution of model parameters. To assure model identification, we found it necessary to 

use a modestly informative Beta (6.3, 13.3) prior for the prevalence of feigning, which 

implies that one is 99% sure the true value lies between 0.1 and 0.6. We ran two parallel 

MCMC chains, and these appeared to converge after approximately 500 updates. We ran 

each chain for 20,000 updates, discarded each chain’s first 10,000 “burn-in” updates, and 

used the remaining 10,000 values for inference. 

 Ideally, we would have used both Trial 1 and Trial 2 simultaneously in our analyses. 

We found, however, that doing so caused the TOMM scores to “overwhelm” the other 

data—that is, the OpenBUGS algorithm identified a model in which the TOMM was taken to 

be the truth, a conclusion at odds with what is known regarding the TOMM’s limited 

sensitivity. We therefore analyzed the accuracy of Trial 1 separately from Trial 2, by using 

either a combination of the WMT, CARB, CVLTFC, and Trial 1, or a combination of the WMT, 

CARB, CVLTFC, and Trial 2. 

“Agnostic” and “Partial Truth” Analyses 

We approached our data analyses in two ways, which (following Mossman et al., 

2012) we term agnostic and partial truth. In the agnostic approach, we used as the sole 

information available four PVT scores from the subjects (i.e., WMT-CARB-CVLTFC-Trial 1, 

or WMT-CARB-CVLTFC-Trial 2). Consistent with the comments above, the agnostic 

approach completely avoids the problem of trying to establish the group membership of 

each subject before attempting to estimate accuracy parameters; it simply lets the PVT data 

tell the story.  

One might argue, however, that the agnostic approach excludes some information 

from the analysis if we know enough to classify some of the subjects as honest or invalid 

responders with virtual certainty. We therefore should incorporate this partial-truth 
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information into the parameter estimation process.  

One source of additional information about the model parameters estimated from 

the WMT-CARB-CVLTFC-Trial 1 scores is our knowledge of the subjects’ Trial 2 scores. The 

motivation for making inferences about malingering based on TOMM Trial 1 rather than 

Trial 2 is not just shorter administration time, but the belief that by the second trial, some 

evaluees realize that the recognition task is not as difficult as first appearance suggests. 

This means that using the standard cut-off, Trial 2 results are highly specific, and as the 

results presented in the next section show, false positive interpretations are rare enough to 

be negligible.  

For our partial truth analyses of the WMT-CARB-CVLT-Trial 1 data, we assigned 146 

subjects to a “definitely responding invalidly” group. This group included 125 subjects who 

scored below 90% on Trial 2, plus an additional 21 subjects who scored within or below 

the random responding range on at least two other PVTs (that is, below 65% on the DR or 

IR section of the WMT, and below 58% on the CARB). Such results, we reasoned, could not 

reflect valid responding: the study data came from an outpatient office to which most 

subjects had traveled independently, and the subjects did not have conditions such as 

dementia that could lead to genuine, no-better-than-chance responding. We also assigned 

35 subjects to a “definitely not feigning” group. All these subjects had attained the highest 

possible scores on all the SVTs. Here, we reasoned that whether a subject intended to 

engage in impression management or not, a perfect score on all PVTs implied that the 

subject was not using these measures to feign impairment.  

 

Results 

On the PVTs examined for this study, the subjects produced the following results 

(summarized as mean percentages of correct answers ± SD, with the range of results in 

parentheses):  

 WMT: 88.3±13.5 (35–100) 

 CARB: 94.9±11.3 (15–100) 

 TOMM1: 90.1±12.7 (34–100) 

 TOMM2: 96.3±10.6 (20–100) 

 CVLTFC: 88.7±14.1 (0–100) 

[place Table 1 about here] 

Table 1 shows the AUC estimates (with 95% credible intervals) for the four PVTs 

under the agnostic and partial-truth data assumptions. As was true in Mossman and 

colleagues’ (2012) study, all PVTs outdid chance sorting of feigned versus genuine 
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cognitive impairment, with the WMT providing superior discrimination. 

[place Figures 1, 2, 3, and 4 about here] 

For our present purposes, however, the key finding is that agnostic and partial-truth 

assumptions yielded similar results. We show this graphically in Figures 1, 2, 3, and 4. 

Figures 1 and 2 show ROC graphs for the data runs that used Trial 1; Figures 3 and 4 show 

the ROC graphs from the data runs that used Trial 2. Visual inspection confirms what Table 

1 shows numerically: the AUCs for the studies are similar, and the ROC operating points 

occupy positions in the ROC square that are similar whether one assumes completed 

ignorance or partial information about the feigning status of some evaluees. 

 [place Figures 5 and 6 about here] 

We turn now to our chief area of interest, the performance of Trials 1 and 2 of the 

TOMM. Figure 5 shows the ROC graphs for Trial 1 and Trial 2 under the agnostic data 

model, and Figure 6 contains the graphs derived from the partial truth model. Inspection of 

both Figures shows that Trial 1 is associated with a much larger AUC, but the ROC graphs 

cross each other close to the left vertical axis. This means that AUC alone may not be an 

adequate basis for comparing the discriminatory power of the two trials.  

[place Tables 2 and 3 about here] 

Tables 2 and 3 provide detailed bases for judgments about what scores on Trials 1 

and 2 imply. As implemented in our OpenBUGS code, estimating operating points required 

grouping the TOMM scores into ordinal categories. We grouped the subjects’ TOMM Trial 1 

and Trial 2 scores such that they fell into the 10 categories shown in the “score” columns of 

Tables 2 and 3. The “percentage of subjects” columns show the proportion of subjects who 

fell into each category.  

 One formulation of Bayes’s Theorem expresses the posterior odds as the product of 

the prior odds and the likelihood ratio. Here, we are interested in these relationships as 

they relate to the presence of feigning (denoted as M, for “malingering”) and to a given test 

result T. We can therefore write: 

 O(M : ¬M|T) = Λ(M : ¬M|T) • O(M : ¬M) 

where the odds, O(•), equals p(•)/[1−p(•)], “¬” is the symbol for logical negation, and 

Λ(•|T) is the likelihood ratio associated with T. We next introduce the stratum-specific 

likelihood ratio (SSLR; Pierce & Cornell, 1993) to denote the likelihood ratio associated 

with a particular stratum or category of test results. The SSLR relates directly to a ROC 

graph in that the SSLR equals the slope of that portion of the graph that corresponds to the 

test result category. Thus, in Figures 5 and 6, the 10 segments that make up each ROC 

graph have slopes that equal the SSLRs for the respective test-result categories. Readers 

can gain a rough idea of the SSLRs from examining Figures 5 and 6; the actual SSLR values 
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(to two significant digits) appear in Tables 2 and 3. Note that one calculates the SSLRk for 

Tk, a test result that falls into category k, from the (fpr, tpr) pairs as follows: 

 
1

1










cc

cc
k

fprfpr

tprtpr
SSLR  

where c = {0, 1, 2, …, K}, c = {1, 2, …, K−1} are the nine (fpr, tpr) pairs that correspond to the 

cut-offs that delimit the K result categories, fprc−1 = tprc−1 = 1, and fprc=K = tprc=K = 0. 

 To calculate the post-test probabilities shown in Tables 2 and 3, we assumed that 

the prevalence or pre-test probability of feigning, p(M), is 0.3, an assumption supported by 

the findings shown in Table 1. Therefore, the pre-test odds of feigning, O(M : ¬M) was 3:7, 

and the values shown for p(M|T1) and p(M|T2) come from the product of 3/7 and the SSLR 

values. 

As was true for the AUCs shown in Table 1, Tables 2 and 3 show that the results 

under the agnostic and partial-truth assumptions are similar and permit a single set of 

judgments about various Trial 1 and Trial 2 scores: 

● Two-thirds (65.5%) of the subjects had Trial 1 scores of 46 correct or better. 

Concerning these subjects (or future subjects drawn from a sufficiently similar 

population), it would be reasonable to say that their Trial 1 performance means 

they have a below-base-rate probability of feigning or exaggerating cognitive 

impairment. In a few cases, however, Trial 2 scores might alter this opinion (as we 

explain further below).  

● About one-sixth of our subjects (15.9%) had Trial 1 scores of 42 to 45. Such results 

provide less clarity about subjects’ intentions. Another 8% had scores of 37 to 40; 

these results are strong (but not certainty-inducing) evidence of feigning 

impairment.  

● An evaluee who gets 36 or fewer answers correct on Trial 1 is almost certainly 

feigning or exaggerating cognitive impairment. Just 10.7% of the subjects did this 

poorly. Thus, if one required this level of certainty before declaring that an evaluee 

is feigning, one would identify little more than a third of those evaluees who actually 

were feigning.  

● No score on the Trial 2—not even all 50 correct—rules out malingering, although a 

perfect score is evidence that favors genuine responding. 

● A Trial 2 score of 49 does not favor a conclusion for or against feigning. 

● One out of 17 subjects in our study (N = 69, 5.8%) got Trial 2 scores of 45 to 48. 

Under the customary rules of test interpretation, one would not regard scores in this 

range as indicative of feigning. Yet a score of 47 or 48 is good evidence of feigning, 
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and scores of 45 and 46 are strong evidence of doing less than one’s best. 

● One-tenth (10.4%) of the subjects scored below 45 on Trial 2, the cut-off for 

feigning that the TOMM manual (Tombaugh 1996) prescribes and that most 

neuropsychologists use for result interpretation. Although we can be highly 

confident that these subjects were performing below their true level of functioning, 

they represent only a third of all the subjects who were feigning or exaggerating 

their cognitive impairment. 

[place Table 4 about here] 

Table 4 provides another way to understand our findings. There, we show the 

TOMM Trial 1 and Trial 2 scores for all 1198 subjects. One sees that according the TOMM 

manual’s criterion, 125 (10.4%) of all the subjects scored low enough on Trial 2 to be 

deemed feigners. If one adds to this group any subject whose Trial 1 or Trial 2 score 

implies that the posterior probability of feigning was 0.99 or greater, then an additional 36 

feigners (3.5% of all subjects) are detected. An additional 89 subjects (7.4% of the total 

group) had a greater-than-80% posterior probability of suboptimal effort.  

Thus, 250 subjects had at least an 80% probability of feigning or exaggerating 

impairment. If the base rate of feigning among the subjects was exactly 30%, then 359 

subjects actually were feigning. Based on their posterior probabilities, 241 of the 250 

subjects in the at-least-80% feigning categories were actually feigning or exaggerating. 

Therefore, the at-least-80% feigning categories contain 241 actual feigners (that is, about 

two-thirds of all feigners), plus 9 of the 839 non-feigning subjects. Put another way, 

designating all at-least-80% subjects as feigners would miss one-third of the actual feigners 

and would incorrectly identify 1% of the honest subjects. 

One final feature of Table 4 deserves mention: it illustrates the presence of 

ambiguous results. Above, we explained that Trial 1 scores ≥46 support genuine 

responding. Yet six of the subjects who produced such scores had Trial 2 scores of 47 or 48, 

strongly suggesting feigning. The best explanation: these individuals were giving sub-

optimal effort, evidenced by Trial 2 scores that showed no improvement over Trial 1, or (in 

two cases) worse performance.  

 

Discussion 

Although questions about evaluees’ motivation and the validity of findings often 

arise in research and clinical treating settings, most (if not all) forensic mental health 

evaluations occur under conditions that require examiners to consider explicitly whether 

interview findings and test results reflect feigned or exaggerated impairment. Many 

combinations of motivations and situational incentives can make malingering an attractive 

choice, and feigning or exaggerating neurocognitive problems is a recognized coping 
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strategy for some forensic evaluees involved in civil and criminal litigation (Resnick & 

Knoll, 2008). In outpatient evaluation settings, examiners often have limited observational 

data from which to judge the genuineness of reported neurocognitive impairment, which 

helps to explain the popularity of using scales that are “embedded” within psychological 

test materials or tools developed expressly to detect feigned or exaggerated impairment. In 

addition, embedded or malingering-specific effort measures often allow evaluators to 

render judgments about malingering for which they can cite numerically based empirical 

support. 

Our approach to examining and comparing inferences from Trials 1 and 2 of the 

TOMM differed from other investigators’ studies in two ways. First, we used other PVT 

scores to evaluate the TOMM’s accuracy, but we did not try to create criterion groups based 

on those PVT scores. Instead, we let OpenBUGS make simultaneous, Bayesian inferences 

about group membership and the accuracy indices of all PVTs. To put this another way: 

rather than declaring that certain PVTs established the “truth” about subjects’ malingering 

status when we know those PVTs are imperfect, we asked OpenBUGS to answer the 

question, “Given the data before us, what things about the accuracy of these PVTs are most 

reasonable for us to believe?”  

Second, we recognized explicitly that the TOMM produces graded results that justify 

weaker or stronger beliefs about the likelihood that an individual is malingering. Rather 

than reduce TOMM results to “yes” or “no” based on our opinion about what level or 

sensitivity or specificity is appropriate, we used ROC methods to characterize the degree to 

which a particular TOMM score should alter an evaluator’s pretest belief about the 

likelihood that an evaluee is attempting to feign or exaggerate neurocognitive impairment. 

 Other investigators (e.g., Denning, 2012) have reported AUCs for TOMM Trial 1 of 

greater than 0.90. In our study, Trial 1 AUCs exceeded AUCs for Trial 2 but fell below 0.85. 

We attribute this to our different way of evaluating data. We did not attempt to exclude any 

subjects whose performance might have been “hard” to categorize as genuine versus non-

honest, a decision that virtually guarantees lower sorting accuracy.  

Our results also paint a different picture of Trial 1 and Trial 2 scores than other 

investigators have suggested. We found that if one sets Trial 1 and Trial 2 cut-offs low 

enough to achieve near-certain confidence that an evaluee’s effort was suboptimal, one will 

achieve a detection sensitivity of about 40%. If one can settle for feeling “at least 80% 

confident” that an individual has given less than full effort, then about 19% of our subjects 

had Trial 1 scores and 16% had Trial 2 scores that indicated suboptimal effort. Notice, 

however, that in the case of the Trial 2, this required interpreting scores of 48 or lower as 

indicating feigned or exaggerated impairment.  

Our findings suggest some advantages that LCM methods have over approaches to 

evaluating malingering measures that use “known” groups of subjects or simulators. We 
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did not have to use imperfect truth criteria or exclude ambiguous cases from our analyses, 

yet our results retained so-called “ecological” validity in that they came from evaluees in 

real testing situations. For the following reasons, however, we ask that readers view our 

findings with skepticism and cautiousness. 

(1) Our data came from a single evaluation context. Although our findings 

concerning the TOMM are consistent with those of other investigators (see, e.g., Fox, 2011; 

Frederick & Bowden, 2009; Gervais, Rohling, Green, & Ford, 2004; Mossman, Miller, Lee, 

Gervais, Hart, & Wygant, 2015), they do not represent definitive judgments about the 

performance of the TOMM. We might well have had different findings to report had we 

examined data from psychiatric inpatients, from individuals who had suffered 

demonstrably serious brain trauma, or from criminal defendants who were facing 

prosecution. 

(2) Although our prior-knowledge assumptions yielded similar results, our data 

models were not the only conceivable ones. We also attempted to evaluate our data using 

the conventional “binormal” ROC model and the dual-beta model recently proposed by 

Mossman and Peng (2016). These models have the advantage of yielding smooth curves 

and potential superior inferences about operating points (for further discussion, see 

Mossman & Peng, 2016). However, implementing these models in OpenBUGS produced 

highly correlated chains that converged poorly (even after 10,000 iterations) and in some 

cases gave results that seemed implausible (e.g., prevalence values below 0.2, and AUCs 

above 0.90 for several PVTs).  

(3) As Uebersax (1988) notes, latent class methods yield upper bounds for accuracy 

because they choose underlying classes that minimize error rates. These error-minimizing 

latent classes can differ from the true classes if the probabilities of the empirical classes 

depend on covariates. Whether this actually is the case is hard to know (Spencer, 2012), 

but we do know that it is a clear possibility.  

(4) Our method of analysis also risked unintentionally mistaking reliability for 

validity. That is, we assumed that the subjects’ PVT scores represented valid ways of 

assessing (a) the subjects’ responses to being tested, (b) whether subjects were trying to 

look more impaired than was actually the case, and (c) in the case of those who engaged in 

impression management, how those subjects approached the other cognitive evaluation 

measures that were administered during their evaluations. Our statistical methods were 

limited by the fact that irrelevant yet highly reliable assessment methods (e.g., assessing 

malingering by counting letters in the evaluee’s last name) can appear very accurate. We 

could also run into this problem if most evaluees (including malingerers) knew about these 

tests and “played it straight” on the PVTs only. Many of our subjects’ PVTs scores were low 

enough that we doubt this was the case—that is, they did so poorly on the PVTs that 

exaggerating or feigning impairment was the only plausible explanation for their test 
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results. Nonetheless, this could have happened for a subset of actually malingering 

evaluees.  

(5) Our statistical inferences about malingering rates and PVT accuracy were based 

on PVT data alone, which is an approach that mental health professionals should not and 

ordinarily would not actually use. Usually, mental health professionals obtain additional 

data from the evaluation session and from outside sources (e.g., family members, treatment 

records) that are relevant to deciding how accurately evaluees are portraying themselves 

and their abilities. We did not use non-test data in our study because in general, such data 

are not quantified precisely and are therefore not amenable to the kinds of analysis we 

employed. If mental health professionals did generate such data from their assessment, 

however, then one could evaluate those data using the same methods we used here. If, for 

example, evaluators provided Likert-scale judgments about the probability of invalid 

responding based on their clinical data, the accuracy of those judgments could be treated as 

an “effort measure” to be evaluated along with other PVTs or SVTs, using the statistical 

approaches we employed.  

(6) As is true for most investigations of PVTs and SVTs, we evaluated our data under 

the assumption that subjects either gave valid responses or did not. Indeed, either evaluees 

do their best or they don’t, but those evaluees who do less than their best may feign or 

exaggerate with greater and lesser subtlety. Some disengaged evaluees simply do not put 

forth much effort (see Frederick & Bowden, 2009) but do not necessarily intend to perform 

at less than their best level. Our LCM model does not incorporate several notions that 

Rogers (2008) has emphasized: evaluees engage in malingering to different degrees, they 

have motivations that can affect PVT outcomes, and invalid responding has more causes 

than conscious effort to do worse than one’s actual ability level. Notwithstanding this 

limitation, we still believe it makes sense to draw a distinction between those evaluees who 

engage in compliant, honest responding and those who respond to testing in other ways. 

That is, we can know that non-genuine response styles take various forms while still 

believing—consistent with the approach taken by all investigators who have tried to 

quantify the accuracy of PVTs and SVTs—that evaluees either perform at their full ability 

or do not.  

 

Conclusion 

Several recent articles have provided theoretical and data-based arguments to 

suggest that Trial 1 of the TOMM is better than Trial 2 at detecting suboptimal effort in 

neurocognitive assessments. Our findings showed that for about half the evaluees, Trial 1 

data would allow an examiner to say, “This score means it’s unlikely that this individual 

was feigning or exaggerating impairment,” and to say this with at least as much confidence 

as a perfect Trial 2 result alone would justify. But given our data and statistical approach, 
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Trial 1 did not outperform Trial 2 in how often it would justify an examiner’s saying, “The 

evidence makes me virtually sure that this individual was feigning.”  

These TOMM-based characterizations of effort would apply only to evaluation 

settings similar to those that generated our study data. We hope readers will consider 

using the statistical techniques we have described to examine the TOMM and other 

measures used in psycholegal determinations. We also hope that our work will inspire 

development of additional ways to evaluate assessment tools used by forensic mental 

health professionals. 
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Table 1. – Bayesian estimates of the areas under the ROC curve (median AUCs and 95% credible intervals) for neurocognitive 

effort measures under the agnostic and partial-truth information assumptions. Values are rounded to two significant digits.  

Information 

Assumption 

AUC (95% credible interval)  

WMT CARB TOMM Trial 1 TOMM Trial 2 CVLTFC prevalence 

agnostic 

0.91 (0.84–0.96) 0.73 (0.66–0.80) 0.83 (0.76–0.89)  0.73 (0.65–0.80) 0.29 (0.23–0.38) 

0.92 (0.86–0.96) 0.73 (0.66–0.79)  0.76 (0.69–0.82) 0.72 (0.65–0.78) 0.32 (0.26–0.40) 

partial truth 

0.92 (0.88–0.95) 0.73 (0.67–0.79) 0.85 (0.80–0.90)  0.74 (0.68–0.80) 0.32 (0.27–0.40) 

0.94 (0.90–0.97) 0.75 (0.69–0.80)  0.78 (0.73–0.84) 0.74 (0.68–0.80) 0.30 (0.25–0.36) 

 

WMT = Word Memory Test 

CARB = Computerized Assessment of Response Bias 

TOMM Trial 1 = Test of Memory Malingering Trial 1 

TOMM Trial 2 = Test of Memory Malingering Trial 2 

CVLTFC = California Verbal Learning Test-II Forced Choice Trial 

prevalence = estimated portion of subjects who were feigning 
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Table 2. – Bayesian estimates (medians and 95% credible intervals) of the stratum-specific likelihood ratio (SSLR) and 

calculated posterior probability of feigning for a given score on Trial 1 of the TOMM [p(M|T1)] under the agnostic and partial-

truth assumptions about prior knowledge of subjects’ feigning status, assuming a feigning prevalence of 30 percent. Values 

are rounded to two significant digits.  

Trial 1 
score 

percentage 
of subjects 

agnostic partial truth 

SSLR p(M|T1) SSLR p(M|T1) 

49-50 37.8% 0.30  (0.16–0.50) 0.11 (0.065–0.18) 0.24 (0.14–0.39) 0.095 (0.056–0.14) 

48 11.4% 0.28  (0.087–0.60) 0.11 (0.036–0.21) 0.31 (0.12–0.60) 0.12 (0.049–0.20) 

47 8.6% 0.34  (0.12–0.78) 0.13 (0.048–0.25) 0.37 (0.13–0.78) 0.14 (0.055–0.25) 

46 7.7% 0.45  (0.12–1.0) 0.16 (0.049–0.30) 0.52 (0.19–1.1) 0.18 (0.076–0.32) 

45 5.4% 0.85  (0.24–2.0) 0.27 (0.092–0.46) 0.88 (0.32–2.0) 0.27 (0.12–0.46) 

44 3.8% 1.3  (0.20–3.5) 0.35 (0.078–0.60) 1.5 (0.48–3.9) 0.39 (0.17–0.63) 

42-43 6.7% 2.0  (0.82–5.1) 0.47 (0.26–0.69) 3.0 (1.3–7.1) 0.56 (0.35–0.75) 

40-41 4.2% 10  (4.3–29) 0.81 (0.65–0.93) 14 (5.6–51) 0.86 (0.71–0.96) 

37-39 3.8% 18  (6.9–92) 0.88 (0.75–0.98) 38 (11–5000) 0.94 (0.83–1) 

≤36 10.4% 200  (41–1.2×106) 0.99 (0.95–1) 9100 (220–1.2×1010) 1.00 (0.99–1) 
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Table 3. – Bayesian estimates (medians and 95% credible intervals) of the stratum-specific likelihood ratio (SSLR) and 

calculated posterior probability of feigning for a given score on Trial 2 of the TOMM [p(M|T2)] under the agnostic and partial-

truth assumptions about prior knowledge of subjects’ feigning status, assuming a feigning prevalence of 30 percent. Values 

are rounded to two significant digits.  

Trial 2 
score 

percentage 
of subjects 

agnostic partial truth 

SSLR p(M|T2) SSLR p(M|T2) 

50 75.1% 0.48 (0.35–0.61) 0.17 (0.13–0.21) 0.44 (0.31–0.54) 0.16 (0.12–0.19) 

49 8.7% 1.4 (0.67–2.4) 0.37 (0.22–0.51) 1.3 (0.63–2.4) 0.35 (0.21–0.5) 

48 2.8% 24 (6.8–740) 0.91 (0.74–1) 22 (6.8–300) 0.91 (0.74–0.99) 

47 1.3% 25 (4.6–19000) 0.91 (0.66–1) 26 (4.8–2.1 ×104) 0.92 (0.67–1) 

46 1.1% 210 (10–9.7×108) 0.99 (0.82–1) 420 (17–1.2×109) 0.99 (0.88–1) 

45 0.6% 2000 (12–8.3×1012) 1 (0.84–1) 1.5 ×104 (40–8.8×1013) 1 (0.94–1) 

43-44 1.7% 1.2 ×105 (40–5.9×1018) 1 (0.94–1) 2.9 ×106 (820–7.1×1018) 1 (1–1) 

41-44 1.3% 1.1 ×107 (230–5.4×1018) 1 (0.99–1) 3.4×108 (3200–6.4×1018) 1 (1–1) 

38-40 2.1% 2.7×109 (580–8.0×1018) 1 (1–1) 1.4×1011 (3.9×104–9.3×1018) 1 (1–1) 

≤37 5.3% 1.1×1012 (8800–1.1×1019) 1 (1–1) 7.7×1013 (4.2×105–1.3×1019) 1 (1–1) 
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Table 4. – Numbers of study subjects with various combinations of scores on Trial 1 and Trial 2 of the TOMM, with 

interpretation of performance validity. Numbers along the right and bottom margins of the table show marginal totals. Empty 

cells contain no subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Trial 2 scores  

 

 
50 49 48 47 46 45 43-44 41-44 38-40 ≤37 

 

T
ri

al
 1

 s
co

re
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49-50 432 19 2        453 

48 127 9 1        137 

47 84 18 
 

1       103 

46 78 12 1 1       92 

45 58 4 2 
 

1      65 

44 35 7 
 

2 1      45 

42-43 51 14 8 1 4 1 
 

1 
  

80 

40-41 20 11 6 5 2 1 2 3 1 
 

51 

37-39 11 7 5 5 1 4 5 3 4 1 46 

≤36 4 3 8 1 4 1 13 9 20 63 126 

 

 
900 104 33 16 13 7 20 16 25 64 1198 

 
 x    = definitely feigning by the TOMM manual’s criterion (N=125)   

 
 x    = definitely feigning based on study findings (N=36)    

 
 x    = probably feigning based on study findings (N=89)    
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Figure 1. – ROC graph showing the discriminatory performance of four performance 

validity tests under the agnostic knowledge assumption. WMT = Word Memory Test;  

TOMM Tr 1 = Test of Memory Malingering Trial 1; CARB = Computerized Assessment of 

Response Bias; CVLTFC = California Verbal Learning Test-II Forced Choice Trial. 
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Figure 2. – ROC graph showing the discriminatory performance of four performance 

validity tests under the partial truth knowledge assumption. WMT = Word Memory Test; 

TOMM Tr 1 = Test of Memory Malingering Trial 1; CARB = Computerized Assessment of 

Response Bias; CVLTFC = California Verbal Learning Test-II Forced Choice Trial. 
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Figure 3. – ROC graph showing the discriminatory performance of four performance 

validity tests under the agnostic knowledge assumption. WMT = Word Memory Test;  

TOMM Tr 2 = Test of Memory Malingering Trial 2; CARB = Computerized Assessment of 

Response Bias; CVLTFC = California Verbal Learning Test-II Forced Choice Trial. 
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Figure 4. – ROC graph showing the discriminatory performance of four performance 

validity tests under the partial truth knowledge assumption. WMT = Word Memory Test; 

TOMM Tr 2 = Test of Memory Malingering Trial 2; CARB = Computerized Assessment of 

Response Bias; CVLTFC = California Verbal Learning Test-II Forced Choice Trial. 
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Figure 5. – ROC graph comparing the discriminatory performance of Trial 1 and Trial 2 of 

the Test of Memory Malingering under the agnostic knowledge assumption. 
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Figure 6. – ROC graph comparing the discriminatory performance of Trial 1 and Trial 2 of 

the Test of Memory Malingering under the partial truth knowledge assumption. 
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