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Abstract 
 

 
The ever growing need for a viable renewable fuel source has led to this thesis project; 

the biomimetic lignin degradation by means of a homogeneous oxidative catalyst in 

corresponding ionic liquids.  Lignin comprises nearly a third of lignocellulosic biomass 

and is cross-linked to both cellulose and hemicellulose. Current utilization methods of 

lignin do not generate the full value of the polymer, because they do not yield many of 

the valuable feed stock chemicals it is comprised of. To improve the value of the 

biomass as a whole and create a viable economy for the US’s transition to biofuels, 

better utilization methods need to be developed.  To this end, we have developed ionic 

liquid tagged metalloporphyrin catalysts and coupled them in ionic liquids that are 

known to dissolve lignin in an attempt to more efficiently isolate the feedstock 

chemicals contained within lignin. Synthesis of four ionic liquid tagged metalloporphyrin 

catalysts has been completed with moderate yields. The array of catalysts has been 

synthesized, as the functionalization of the metalloporphyrin is known to have a great 

effect on its catalytic abilities. Recently groups have shown a significant increase in the 

reusability of the ionic catalysts when coupled with ionic liquids, helping a major hurdle 

in the biomimetic process.  We have performed initial catalytic studies with two of our 

novel ionic metalloporphyrins and compared their activity with a non-ionic 

metalloporphyrin. Under similar conditions in 1-allyl-3-methylimidazolium 

xylenesulphonate our novel catalysts outperformed the comparative non-ionic 

porphyrin catalyst significantly. 
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CHAPTER I 

 

INTRODUCTION 

With rising gas prices, the demand for renewable fuel sources has never been 

greater. Lignocellulosic biomass is one of the primary targets for a renewable fuel 

source. Goals have been set to increase the percentage of derived organic chemicals to 

25% and increase the percentage of transportation fuels from biomass to 30% by 

2025.1 Bioethanol is commonly used as an additive to gasoline at 10-20%, currently 

produced from corn and sugars, however its production is in competition with food 

sources causing a huge ethical issue. Cellulosic ethanol could be a solution to this 

ethical dilemma as it can be produced from natural resources such as plants and 

grasses. However, current production technology does not allow for competitive 

pricing.2 To drive this price down to be competitive it must be processed and utilized 

much more efficiently. Lignocellulosic biomass is composed of three main polymers: 

lignin, cellulose, and hemicellulose. Hemicellulose and cellulose are relatively less 

complex in structure compared to lignin. In large part due to their lack of complexity, 

their utilization is much more optimized and a much higher percentage of mass is 

already converted to usable bio-derived feedstock. Lignin is between 15-35% of the 

whole biomass and is comprised of many potentially valuable aromatic chemicals.  

Isolation of these valuable chemicals has been estimated to quadruple the current 

value of the whole biomass.3 To meet the goals above, it is vital to learn to produce a 
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high percentage of these aromatics from lignin and incorporate them into the value of 

the biomass as a whole.  Our potential process for the degradation of this polymer is to 

couple ionic liquids and oxidative ionic liquid tagged metalloporphyrin catalysts; each 

having previous successful implications in its own right. Coupling the two will not only 

do away with common solubility issues of porphyrins but should also increase the 

stability of the porphyrin catalysts themselves.  Increasing the value of biomass would 

be a huge step towards the goals stated above by adding a renewable feedstock for 

valuable organic chemicals and fossil fuels. 

 

1.1 LIGNOCELLULOSIC BIOMASS 
 

Lignocellulosic biomass encompasses the cell walls of grasses, trees, plants, and 

many other natural renewable species. Now that gas prices have risen dramatically, the 

search for sustainable renewable energy is at a premium. In 2011, biomass only 

accounted for about 4.5% of the United States total energy usage.3 For that number to 

increase the utilization of the natural resource must be maximized. Lignocellulosic 

biomass is very complex causing the efficiency to be problematic. It is comprised of 

three structuraly different polymers; lignin, cellulose, and hemicellulose. These three 

polymers are covalently bound to each other, making separation of the polymers alone 

very difficult and costly. Lignocellulosic biomass is usually segragated into hardwoods 

and softwoods. Each of which has its own chemical variations that often add more 

complications in separations and utilization. Even when separated from cellulose and 

hemicellulose, lignin is still vastly under valued and usually just burned as a low grade 



3 

 

energy source.4 This is a large part of the deficiancy in the utilization of lignocellulosic 

biomass and a major problem associated with its conversion to a fuel. 

 

1.1.1 Cellulose 

Cellulose is a glucose linear straight chain polymer (Figure 1.1) that comprises 

between 23 and 53% of a lignocellulosic plant. It is a β(1-4) linked spiralling polymer. It 

has the highest degree of polymerization, being between 7000-15000 units. It can be 

isolated in a relatively pure form by common delignification techniques followed by 

alkali extractions.5  

 

 

 

 

 

 

Figure 1.1: Cellulose Illustration.5 

1.1.2 Hemicellulose 

Hemicelluloses are irregular polymers composed of glucose, xylose, galactose, 

mannose, fucose, arabinose, glucuronic acid and galacturonic acid (Figure 1.2, p. 4). 

Currently hemicelluloses are utilized as a source of sugar, fuel, and feedstock for 



4 

 

various chemicals. They have also found applications as additives in papermaking, gels, 

sufactants, and drug carriers.6 In the cell wall they are hydrogen bonded to cellulose 

and covalently bound to lignin. Separation can be done any of the common 

delignification methods and washing with an ethanol water solution.7   

 

 

 

 

 

 

Figure 1.2: Hemicellulose Illustration.7 

 
 
1.1.3 Lignin 

Lignin is the second most abundant polymer on Earth8. It was first identified by 

Anselam Payen in 1838.9 Cellulose and hemicellulose are held together by lignin which 

gives the biomass source its physical toughness. Lignin forms covalent crosslinking 

bonds between the cellulose and hemicellulose successfully preventing easy 

separation. As a cross linking reagent it also has potential value in resins, epoxides, and 

adhesives.10 Major known issues with the above class of materials is that the lignin 

itself must be in a very pure form and the processes are very dependant on the type of 

lignin being used.  

Lignin is a rigid amorphous polymer made up of three main monomers     
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(Figure 1.3) ; coniferyl alcohol (A), synapyl alcohol (B), and p-coumaryl alcohol (C).  

                                                                  

 

 

 

 

 

 

 

 

 

Figure 1.3: Coniferyl alcohol, p-Coumaryl alcohol, and Sinapyl alcohol.11 
 
 
 

Radical polymerization of these three building blocks form many variations of 

phenyl propanoid units contributing to its amorphous structure (Figure 1.4, p. 6).12 The 

monomers themselves comprise different percentages of the lignin when coming from 

different sources or even from the same source. Generally, the more synapyl alcohol 

the harder and stronger the source will be (trees and nuts) while the more coumaryl 

alcohol the softer the source will be (plants and grasses).11 Lignin varies in the 

percentage of the whole biomass, 15-35% depending on the source.1 The overall 

consequences of lignins variability and strength are costly removal and little value due 

to its complexity. 

A               B       C 
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Figure 1.4: Determined Lignin Structure from Beech.13 

1.1.3.1 Lignin Linkages 

Over 50% of the covalent linkages in lignin are comprised of the β-O-4 type 

bonds (Figure 1.5, p.7). As a result many catalytic degradation studies involve model 

compounds containing a β-O-4 bond. The second most common bond is a 5-5 bond 

which is a direct bond of the aromatic rings and can be up to 27% of the total lignin 
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β 

α 

4 

linkages. Other known less common linkages are the β-5, 4-O-5, β-1, α-O-4, and the β-β 

bond.11  

  

 

 

 

 

 

Figure 1.5: Examples of β-O-4 and 4-O-5 Linkages.11 

1.1.3.2 Pretreatment Methods 

Pretreatment is the breaking of the covalent bonds of the three lignocellulosic 

polymers. It is very cost intensive and a major problem for all lignocellulose usage. The 

ideal pretreatment method would include features such as high yields for all 

feedstocks, highly digestbile pretreated solid, zero sugar degradation, minimal toxicity 

in reagents, ability to utilize large particles, low cost reactors, zero solid-waste, 

functionality with moisture, minimum energy costs, and lignin recovery.14 Some of the 

currently utilized and studied lignin removal methods include mechanical 

4 

5 

O 
O 
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comminution, ionic liquid dissolution, the Kraft method, acid hydrolysis, steam 

explosion, and many others.  

1.1.3.2.1 Mechanical Comminution 

Mechanical processes have been developed but are very energy intensive 

usually involving mechanical milling, grinding, or chipping. Generally the smaller 

particles obtained from the process the more cost involved in the process.2 The energy 

needed to breakdown the biomass is heavily dependant on source. A knife mill takes 

about 120 kWh/ton for an average particle size of 1.6mm with hardwood lignocellulosic 

source versus 7.5 kWh/ton when straw is the source.15  The decrease in particle size is 

directly related to the accessability of the cellulose for cellulase hydrolysis.  

1.1.3.2.2 Ionic Liquid Dissolution 

Ionic liquids are being looked at as an alternative solution to delignification for 

multiple reasons; mainly their non-volatile nature and reusability. Ionic liquids are 

considered green solvents because of their low vapor pressure and non-flammability. 

Certain ionic liquids have shown the ability to selectively dissolve lignin from cellulose 

and hemicellulose. Besides being green solvents, possibly the most important feature 

of ionic liquids towards their pretreatment applicability is their aptitude to dissolve 

lignin in a state that it can be further worked on. Many of the previous extraction 

processes involve harsh chemicals and high temperatures that are detrimental to the 

lignin. As a result most of lignin’s potential value is lost upon removal and is just burned 
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as a low grade fuel source. Ionic liquids have also been examined with the additions of 

strong acids themselves and produced strong delignification results.8 The current 

drawbacks are the difficulty to scale up and the effect they could potentially have on 

enzymatic processes.14 

1.1.3.2.3 Kraft Pulping Process 

 The Kraft process is the most utilized pretreatment method worldwide.16 With 

their core being a paper industry, extracting lignin is vital as it is directly related to the 

decoloration of the paper. The method involves a mixture of sodium hydroxide and 

sodium sulfide kept at about 170 C. The sodium hydroxide in effect raises the pH high 

enough that it deprotonates the aryl phenolic groups. The ionization of the polymer 

allows the digestion into solution. This is important as it is this feature of lignin that 

allows it to be easily separated from both cellulose and hemicelluloses, as well as many 

of the smaller depolymerization products, sugars, and inorganic molecules.4 The 

cellulose, hemicellulose, smaller depolymerization products, sugars, and inorganic 

molecules are soluble in neutral and acidic media, so lowering the pH of the solution 

causes only the lignin polymers to precipitate. Depolymerization is known to primarily 

occur at the aryl hydroxy and ether bonds on the α and β carbons of the propanoid 

units conjoining the aromatic subunits. Kraft method studies, as well as most other 

studies on model compounds, show a strong selectivity for the  phenolic groups over 

the methoxy with depolymerization.17 In the Kraft delignification it has been shown 

that depolymerization occurs at the phenolic groups first and then methoxy groups 
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after the latter is completely finished. Similar results have been found with β-O-4 linked 

model compounds. Evtuguin and others have shown that under similar conditions with 

an oxidative catalyst, [PMo7V5O40]8−, and a reaction time of 20 minutes, the phenol 1-

(3-Methoxy-4-hydroxyphenyl)-2-(2-methoxyphenoxy)ethanol was converted at 100% 

versus the methoxylated 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethanol 

conversion of only 20%.17 

The kraft lignin precipitated product is usually just burned but can be methyl-

sulfonated and used in higher valued applications, such as dye dispersants, 

agrochemical dispersants, and dopants in conductive polymers.4 This is done by 

reacting the kraft lignin with formaldehyde and then followed by the addition of 

sodium sulfite. The nonsulfonated lignin is usually at a relatively high level of purity 

with a small percentage of common impurities such as carbohydrate moieties and 

some sulfur content from the pulping. Unmodified kraft lignin has a smaller percentage 

of it used in applications such as an anti-oxidant, adsorbent, and UV screens for active 

compounds in some crop protection chemicals.4  

1.1.3.2.4 Steam Explosion 

Another highly used pretreatment method is steam explosion. The chipped 

biomass is exposed to high-pressure steam and then it is quickly removed causing the 

biomass to undergo an explosive decompression. Temperatures range from 160-260 C 

and pressures from 0.69-4.83 MPa. It is exposed from a few seconds to minutes at 

these conditions before returning back to atmospheric pressure. It does degrade 
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hemicellulose and alters the lignin allowing the cellulose to be hydrolyzed. Efficiency of 

the hydrolysis of cellulose has been reported up to 90% in a 24 hour period.14  

 Its advantages are zero recycling and zero environmental costs. Steam explosion 

is recognized as being much more cost effective on hardwoods than softwoods. 

However, it is energy intensive, yields are not always that good, and much of the 

hemicellulose is destroyed.  

1.1.3.2.5 Acid Hydrolysis 

Acid Hydrolysis is very effective in hydrolyzing cellulose, however it is more 

expensive than most pretreatment processes. Reactors must be resistant to corrosion 

making them very costly. Temperatures and acid concentrations have been shown to 

vary the results of the pretreatment significantly. Lower temperatures with dilute acids 

have been shown to be highly effective by Esteghlalian and others with xylose yields 

nearing 90% at only 1.1% acid concentration w/w.18 In fact, higher temperatures have 

been shown to decrease yields due to sugar decomposition.19  

 

1.2 WHITE ROT FUNGI (NATURE’S SOLUTION) 

 It has been established since the 1930’s that White Rot Fungi are what 

decompose lignin from decaying lignocellulosic biomass. White Rot Fungi are capable 

of degrading both cellulose and hemicellulose along with lignin. In hardwoods it is 

known to decompose each component simultaneously, however this is almost never 
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seen in softwoods.20 It was not until the 1980’s that the actual enzymes involved in the 

degradation started to become evident. The three main enzymes involved were all 

discovered between 1983 to 1987 and include Lignin Peroxidase (LiP), Manganese 

Peroxidase (MnP), and Laccase.21 The first two active sites are hemes (Figure 1.6 (A),  

p.13), both with ferric centers. Heme’s are most noted for their role in hemoglobin as 

an oxygen transfering agent in blood. However, they have many other functionalities 

and are located in many different proteins. As hemes are parts of much larger proteins, 

they tend to have very different sterically hindering environments and ligated ligands. 

The environment of the heme has a significant effect on the oxidation potential of the 

iron center and a corresponding effect on the activity in the body.22 For example, in 

hemoglobin the heme is ligated by a histidine imidazole and acts as an oxygen 

transporting agent, while cytochrome P-450’s heme is ligated by a cysteine sulfur atom 

and acts as an oxygenase. (There are also two sets of electron transfering heme active 

proteins termed catalases and peroxidases. Both react with hydrogen peroxide but 

differently. Catalases perform a disproportionation reaction with hydrogen peroxide, 

expected to be used in the body to prevent build up of the potentially dangerous 

oxidant. Peroxidases are more synthetically applicable as they use hydrogen peroxide 

as a sacrificial oxidant to catalyze a variety of oxidation of both organic and inorganic 

species.22 Laccase’s active site is a tetra copper, three and one system (Figure 1.6 (B), 

p. 13). It also has a great oxidation capability causing depolymerization as well as 

polymerization with lignin.  
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Figure 1.6: Chemical Structures of Heme and Laccase.23 
 
 
 
LiP, MnP, and Laccase are a subset of many other lignin oxidases; phanochaete 

chyrsosporium alone contains 16 different lignin oxidases. Kinetic studies of these 

enzymes with oxygen binding do show that they bind oxygen much stronger than other 

enzymes with heme active sites such as myoglobin or horseradish peroxidase.24 

Another class of lignin degrading enzymes are termed lignin-degrading auxiliary 

enzymes. The separation between classes are based on direct and indirect action with 

lignin degredation, lignin oxidases are involved directly while lignin-degrading auxiliary 

enzymes are hydrogen peroxide producers. 
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1.2.1 Phanerochaete Chrysosporium 

 Phanerochaete chrysosporium is the most studied and most potent of the many 

different White Rot Fungi; each of which is classified as White Rot Fungi for its lignin 

degradation capabilities. The phanerochaete chrysosporium was first identified by Tien 

and Kirk in 1983.25 It is about 42,000 daltons and has a physiological pH value of 4.5.26 

Lignin Peroxidase (LiP) and Manganese Peroxidase (MnP) actually comprise only 1% of 

all secreted proteins from the organism, while the 16 oxidases as a whole are nearly 

11% of the secreted proteins. Chrysosporium is the only known white rot fungi that 

does not produce laccases. LiP is the key component known to be oxidized by hydrogen 

peroxide and then cause degradation of the lignin polymer by both partial 

polymerization and depolymerization.27  

 

1.3 IONIC LIQUIDS 

Ionic liquids are generally defined as salts with melting point temperatures 

below 100 C. They are relatively novel and feature many uncommon beneficial 

characteristics making them a hot topic of research. These liquid organic salts have 

shown many industrial and catalytic applications in the fields of organic and inorganic 

chemistry acting as both co-catalysts and solvents. As salts, ionic liquids are made up of 

a cation and anion; altering either of which can drastically change the salts physical and 

solvation characteristics.28  
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1.3.1 Synthetic Routes  

The most common route to an ionic liquid is an alkylation reaction of an alkyl 

halide and an amine. The alkylated amine then becomes the cation with the halide as 

the coordinating anion. Common cations (Figure 1.7) include imidazolium (A), 

pyrrolidinium (B), pyridinium (C), ammonium (D), piperidinium (E), phosphonium (F),  

and sulfonium (G). The synthesis scheme does not involve any catalysts and most of the 

time, is solvent free as well. These two features make the synthesis of an ionic liquid a 

very green process and relatively straight forward. Depending on the alkyl halide in the 

reaction, syntheses times can be significant if just heating and stirring are applied, thus 

much research has been done on utilizing microwave and power ultrasound to speed 

the process up dramatically. 28 

 

 

 

 

 

 

Figure 1.7: List of Common Ionic Liquid Cations.29 
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The microwave and ultrasound processes have also been coupled together and can 

increase reaction rates from multiple days to a couple hours. Reaction rates for the 

alkyl halide follow general substitution rules, so iodides are faster than bromides and 

bromides are faster than chlorides. The size of the alkyl halide also has a significant role 

on the reaction time; longer chains slow down the rate of the reaction significantly.  

1.3.1.1 Ion Exchange (Secondary Ionic Liquids) 

Following the formation of the ionic liquid, anion exchange is often done to 

adjust the solvent’s characteristics. This type of ionic liquid is generally termed as a 

secondary ionic liquid. Common anions include the halides Cl-, Br-, and I-, but also 

exchange anions including Al2Cl7
-, Al3Cl10

-, Sb2F11
-, FeCl7

-, ZnCl5
-, Zn3Cl7

-, CuCl2
-, SnCl2

-, 

NO3
-, PO4

-, HSO4
-, SO4

2-, CF3SO3
-, ROSO3

-, CF3CO2
-, C6H5SO3

-, PF6
-, SbF6

-, BF4
-, (CF3SO2)2N-, 

N(CN)2
-, BR4

-, and RCB11H11
-.30 Exchanging anions can dramatically change the solvent’s 

features, including polarity and density. Changing the polarity of an ionic liquid solvent 

can eliminate the hydration that occurs when exposed to air. This could be important in 

large batches such as in industrial applications. Anion exchange can be done by 

metathesis or with an ion exchange column. The process used usually depends on the 

characteristics of the products versus the starting material, and purity level needed for 

the application of use. The major issue with the metathesis method is that the products 

are both salts. When the resulting ionic liquid is still hydrophilic, it can be nearly 

impossible to purify the ionic liquid to a spectroscopic level. In cases where higher 

purity levels are necessary an ion exchange column is often used.  
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One major problem with ionic liquid research is obtaining very pure samples. As 

stated above the synthetic route to an ionic liquid is very straightforward and usually 

resulting in high yields, however purification is not always easy. In many cases 

impurities can be washed away with other solvents or distilled utilizing the ionic liquids 

low vapor pressure, however this usually does not leave the ionic liquid “pure”. Halides 

and imidazoles are difficult to get rid of by either of the above two methods, thus 

simple methods have been developed to analytically determine the purity levels of 

these solvents. Halides can easily be measured with an ion selective electrode or by 

cyclic voltammetry. Residual 1-methylimidazole will show up in an 1H-NMR analysis or 

much quicker with a colorimetric test with CuCl22H2O that was developed in 2000 by 

Holbrey and others.31 The addition of the CuCl22H2O will turn the ionic liquid blue with 

as little as 8 mmol/L of methylimidazole in solution. 

 

1.3.2 Ionic Liquid Applications 

One of the most intriguing features of ionic liquids is their catalytic and co-

catalytic abilities. Often catalytic reactions will take different routes than in traditional 

organic solvents. There are numerous examples in the literature of ionic liquids 

changing the synthetic route, activity, and even selectivity of the synthesis. The overall 

effect of using an ionic liquid in synthesis is still hard to predict and often are chosen 

more at random than task specific. Task Specific Ionic Liquids are a more specific class 

of ionic liquids that are not only used as the solvent but co-catalysts in an experiment. 



18 

 

Alkylation of benzene has been done at 50 C with high yields in an alkyl 

pyridinium ionic liquid and ferrous chloride as the catalyst. Product formation occurred 

without the catalyst but not enough to be an efficient synthetic route with yields 

between 15 and 20% at most. Still the combination allows for significantly lower 

thermal conditions and easy separation compared to an organic solvent. The ionic 

liquid anions compared were the tetrafluoroborate and trifluoroacetate, the latter 

produced higher yields in every experimental run.32 There is really no explanation given 

as to why this is, but it is a great example of the tunability of ionic liquids that should be 

more predictable in the near future. Being ionic in nature, ionic liquids can be predicted 

to stabilize the transition states of ionic intermediates often causing energy barriers to 

be lower and reaction times and yields to be improved. 

Ionic liquids are electrochemically conductive just as inorganic salts are. 

Electrochemical applications include uses in mechanical actuator devices, electrolyte 

mediator solutions in photovoltaic cells, electrolytes in electrochemical super 

capacitors, lithium batteries, and treatment of nuclear waste.29  

 

1.4 LIGNIN AND LIGNIN MODEL COMPOUNDS IN IONIC LIQUIDS 

Lignin oxidation studies have been done with many inorganic co-catalysts in an 

attempt to maximize the output while minimizing energy usage. Some of these studies 

have been in variant pH aqueous solutions and some more recently have been 

completed in neat ionic liquids.33 Possibly the most important aspect of lignin 
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dissolution studies with ionic liquid oxidation strategies is the ability to recycle and 

reuse the ionic liquid itself. Ionic liquids are considered green solvents but their 

disposal is not, and their cost is still very high relative to other common organic 

solvents and a major problem associated to industrial scale up. Ideally the post 

oxidative lignin would be broken down into clean, valuable, and functional chemicals, 

with further separation very easy. However, current oxidations generally only degrade 

lignin to levels of about 10 degrees of polymerization.6 At molecular weights this high 

distillation is still not a feasible option. Therefore non-polar organic extractions of the 

oxidized lignin products are usually done for ionic liquid recycling. Another viable 

method is to decompose the lignin byproducts into humin. With proper conditions, a 

100% delignification can be achieved with CrCl36H2O . It is worth noting that even in an 

ionic liquid aqueous ethanol solution 7:3 the chromium hydrate had a significantly 

greater activity than the nonhydrate. In fact at a 170 C, yields of the humin were in the 

89-100% range with the hydrate and 46-51% without.9 The humin products were 

simply filtered out after each use.  

There have been many oxidation studies of lignin model compounds in ionic 

liquids with other metal chlorides. The β-O-4 bond is the most common linkage in lignin 

and therefore a common bond type for model compound studies. Guaiacylglycerol-β-

guaiacyl ether (GG) (Figure 1.8, p. 20) and veratrylglycol-β-guaiacyl ether (VG) are very 

common for these studies.  
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GG 

In a comparison study of the different metal chlorides with GG in BMIMCl, AlCl3, 

FeCl3, and CuCl2 all had conversion percentages at 90% and higher.33 The main products 

were guaiacol, hibbert’s ketones, the enol ether, and varying percentages of dimers of 

each.  Hibbert’s ketones are well known to occur when treating β-O-4 linkages with 

acids in organic solvents.34 

 

 

 

 

 

 

Figure 1.8: Formation of Hibbert’s Ketones Through Acidolysis.35 

There have also been numerous studies with strong protic acids showing signs 

of increased activity with lignin model compounds in ionic liquids. In fact, the above 

studies show similar results and thus it is suspected that an in situ HCl species is 

actually what is catalyzing the reaction.29 Further evidence of HCl catalyzing the 

reaction was accomplished by demonstrating the amount of guaiacol formed relied 

heavily on the water content in the ionic liquid. Up to a 32:1 ratio of water to GG 

showed an increase in the amount of guaiacol formed. Diederick demonstrated that 
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[BMIM]MeSO4 in a 1:10 ratio with sulfuric acid can selectively rid xylan and lignin 

components.8 Xylan has been identified as a chemical that assists lignin recalcitrance, 

and the removal is the reason given for the tremendous delignification from the 

solvent mixture. Main products were furfural and hydroxymethylfurfural. These were 

further oxidized with higher concentrations of acid in solution to levulinic acid and 

acetic acid.  

1.5 PORPHYRINS 

The first isolated porphyrin was accomplished in 1840 by Berzelius, a medicinal 

chemist. It was isolated by a sulfuric acid treatment of blood, removing the heme from 

hemoglobin. The sharp strong near UV absorbance band was first discovered by Sorret 

in 1883 and the band is still termed the Sorret band today.36 Porphyrins are heme like 

26 electron aromatic compounds with powerful oxidizing power in the presence of 

sacrificial co-oxidants. Porphyrins (Figure 1.9 (C), p.22) are functionalized porphines 

(A), analogues of nature’s extremely active heme (B). Porphyrins have been 

synthesized with many d-block metals including Fe, Mn, Cu, Zn, Co, V, Ti, Zr, Hf, Nb, Ta, 

Cr, Mo, Pd, and W.37 Crystal structures have shown that the position of the metal varies 

with the type of metal as well as the substituents on the porphyrin itself. Porphyrins 

are very attractive biomimetic catalysts due to their tunability, activity over a wide pH 

range, and oxidizing power. 
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Figure 1.9: Porphine, Heme, and Porphyrin. 

 

1.5.1 Synthetic Routes 

The two most currently used methods to synthesizing a porphyrin were 

developed by Adler and Longo, and Lindsey.38  The first known successful synthetic 

attempt at synthesizing hemin was done by Fischer in 1929, and he soon won the 

Nobel Prize in 1930.36 Rothemund was able synthesize porphine (Figure 1.9, (A)) by 

mixing benzaldehyde and an equivalent amount of pyrrole in pyridine with a very high 

pressure system at 150 C for 24 hours in 1936.39 

1.5.1.1 Adler and Lindsey Methods 

In 1967 Adler and Longo developed the more traditional method for large scale 

porphyrin synthesis. They found that the reaction proceeded faster with much higher 

yields if the reaction was open to air and an organic acid was used as the solvent 

instead of pyridine.40 
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Lindsey developed his own synthetic method in 1986. He utilized the idea that 

the reaction was in equilibrium between the porphyrinogen and polypyrrylmethanes 

and found that the equilibrium can be altered favorably by lowering the concentrations 

of the aldehyde and pyrrole. At higher concentrations the equilibrium will favor the 

formation of the long chained polypyrrylmethanes, however at lower concentrations 

the equilibrium will favor the porphyrinogen. At lower concentrations with much 

milder conditions a much higher yield can be produced, about twice that of Adler’s 

method.38 The method does require its own oxidizing agent, usually 2,3,5,6-tetra-

chlorobenzoquinone (TCBQ) or 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ); either 

agent will take the porphyrinogen to the porphyrin product. The new method uses a 

non-polar aprotic organic solvent and a Lewis acid catalyst versus the refluxing organic 

acid. The less strenuous conditions allow for more variation in the substituents of the 

porphyrin. In the past, substituents such as alcohols, dioxanes, and others could not be 

completed as the reaction conditions were too extreme causing degradation.38 For all 

the great additions Lindsey’s method provides, it does come with the limitations of 

difficulty in scaling up, additional time, additional solvent use, environmentally harmful 

lewis acids like Borontrifluoride etherate (Et2OBF3), and cost.  

1.5.1.2 Dipyrromethane Porphyrin Synthesis 

One of the few common methods to synthesize a porphyrin involves the 

condensation reaction of two dipyrromethane molecules with an aldehyde. Synthesis in 

this method has some advantages. These include, overall yields which are usually on 
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par with Lindsey’s method at about 30%, and asymmetric porphyrin synthesis can be 

more predictable and the products be more easily separated. The traditional method to 

synthesizing dipyrromethane compounds involves the condensation of an aldehyde 

with pyrrole catalyzed by a strong Lewis acid such as trifluoroacetic acid in refluxing 

toluene. Recently a research group from Azad College in India, developed a quick 

organic solvent free, high yielding method, with SnCl2 as the catalyst. With over 

fourteen compounds they were able synthesize the dipyrromethane in over 80% yields 

and in many cases above 95%.41  

 

1.5.2 Porphyrin Catalytic Studies 

Following biological advancements in determination of the active sites in the 

lignin degrading enzymes, began porphyrin oxidation studies with lignin and lignin 

model compounds.42 Research has progressed in the area of axial ligand effects, solvent 

effects, and aryl substituent effects on the catalytic capabilities of metalloporphyrins 

over the past 30 years. Many different catalytic oxidation reactions have been studied 

such as epoxidations and other single electron radical reactions.  Porphyrin oxidation is 

known to go by a couple of different routes. One way involves a single electron 

oxidizing radical and the second route is a two electron oxo-transfer oxidation.43 

Porphyrin oxidations need a sacrificial oxidant, the most commonly studied co-oxidant 

is likely hydrogen peroxide (Figure 1.10 (C), p.25); others include m-

chloroperoxybenzoic acid (mCPBA) (A) and iodosobenzene (PhIO) (B) and derivatives.  
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Figure 1.10: Common Co-Oxidants mCPBA, PhIO, Hydrogen Peroxide. 

 

1.5.2.1 Porphyrin Epoxidation 

Experimental studies have shown that the various oxidants will produce 

different active or inactive porphyrin species. For example, molecular oxygen can be 

used as the oxidizing species in many applications, however it is ineffective in 

epoxidation reactions because the active oxene species (Figure 1.11, p. 27) does not 

form with molecular oxygen. Its active species is the neutral FeIV oxo species.44 

Epoxidations have also been shown to not produce any product even with hydrogen 

peroxide as the oxidant. Hydrogen peroxide does produce the active oxene complex at 

lower concentrations, however it also reacts with the oxene complex and destroys it, 

forming water and oxygen at higher concentrations.45 Oxygen can then further react 

with the iron(III) porphyrin to form the oxo complex but that complex is not active in 

epoxidations. Studies by Traylor and others demonstrated a very important piece of 

information with hydrogen peroxide as the oxidant; increasing electron withdrawing 

substituents has a strong effect on the selectivity of the oxene complex. A near linear 
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relationship was shown with electron withdrawing groups and yields of multiple 

epoxidation products with hydrogen peroxide as the oxidant.46 In further studies he 

was also able to show that this was only applicable to peroxides and inverse kinetics 

applied to electron withdrawing substituents when PhIO was used as the co-oxidant. 

This has to do with a proton transfer at the transition state at which the release of the 

active oxene complex occurs.47 Groves and others found that the active species with 

styrene was favored in polar solvents only. In a similar study with benzene as the 

solvent, Groves expected the mechanism followed a more direct route with an attack 

of the FeIV-oxo on the alkene bond. 48  Traylor and others have heavily repeated that 

this is not an active species and have significant evidence of this based on stereo 

selectivity of the epoxidations. The oxene complex produces a high stereo excess of the 

exo product whereas the oxo intermediate has no activity and therefore 

stereoselectivity. According to Traylor the formation of the epoxides is not from the 

reaction of the porphyrin oxo complex but with the reaction of peroxy radicals formed 

from in situ reactions which are known epoxidizing agents with little to no stereo 

selectivity. Stephenson came back to the epoxidation mechanism and determined that 

the active species was the radical cation however it was significantly activated by a 

substitution of the chloride ligand with a methoxy, providing Groves explanation that 

the active species only occurs in polar solvents.49 Stephenson then went a step further 

and proved that the actual intermediate was a coordinated methoxy group to a 

porphyrin cation and  that this mechanism functions with other non-sterically hindered 

alcohols.50 Two different peaks appeared in a 1H-NMR spectra at 82 and 65 ppm from 
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the pyrrole protons in the ring, one corresponding the ligated chloride and one to the 

solvated cation.51 

 

 

 

 

 

 

 

 

Figure 1.11: Iron Porphyrin Epoxidation Mechanism with Hydrogen Peroxide.51 

Oxidation potentials for porphyrins have been reported to be partially 

dependent on the electron-withdrawing ability of the aryl substituents as mentioned 

above. More electron-withdrawing substituents mean more oxidizing potential. 

However, this does not always translate to kinetics studies.43 Inverse kinetics has been 

established in the oxidation of a series of benzyl alcohols and unsaturated carbon 

compounds in acetonitrile with mCPBA as the oxidant. An FeIV radical cation oxene 

complex following an in situ disproportionation reaction from the small amount of 

Oxene 
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water has been confirmed to assist forming the active oxidizing species. This was 

determined by UV-Vis spectroscopy and kinetic studies. The reaction rate clearly 

decreased in each experiment after increasing the concentration of the inactive FeIII 

disproportionation product.43  

The oxidation of naphthalene to napthol continued to show that the selectivity 

as well as activity can significantly change when altering the solvent, even in reactions 

differing from epoxidations.52 In the study, the most electron deficient porphyrin had 

the highest turnover number in each run, however variations in solvent, as well as the 

oxidative co-catalyst had dramatic effects on yields, selectivity, and turnover number. 

Metalloporphyrins confirmation and oxidizing potential have been shown to change 

according to the electron density of the metal center, thus the effect seen is probably 

due to the metal being more exposed versus interactions of the ligands. Another 

interesting aspect to the research, was the addition of weak bases such as imidazole 

and pyridine. They had substantial effects on selectivity and activity, with imidazole 

making a larger contribution than pyridine.  The effects of the imidazole were relatively 

equal with the three different porphyrins, however pyridine only had a significant 

contribution with the most electron deficient porphyrin and not any with either of the 

more electron rich porphyrins. The reactions were performed in methanol, and the 

results indicate that it can be inferred from the increase in reaction rates with the 

addition of imidazole, that the imidazole did exchange with the methanol and 
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coordinated to the porphyrin even in the presence of an alcohol that has proven to 

help create the active oxene complex already.  

1.5.2.2 Porphyrin as Heck Catalyst 

An ionic pyridinium porphyrin with a palladium metal center was synthesized by 

Wan and Liu and comparatively tested with PdCl2 as a Heck Reaction catalyst in an ionic 

liquid.53 The porphyrin was found to be highly recyclable and more active than the 

traditional PdCl2 catalyst at the same concentration. At a 0.005% (mol) relative to the 

ester, the porphyrin catalyst yielded 98% of the corresponding product (Figure 1.2), 

while PdCl2 only managed 54%.  

 

Figure 1.12: Heck Reaction Catalyzed by a Pd Porphyrin Analogue. 

 

The paper also noted the difference in yields based on the solvent used. The BPy[BF4
-] 

was the highest with quantitative yields, BMIM[BF4
-] only produced a 76% yield. In fact 

with DMF as the solvent they were able to produce a 94% yield.  

1.5.2.3 Porphyrin Oxidations of Lignin Model Compounds 

With lignins amorphic complex structure, model compounds are beneficial to 

study as data can be much more predictable and reproducible than that obtained from 
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lignin studies themselves. Monomeric and dimeric model compounds have been 

extensively studied with many of the common delignification methods as well as many 

fungal cultures and biomimetic porphyrin catalysts. Cui and Dolphin studied a series of 

model compounds with a very polar sterically hindering iron tetrasulfanoto porphyin. 

Many studies have demonstrated that porphyrins with these characteristics behave 

more like peroxidases do in nature. Dimers with β-O-4, β-5,and β-1 linkages were all 

studied with t-BuOOH as the co-oxidant.54 The β-O-4 model compound was 4-Ethoxy-3-

methoxyphenylglycerol-β-guaiacyl ether (Figure 1.13 (EG), 31). The dimer was cleaved 

at the Cα-Cβ position leaving the major products as the veratraldehyde derivative 4-

ethoxy-3-methoxybenzaldehyde and guaiacol. The β-1 dimer studied was 1-(4-ethoxy-

3-methoxyphenyl)-2-(4-methoxyphenyl)-1,3-propandiol (Figure 1.13 (PG), 31). Again 

the Cα-Cβ bond was cleaved separating the two aromatic ring structures into 

monomers, however varying levels of oxidation were completed forming at least 6 

different products. Ethyl-dehydrodiisoeugenol (Figure 1.13 (EHG), p. 31) was studied as 

a β-5 dimer. The oxidation yielded at least 8 different compounds, however most were 

dimers with varying degrees of oxidation at the aromatic rings. In fact aromatic ring 

cleavage was observed for this reaction yielding the corresponding diester compounds. 
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Figure 1.13: Structures of Model Compounds Studied by Cui and Dolphin.54 
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CHAPTER II 

METHODS AND RESULTS 

Reactions were carried out in an open atmosphere unless noted. Pyrrole was 

freshly distilled and used within a week. All solvent drying was done in a rotatory 

evaporator equipped with both a high vacuum pump and house vacuum. Solvents and 

reagents were bought from either Fisher Scientific or Sigma Aldrich. All reagents were 

used as bought unless otherwise noted. Silica gel thin layer chromatography (TLC) 

plates and 70-200 mesh silica gel for column chromatography. Yields for the ionic 

porphyrins were calculated based on the maximum number of moles and mass 

weighed subtracting any water that could be identified in the 1H-NMR spectrum. 1H-

NMR spectra reported were collected on a 300 MHz JEOL at Berea College. Chemical 

shifts are reported based on a tetra-methyl silane (TMS) standard that was added or 

came with each deuterated solvent. Infrared Spectroscopy spectra were obtained on 

an Attenuated Total Reflection Infrared  (ATR-IR) Spectrometer. UV-Vis data were 

recorded on a Varian Spectrometer.  All the data presented for each compound is 

tabulated in the Appendix. 

 
 

2.1 SYNTHESIS OF BENZYL IONIC LIQUID TAGGED PORPHYRINS  

 Compounds from section 2.1 are displayed in the appendix (Figure A.12, p. 95). 
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2.1.1 α-bromotolualdehyde (Cp1) 

This procedure was taken from Win, Li, and Schlenoff, and utilized as previously 

published.55  In a 3-neck round bottom flask, 3.00 g of α-bromotolunitrile (15.3 mmol, 1 

equiv) was dissolved in 30 mL of toluene under N2 at 0 °C. To the flask, 20 mL of 1.08 M 

DIBAL-H (43.2 mmol) in hexanes was added drop wise over several minutes and stirred 

for 75 minutes. Chloroform (40 mL) and 10% (w/w) HCl (100 mL) were added and the 

reaction was allowed to stir for an additional hour at room temperature.  The mixture 

was separated and the organic layer dried with magnesium sulfate, concentrated in 

vacuo, and washed with hexanes. Yield 2.62 g (86%). 1H-NMR (CDCl3) 9.93 (s, 1H, alde), 

7.79 (d, 2H,CH phenyl), 7.49 (d, 2H, CH phenyl), 4.43 (s, 2H, CH2 methyl) ppm, melting 

point 98.6 – 100.0 C. 

 

2.1.2 5, 10, 15, 20-tetrakis(p-tolylbromide)porphyrin (Cp2) 

A 1 L round bottom flask was charged with 1.00 g α-bromotolualdehyde (5 

mmol, 1 equiv), 500 mL of chloroform (to a concentration of 0.01 M aldehyde), and 

0.34 g of pyrrole (5 mmol, 1 equiv). The reaction mixture was stirred for 25 minutes 

under N2 and 0.035 g of boron trifluoride-etherate (0.25 mmol) was added drop wise 

and stirred for an additional 75 minutes.  Triethylamine (0.25 g, 0.25 mmol) and 1.29 g 

of TCBQ (5 mmol, 1 equiv) were added to the reaction mixture with stirring. The 

resulting mixture was stirred in a preheated sand bath and refluxed for an additional 

hour. The mixture was concentrated to approximately 20 mL and crystallized out with 

methanol and placed in a freezer at -10 C for 30 minutes.  The solid product was 
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filtered and washed with methanol again until the filtrate was clear. Yield 0.608g (52%). 

1H-NMR (CDCl3) 8.91 (s, 8H, CH pyr), 8,24 (d, 8H, CH phenyl), 7.74 (d, 8H, CH phenyl), 

4.92 (s, 8H, CH methyl), -2.91 (s, 2H, NH ring) ppm. 3326 and 3307 (m, N-H), 3028 (m, 

C-H), 1608, 1555, and 1502 (m, C=C), 1259 (s, CH2Br) cm-1. UV-Vis (CHCl3) 420max, 517, 

551, 589, 646 nm. 

 

2.1.3 5, 10, 15, 20-tetrakis(p-tolyl 1-methylimidazolium)porphyrin bromide (Cp3) 

To a 25 mL round bottom flask 0.300 g of Cp2 (0.304 mmol, 1 equiv) was added 

and dissolved in 6.00 mL of 1-methylimidazole. The mixture was heated and stirred 4 

days at 110 C in a N2 environment. The crude mixture was initially crystallized out with 

ether and then redissolved in methanol and again crystallized out with a 9:1 

isopropanol ether solution. The mixture was placed in a -10 C freezer for 3 hours and 

filtered and washed with isopropanol until the filtrate was clear. Yield 0.252 g (44%). 

1H-NMR (DMSOd6) 9.54 (s, 4H, CH imid), 8.79 (s, 8H, CH pyr), 8.26 (d, 8H, CH phenyl), 

8.08 (d, 4H, CH imid), 7.88 (d, 8H, CH phenyl) 7.85 (d, 4H, CH imid), 5.81 (s, 8H, CH2 

alpha), 3.97 (s, 12H, CH3 imid), -2.97 (s, 2H, NH ring) ppm. IR 3142 and 3106 (m, C-H), 

1611, 1571, and 1559 (m, C=C), 1157 (s, C-N) cm-1. UV-Vis (H2O) 420max, 431 nm. 

 

2.1.4 5, 10, 15, 20-tetrakis(p-tolyl triphenylphosphine)porphyrin bromide(Cp4) 

To a 25 mL round bottom flask was added 4.00 mL of DMF 0.200 g of Cp2 (0.203 

mmol, 1 equiv), and 0.250 g of triphenylphosphine (0.953 mmol, 4.7 equiv) then the 

flask was heated to a 100 C under N2.  The reaction was stopped after 45 hours and 
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concentrated to dryness with a rotary evaporator. The crude product was redissolved 

in 5 mL of methanol and precipitated out with 2 mL of ether added dropwise and 

filtered. The product was then washed heavily with ether until the filtrate was nearly 

clear. Yield 0.274 g (58%). 1H-NMR 8.79 (s, 8H, CH pyr), 8.05 (d, 24H, CH phos), 8.018 (d, 

8H, CH phenyl), 7.99 (m, 24H, CH phos), 7.96 (m, 12H, CH phos), 7.48 (d, 8H, CH 

phenyl), 5.66 (d, 8H, CH2 methyl) ppm. 

 

2.1.5  Iron (5, 10, 15, 20-tetrakis(p-tolyl 1-methylimidazolium)porphyrin bromide)    

chloride (Cp5) 

A 0.100 g amount of Cp3 (0.076 mmol, 1 equiv) was added to a 25 mL round 

bottom flask followed by the addition of 2.00 mL of water. After stirring the mixture 

0.075 g (0.377 mmol, 5 equiv) of FeCl24H2O were added to the mixture and then 

refluxed for 24 hours56. The solvent was dried on a rotary evaporator and the 

remaining crude product was redissolved in a minimal amount of methanol (~2 mL). 

The product was then crystallized with the addition of isopropanol and filtered. The 

product was washed heavily with isopropanol to insure that all of the excess FeCl2 was 

removed. Yield 0.096 g (90%). IR 3141 and 3105 (m, C-H), 1613, 1572, and 1560 (m, 

C=C), 1158 (s, C-N), 998 (s, N-Fe) cm-1. UV-Vis (H2O) 415max, 516, 558 nm. 
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2.1.6 Iron (5, 10, 15, 20-tetrakis(p-tolyl triphenylphosphine)porphyrin bromide) 

chloride (Cp6) 

A 0.100 g of Cp4 (0.0479 mmol, 1 equiv) was added to a 25 mL round bottom 

flask. An addition of 4.00 mL of water and stirring was done before the addition of 

0.029 g of FeCl24H2O (0.227 mmol, 4.74 equiv)56. The mixture was then refluxed for 25 

hours. After removing the solvent the crude compound was redissolved in 2 mL of 

methanol and crystallized with a minimal amount of ether. The product was washed 

thoroughly and filtered. Yield 0.0801 g (77%). IR 3056 (m, C-H), 1615, 1586, and 1553 

(m, C=C), 1436 and 1110 (s, C-P), 996 (s, N-Fe) cm-1. UV-Vis 419max, 520 nm. 

 

2.2 SYNTHESIS OF PYRIDINIUM IONIC LIQUID TAGGED PORPHYRINS 

 Compounds from section 2.2 are displayed in the appendix (Figure A.12, p. 95). 

 

2.2.1 5, 10, 15, 20-tetrakis(4-pyridyl)porphyrin (Cp7) 

A three neck 1 L round bottom flask was charged with 200 mL of propionic acid 

heated to 120 C and then 5.112 g of 4-pyridinecarboxaldehyde (47.8 mmol, 1 equiv) 

and 3.29 g (49.0 mmol, slight excess) of pyrrole were added. The reaction mixture 

temperature was raised to refluxing and continued to stir for 75 minutes. Then the 

mixture was allowed to cool to near room temperature and concentrated to about 10 

mL with a rotary evaporator. The product was crystallized out after adding 100 mL of 

methanol and put in the freezer for 30 minutes at -10 C. The mixture was then filtered 

and rinsed with a small amount of additional methanol. Yield 1.162 g (16%). 1H-NMR 
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(CdCl3) 9.00 (d, 8H, CH phenyl), 8.80 (s, 8H, CH pyr), 8.10 (d, 8H, CH phenyl), -2.99 (s, 

2H, NH ring) ppm. IR 3312 (m, NH), 3089 (m, CH phenyl), 1594 (s, CC phenyl) cm-1. UV-

Vis (CHCl3) 419max, 513, 543, 587, 643 nm. 

 

2.2.2 5, 10, 15, 20-tetrakis(N-3-bromopropylpyridinium-4-yl)porphyrin bromide (Cp8) 

In a 250 mL round bottom flask, 10.44 g of 1,3-dibromopropane (12x excess) 

were added to 0.200 g of Cp7 (0.324 mmol, 1 equiv) in 25 mL of DMF and allowed to 

stir at 40 °C for 96 hours. The crude product was concentrated to about 5 mL of DMF 

and crystallized with 40 mL of a 1:1 mixture of ethyl acetate and chloroform. The 

mixture was cooled at -10 C for 5 hours and filtered. The product was further purified 

by dissolving in a small amount of methanol and filtering. The filtrate was dried by the 

rotary evaporator and weighed. Crude Yield 0.172 g (37%). 1H-NMR (DMSOd6) 9.50 (d, 

8H, CH phenyl), 9.21 (d, 8H, CH pyr), 8.98 (d, 8H, CH phenyl), 5.06 (t, 8H, CH ), 2.85 (m, 

8H, CH allyl), 2.51 (t, 4H, CH2 alkyl), -3.13 (s, 2H, NH) ppm. 

 

2.2.3 5, 10, 15, 20-tetrakis(N-allylpyridinium-4-yl)porphyrin bromide (Cp9) 

A 50 mL round bottom flask was charged with 3.25 mL of DMF before adding 

0.200 g of Cp7 (0.324 mmol, 1 equiv) and put in a N2 environment. After stirring 0.196 g 

of allyl bromide (1.62 mmol, 5 equiv) was added and the mixture was brought to 80 C 

and stirred for 24 hours. After cooling to room temperature, ether was added drop 

wise to the flask and the product was filtered and washed with ether until the filtrate 

was clear. Yield 0.271 g (61%). 1H-NMR (Methanold4) 9.57 (d, 8H, CH phenyl), 9.28 (d, 
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8H, CH pyr), 9.08 (d, 8H, CH phenyl), 6.51 (m, 4H, CH allyl), 5.87 (d, 4H, CH allyl), 5.66 (s, 

4H, CH allyl), 5.63 (d, 8H, CH2 alkyl) ppm. IR 3088 and 3030 (m, C-H), 1630 and 1592 (s, 

C-N), 1559 1507 (m, C=C), 1159 (s, C-C) cm-1. UV-Vis (H2O) 423max, 519, 585 nm. 

 

2.2.4 5, 10, 15, 20-tetrakis(N-butylpyridinium-4-yl)porphyrin bromide (Cp10) 

A 50 mL round bottom flask was charged with 8.20 mL of DMF before adding 

0.500 g of Cp7 (0.810 mmol, 1 equiv) and put in a N2 environment. After stirring 0.532 g 

of 1-bromobutane (3.89 mmol, 4.8 equiv) was added and the mixture was brought to 

125 C and continued to stir for 45 hours. After cooling to room temperature 2 mL of 

ether was added to the flask and the product was filtered. The product was then 

washed with ether until the filtrate was clear. Yield 0.623 g (55%). 1H-NMR (CdCl3) 9.52 

(d, 8H, CH phenyl), 9.378 (s, 8H, CH pyr), 9.01 (d, 8H, CH phenyl), 5.04 (t, 8H, CH2 alkyl), 

2.39 (m, 8H, CH2 alkyl), 1.72 (m, 8H, CH2 alkyl), 1.19 (t, 12H, CH3 alkyl) ppm. IR 3092, 

3058, and 3022 (m, C-H), 1592 (s, C-N), 1542 and 1467 (m, C=C), 1401 (s, CH2), 1350 (s, 

CH3) cm-1. UV-Vis (H2O) 422max, 529, 565, 598 nm. 

 

2.2.5 Iron (5, 10, 15, 20-tetrakis(N-allylpyridinium-4-yl)porphyrin bromide) chloride 

(Cp11) 

A 0.100 g amount of Cp9 (0.0907 mmol, 1 equiv) were added to a 25 mL round 

bottom flask followed by the addition of 3.00 mL of water. After stirring the mixture 

0.095 g (0.478 mmol, 5.27 equiv) of FeCl24H2O was added to the mixture and then 

refluxed for 24 hours.56 The solvent was dried on a rotary evaporator and the 
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remaining crude product was redissolved in a minimal amount of methanol (~2mL). The 

product was then crystallized with the addition of isopropanol and filtered. Still crude, 

the product was recrystallized in methanol and precipitated out with a 1:4 

ethanol/isopropanol mixture. The product was washed heavily with isopropanol to 

insure that all of the excess FeCl2 was removed. Yield 0.087 g (80%). IR 3112, 3085, and 

3051 (m C-H), 1631 (s, C-N), 1610 and 1596 (m, C=C), 1000 (s, N-Fe) cm-1. UV-Vis (H2O) 

402max, 414, 523 nm. 

 

2.2.6 Iron (5, 10, 15, 20-tetrakis(N-butylpyridinium-4-yl)porphyrin bromide) chloride 

(Cp12) 

A 0.150 g of Cp10 (0.129 mmol, 1 equiv) were added to a 25 mL round bottom 

flask followed by the addition of 3.00 mL of water. After stirring the mixture 0.127 g 

(0.639 mmol, 5 equivalents) of FeCl24H2O was added to the mixture and then refluxed 

for 24 hours.56 The solvent was removed on a rotary evaporator and the remaining 

crude product was redissolved in a minimal amount of methanol. The product was then 

crystallized with the addition of an 8:1 isopropanol/ether mixture and filtered. The 

product was washed heavily with the same isopropanol/ether mixture to insure that all 

of the excess FeCl2 was removed. Yield 0.155 g (96%). IR 3122, 3083, and 3054 (m, C-H), 

1596 (s C-N), 1538 and 1494 (m, C=C), 1411 (s CH2), 1350 (s, CH3) cm-1. UV-Vis (H2O) 

418, 452max, 544 nm. 
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2.3 SYNTHESIS OF PROPOXY IONIC LIQUID TAGGED PORPHYRINS 

 

2.3.1 5, 10, 15, 20-tetrakis(p-3-bromopropoxyphenyl)porphyrin (Cp13) 

 This procedure was taken from Wang and others, and utilized as previously 

published.57 A 250 mL round bottom flask was charged with 55 mL of DMF followed by 

an addition of 0.250 g of 5, 10, 15, 20-tetrakis(p-hydroxy)porphyrin (0.368 mmol, 1 

equiv). The mixture was then basified with the addition of 0.305 g of potassium 

carbonate and put under N2. An excess 3.59 g of 1,3-dibromopropane (17.8 mmol, 48 

equivalents) was then added to the mixture and stirred at room temperature for 23 

hours. The solvent was removed by a rotary evaporator and the resulting crude solid 

was redissolved in dichloromethane and washed with water. A silica gel column, with 

dichloromethane as the solvent was used to further purify the product. The elution was 

monitored with TLC. Once the clean product was isolated it was again dried with the 

rotary evaporator and weighed. Yield 0.105 g (25%). 1H-NMR (CdCl3) 8.86 (d, 8H, CH 

pyr), 8.14 (d, 8H, CH phenyl), 7.30 (d, 8H, CH phenyl), 4.40 (t, 8H, OCH2 propyl), 3.79 (t, 

8H, CH2Br propyl), 2.95 (m, 8H, CH2 propyl) ppm. UV-Vis (CHCl3) 420max, 518, 555, 593, 

650 nm. 

 

2.4 CATALYTIC STUDIES 

Both Cp5 and Cp11 were catalytic tested with veratryl alcohol in 1-allyl-3-

methylimidazolium xylenesulfonate (AMIMXS) and 30% w/w concentrated hydrogen 
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peroxide as the sacrificial oxidant. Experiments (Table 2.1) were mixed in a larger batch 

and ran as triplicates to ensure precise results.  

 

Table 2.1: Averaged Molar Amounts of Each Species for Catalytic Trials. 

Catalyst mmol of alcohol mmol of peroxides mmol of catalyst 

Cp5 0.1498 0.221             0.0039 

Cp11 0.1625 0.221             0.0046 

FeT1239 0.1486 0.221             0.0046 

 

Studies were completed in a reactor accompanied by a HPLC. Samples were 

preheated to 50 C before injection.  The HPLC autosampler took samples every hour 

beginning with a blank sample with no peroxide present ensuring that no oxidation was 

occurring without the co-oxidant. The solvent system used was a water/methanol 

gradient. The elution of the alcohol came off at 6.758 minutes and the aldehyde at 

10.563 minutes. The two wavelengths monitored with the diode array detector were 

280 nm and 320 nm. The oxidation was allowed to go well after completion for 

convenience and to ensure the peroxide was completely decomposed. Calibrations 

were ran for veratryl alcohol and veratraldehyde with standard samples in 1-allyl-3-

methylimidazolium chloride (AMIMCl). Slopes of the calibrations of veratryl alcohol and 

veratraldehyde used were 5043.6 (R2 = 0.9998) and 22015 (R2 = 0.9938) respectively. 

Thus the actual mass of sample calculated was the eluting peak size over the slope. An 

auto injection system was attached to HPLC eliminating the need for an internal 

standard. Comparison studies were completed with Iron(III) 5, 10, 15, 20-tetrakis(4-
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sulfonato phenyl)porphyrin chloride (FeT1239) that was purchased and used as is 

(Figure 2.1).  

 

 

 

 

 

 

 

 

 

Figure 2.1: The Molecular Structure of FeT1239. 
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CHAPTER III 

 

EXPERIMENTAL DISCUSSION 

 

The goal of our experimental studies was to couple the solvating power of an 

ionic liquid with the oxidizing power of a metalloporphyrin. A common problem 

associated with inorganic catalysts including porphyrins is solubility in aqueous or even 

very polar solvents, such as an ionic liquid. To resolve this issue and to amplify the 

oxidizing power of the porphyrin, the catalysts developed were tagged with an ionic 

liquid substituent. This allows for a purely homogeneous reaction in an ionic liquid.  

Many previous oxidation studies have been done with an array of porphyrins 

and there are a couple trends that can be seen from different substituents in the meso 

positions. Heavier and more electron withdrawing tends to increase the activity of the 

porphyrin in solution. Computational measurements have been done demonstrating 

that both of these properties aid in displacing the metal further from the center of 

molecule.58 Displacing the metal means it is more likely to come into contact with other 

species and therefore be more active. It would seem that a tetracationic porphyrin 

would be very electron withdrawing and thus very active in solution. The synthesis of 

Cp12 was done with size in mind as it is over 2000 mass units. It is about 700 mass units 

heavier than any other synthesized in the project. Theoretically there are many routes 

to producing an ionic liquid tagged porphyrin, however the main considerations were 

costs, novelty, activity, and simplicity of synthesis. Iron was chosen as the primary 
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metal for the oxidation studies due to previous unpublished results from past 

comparison studies between nonionic and ionic iron and manganese porphyrins done 

at the Center for Applied Energy Research (CAER).  

3.1 SYNTHESIS OF BENZYL IONIC LIQUID TAGGED PORPHYRINS 

Two different ionic liquid tagged metalloporphyrin systems were developed. 

The first system has the alkyl halide on the starting porphyrin (Figure 3.1, p.45); this 

creates an ionic liquid functional group when attacked by a nucleophilic amine or 

phosphine. Cp2 was synthesized by the Lindsey method at a very high yield of 52%. The 

addition of the stronger nucleophilic triphenylphosphine drastically reduced the 

reaction time and was found to increase yields significantly compared to 1-methyl 

imidazole. The second system is functionalized with a pyridine which forms an ionic 

liquid tag when attacked by an alkyl halide (Figure 3.5, p.54). 
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Figure 3.1: Synthesis of Benzyl Ionic Liquid Tagged Porphyrins. 
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3.1.1 Synthesis of Cp1 

The synthesis of benzyl ionic liquid tagged porphyrins began with an oxidation 

of a cyanide group to the aldehyde seen as the starting material (Figure 3.1). The 

procedure was taken by Wen and Schlenoff and performed as written55. As stated in 

the experimental, DIBAL-H was added slowly; the reaction mixture will turn yellow if 

added too quickly. The yellow impurity was found to be removed with lots of cold 

hexanes or by chromatography, but it is much easier to just add it slowly.  The yellow 

impurity in the product does show up in a 1H-NMR spectrum in the hydrocarbon 

region. It takes a very small amount of impurity to turn the bright white flakey crystal 

to a more powdery yellowish solid. When the product was in question, it was examined 

by a melting point apparatus first. 

The 1H-NMR data (Figure 3.2, p. 47) does show confirmation of a complete 

transformation, with the formation of a singlet at 9.93 ppm and proper integration 

values. The peak at 9.93 ppm is near the 10 ppm that is predicted for an aldehyde’s 

proton. Melting point measurements were also a near match to literature value at 

98.6-100.0 C for a pure sample.  
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  Aldehyde Formation 

 

 

 

 

 

Figure 3.2: 1H-NMR Spectrum of Cp1. 

3.1.2 Synthesis of Cp2 

Once the starting material was formed, the following step to the scheme is a 

Lindsey porphyrin synthesis. The experiment itself is very sensitive to a lot of different 

variables and relative yields varied greatly from experiment to experiment. Important 

steps to watch are the dryness of the CHCl3, the purity of the pyrrole, the initial stir 

time, the stir time after adding the BF3, and the length of time to oxidize and clean up 

the product. After mixing in the TCBQ it is very important to work quickly as it is a 

known porphyrin degrader. Purification can be done with a column and 

dichloromethane, however it is more time consuming and the resulting product still 

must be washed extensively with methanol after. It is a waste of solvent and time to go 

that route. Crystallization from concentrated cold CHCl3 is important to getting a pure 

compound. 
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The 1H-NMR data for Cp2 (Figure 3.3) shows the doublet of doublets of the 

protons on the phenyl ring at 8.11 and 7.72 ppm as well as the singlet more upfield at 

4.79 ppm accounting for the methylbromide hydrogens. One interesting aspect to the 

1H-NMR data obtained for all of the analyzed porphyrins were the internal CH protons 

on the pyrrole rings. The CH protons at 8.77 ppm actually show up as a wide singlet on 

the JEOL 300 MHz NMR used. Integration was always a near match, but the resolution 

was not high enough to observe the splitting from these protons. The internal ring 

protons also have a severe peak broadening to the point that they are near 

undetectable, but they are there and the area integrates out properly. UV-Vis data are 

a match with literature data with the sorret band 420 nm followed by Q bands at 517, 

551, 589, and 646 nm. The IR did have a couple small variations however the NH peak 

is at 3327 cm-1, also there is a peak at 3026 cm-1 corresponding to sp3 methyl carbons, 

and a strong peak at 1221 cm-1 corresponding to the carbon bromide bond. 

            Singlet from                              Doublets of Doublets 
Protons on Pyrrole Rings         from Protons on Phenyl Rings 
 

 

 

 

 

Figure 3.3: 1H-NMR Spectrum of Cp2.  
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3.1.3 Synthesis of Cp3 and Cp4 

The following reactions are SN2 substitutions resulting in the ionic liquid 

substituent. Methylimidazole is not as strong of a nucleophile as PPh3 and the 

corresponding synthetic scheme proved to be much more difficult. The synthesis of 

Cp3 was accomplished but with low yields. Optimization was attempted and needs to 

be further done to mass produce the catalyst, but temperatures above 110 C actually 

decreased yields of the ionic product. Reactions were attempted at temperatures as 

high as 160 C to try and force the reaction to completion but none of the ionic 

porphyrin was isolated, actually a small amount of an unidentified non polar solvent 

soluble purple solid was formed. Longer reaction times did seem to help, and if the 

reaction were to be further optimized even longer would be attempted. The isolated 

products that were analyzed continually had impurities that appeared to be 

methylimidazole as well as remaining unreacted methylbromide on the starting 

porphyrin Cp2. At one point it was thought that prep liquid chromatography was going 

to be the only way to obtain a pure product. Cephadex is actually a common non-polar 

purification gel, with similar applicability as silica gel, that would have also worked if 

necessary. It is a long hydrocarbon based packing material that can be used in column 

chromatography similar to a reverse phase HPLC column packing material. The ionic 

nature of the porphyrins cause them to stick to silica gel, making silica gel TLC and 

column chromatography less useful. TLC was done throughout the experimental trials 

to determine when the starting material was gone, however it could not separate any 
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of the ionic products due to sticking. Failures in purification methods in the two solvent 

crystallization methods attempted were from the polarity of the precipitating solvent. 

Solvent systems that were less polar than the 9:1 isopropanol/ether were unable to 

separate the fully substituted porphyrin from the incomplete substituted products, 

confirmed by 1H-NMR. Yields were likely lower than the actual amount of formed 

product in the reaction mixture as some could have easily not precipitated out in the 

crystallization. Without a non-polar TLC plate, this cannot be easily determined from 

the filtrate. The PPh3 reaction was much simpler as it is more nucleophillic and the 

sheer size of the phenyl substituents cause the product to be much less polar; it is 

actually insoluble in water at room temperature. By having the product less polar it can 

be easily precipitated from methanol with just ether. A higher temperature of 140 C 

was attempted but resulted in slightly lower yields.  

 The Cp3 1H-NMR spectrum (Figure A.1, p. 81) has all of the expected peaks with 

near ideal integration values. The singlet at 9.31 ppm is expected for the CH bond on 

the imidazole between nitrogen atoms. The spectrum displayed in the appendix was 

done in deuterated methanol; the solvent seemed to have a strong solvating effect on 

the internal pyrrole protons, even stronger than that of DMSO. This observation is 

made based on the complete disappearance of the internal NH protons in the spectrum 

as well as the abnormal peak shapes of the CH protons on the pyrrole rings. Other 1H-

NMR analysis was done in deuterated DMSOd6 which did display the NH peak and the 

CH peak proving that they are there. Since those peaks do appear normal in the 
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deuterated DMSO solvent, it is fair to say that it is the methanol interaction causing the 

distortion. Methanol was used as displayed in the appendix because it is much less 

hygroscopic, and as water is already a dominant peak from the possible hydrates being 

formed, it was important not to add any additional water from the solvent. DMSO is 

very hygroscopic, and a major issue when water content is an issue, and almost 

impossible to purify after hydration. A major indication of the success of the 

experiment is the near 1 ppm peak shift of the methylbromide proton peak to the 

ammonium salt methylproton peak. Cp2 shows this peak at 4.79 ppm (Figure 3.3, p. 

48) versus the 5.81 ppm in Cp3 (Figure A.1, p. 81); there are also no mixed signals 

showing isolation of the completely converted product. The IR spectrum of Cp3 (Figure 

A.5, p. 86) shows the strong water peak where the weak N-H peaks were before the 

alkylation. Many other papers have referenced their ionic porphyrins as hydrates in the 

past. Also important to the IR spectrum is the absence of the CH2Br peak at 1221 cm-1 

in the starting material. 

 The 1H-NMR data for Cp4 (Figure 3.4, p.52) has many of the proton peaks 

overlapping but that is expected for the compound. The large cluster of peaks should 

account for four different signals and 68 protons per molecule. The doublet from the 

phenyl ring slightly upfield at 7.48 ppm integrates to 3.68, a little less than half of the 

whole porphyrin relative to internal pyrrole protons. The integration value of the whole 

cluster is 31.14, very close to ideal as again a small percentage away from half the 

whole porphyrin as is the doublet upfield. The confirmation of the product is again in 
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the change of the methylbromide peak. The new doublet at 5.65 ppm (Figure 3.4) is 

from the methyl phosphorus bond formation. In this case binding to the phosphorus 

atom causes a splitting of the singlet into a doublet because 31P is a spin ½ nuclei and a 

100% abundant. Again water is in the spectrum showing the formation of an expected 

hydrate.  

         

 

Doublet Formation 

 

 

 

 

Figure 3.4: 1H-NMR Spectrum of Cp4. 

3.1.4 Syntheses of Cp5 and Cp6 

The final step of the synthetic route was metallation. Using water as a solvent 

was ideal as it tends to promote ionization very well, it is cheap, and it has a relatively 

high boiling point. For this reaction to occur, the labile hydrogen atoms off the internal 

pyrrole molecules must leave. The reaction was attempted with the addition of sodium 
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carbonate, but surprisingly it inhibited the reaction verified by UV-Vis spectroscopy. 

Polarities of the metallated products did increase noticeably which allowed for any 

non-metallated porphyrin to be separated again by a two solvent crystallization 

method. The challenge was determining the purity of the metallated compound. 1H-

NMR of Cp5 was attempted however due to the paramagnetic nature of the ferrous 

porphyrin failed. At least it did show that the species is an iron(III) compound with 

relative certainty. It is possible to be high spin iron(II) but highly unlikely as any iron 

metallation with an iron halide results in the halide being positioned axially to the iron 

in the corresponding porphyrin, making it iron(III). The IR data shows clear metallation 

for both Cp5 (Figure A.6, p. 87) and Cp6 (Figure A.7, p. 88). Each spectrum has a new 

strong peak representing the N-Fe bond; it is at 998 cm-1 for Cp5 and at 996 cm-1 for 

Cp6. Yields for the metallation procedure were both very high at 90 and 77% 

accordingly. 

3.2 SYNTHESIS OF PYRIDINIUM IONIC LIQUID TAGGED PORPHYRINS 

The second system has the nucleophile on the starting porphyrin by a pyridine 

meso substituent (Figure 3.5, p. 54). This allows for the formation of the ionic liquid 

functional group with attack of an alkyl halide. The strength of the leaving group has a 

strong effect on the reaction rate and conditions necessary for the reaction to proceed. 

This can be seen by comparing the conditions of the synthesis of Cp9 and Cp10. The 

former has a stabilizing double bond making the bromide more readily to leave and 

allows for the milder conditions.  
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Figure 3.5: Synthesis of Ionic Liquid Tagged Pyridinium Porphyrins. 

Section 3.2.1 [p. 53] 
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3.2.1 Synthesis of Cp7 

Cp7 was synthesized by the Adler Longo method. Reactions were carried out at 

scales between 2.55 g and 10.2 g of the aldehyde. The workup procedure involved a 

preheated propionic acid solvent mixture followed by the addition of pyrrole and the 

aldehyde nearly simultaneously but always pyrrole then aldehyde. Cleanup started a 

lengthy column using a 4:1 propionic acid/methanol as the eluent solvent mixture, but 

this was very time consuming and the resulting product was still not clean, so other 

purification routes were tested. This turned out to be very beneficial as crystallization 

with methanol saves hours of time per reaction, yields were higher, and it saves a lot of 

solvent per reaction. This porphyrin has been synthesized previously by other groups 

with higher yields (up to 33%), but this was not as easy to scale up and the amount of 

solvent used was significantly greater.59 

The 1H-NMR (Figure 3.6, p. 56) is very nice and relatively clean, small amounts 

of left over methanol and water are there. Again the internal pyrrole peaks are present 

as a singlet but not surprising after the spectra from Cp2 with the same solvent and 

instrument. There is a much wider gap in the doublets of doublets in Cp7 as expected 

due to the signals coming from the pyridine rings versus the phenyl of Cp2. Yields were 

actually very high for the method chosen. The 16% is about the expected maximum for 

this synthetic strategy.38 IR data again has the key peaks expected for the product, 

medium N-H peak at 3312, aromatic C-H peak at 3089, and a strong C=C aromatic peak 

from the phenyl group at 1594 cm-1. UV-Vis data had a strong sorret band at 419 nm 

with Q bands at 513, 543, 587, and 643 nm. 
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Figure 3.6: 1H-NMR Spectrum of Cp7. 

3.2.2 Attempted Synthesis of Cp8 

The reaction for the formation of Cp8 is of an SN2, but very temperamental with 

lots of potential side products. Obtaining a clean sample was extremely difficult and in 

fact it is still undeterminable if it was successful. A telling 1H-NMR spectrum was taken, 

however due to the combination of a hydrated compound and a hydrated old DMSOd6 

solvent the representative peaks were barely over the baseline. However, the peaks do 

match with what would be expected for the compound, except the integration on the 

expected CH2Br triplet is half of the value it should be. The triplet at 5.06 ppm is the 

first of the hydrocarbon peaks shifted very far down field due to the nitrogen cation as 
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well as the strong aromatic presence from the porphyrin. There is a quintet at 2.85 

ppm corresponding to the CH2 in the middle of the propyl chain. As all of the other 

ionic porphyrin species, there is a huge water peak covering any other possible peaks 

between 3.95 ppm and 3.60 ppm. There is a final triplet at 2.51 ppm, but the 

integration is half of what it should be relative to the rest of the peaks. It is worth 

noting that an attempt was made to further make the species octacationic by 

functionalizing with PPh3. The reaction is nearly identical to the Cp4 route, but this did 

not produce appear to react confirmed by the near identical IR obtained before and 

after the reactions were completed. This again supports the 1H-NMR data that 

something happened to the CH2Br of the propyl group. The 1H-NMR was not able to be 

reproduced once new solvents were purchased and the product measured had already 

appeared to decompose as the bright metallic purple solid became a dark green color. 

Due to the difficulty of the reaction and quick alteration of the product, this synthetic 

route stopped here.  

 

3.2.3 Synthesis of Cp9 

This reaction is an SN2 reaction involving the allyl bromide attacking the aryl 

pyridyl nitrogen, resulting in an alkylation. From ionic liquid synthesis attempts it was 

known that this reagent would react faster than any of the alkyl bromides. The 

expected reason is the stabilization of the allylic cation formed in the transition state. 

Part of the reason for choosing this ligand was because of that very reason as yields 
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from compounds synthesized up to this time had been relatively poor. The main 

reasons of the low yields were known to be from incomplete reactions, regardless of 

the amount of time allowed or temperature used. To combat this, stronger 

nucleophiles and electrophiles such as the PPh3 and this allyl bromide were used. As 

expected, synthesis was far simpler and better results were obtained in a fraction of 

the time. A 58% yield is not incredible but effective and accomplished with a tenth or 

less of the amount of work put into a few of the previous reactions with a greater yield. 

DMF was chosen as the solvent as it has been used in the literature in the few cases of 

other ionic porphyrins formed. Also, it is one of a few common solvents that can 

solubilize both the products and reactants in this synthesis. One common literature 

solution worth noting is to choose a solvent which the ionic species precipitates out at 

completion of the reaction driving any equilibrium towards completion and making the 

cleanup very easy, however the porphyrin synthetic routes chosen require it to be 

functionalized at all four positions causing this to be very difficult to predict. 

 The 1H-NMR data (Figure A.3, p. 83) corresponds very well to the expected 

product. As before, there is a large water peak at 3.64 ppm and also a small amount of 

DMF left in the sample. Many of the allyl peaks are not well separated but do integrate 

correctly and in the correct region when accounting for the shift from the electron 

withdrawing porphyrin. There are 0.55 ppm and 0.9 ppm peak shifts on the Cp7 

pyridine protons with the formation of pyridinium ionic bond on Cp9. IR data again has 

a very broad water peak, but it also has new sharp C=C peaks at 1630 and 1593 cm-1. 
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3.2.4 Synthesis of Cp10 

 Synthesis of Cp10 followed similarly to Cp9, a SN2 reaction developed in heated 

DMF. The products 1H-NMR spectrum (Figure A.4, p. 84) matches very well with the 

expected splitting patterns and peak shifts. The protons on the pyridinium rings do 

show up as doublets and integrate to near equivalent values in the spectrum. They are 

also significantly shifted (~0.5 and 0.9 ppm) downfield like Cp9 as expected from the 

neighboring ammonium cation formed in the product. The pyrrole C-H peak is again 

very broad and comparable to that of the 1H-NMR of Cp3 also done in deuterated 

methanol. The butyl proton peaks have a nice trend of peak shifts downfield, with the 

closest to aromatic system having the greatest peak shift. The peaks are very well 

separated and properly integrate. The water amount integrates out to about a 13:1 

H2O/porphyrin molecule. Relatively low amount compared to the others as could be 

expected due to the more hydrophobic butyl substituents. The IR spectrum (Figure 

A.10, p. 91) for the compound is hard to compare to the other ionic porphyrins in this 

thesis. It is obvious that the water peak is not nearly as prevalent and broad as in all of 

the other ionic porphyrin molecules but plenty of water did show up in the 1H-NMR 

spectrum. The ideal peak shifts of the phenyl protons in the 1H-NMR spectrum does 

prove the cation formation. Yields at 61% are sufficient but could possibly be higher 

with longer reaction time.  
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3.2.5 Synthesis of Cp11 

The metallation of Cp9 was completed and examined by both IR and UV-Vis. 

The IR spectrum of Cp11 (Figure A.9, p. 90) confirms metallation with a strong peak at 

1000 cm-1 representing the Fe-N bond at the center of Cp11. The UV-Vis data shows a 

blue shift in the porphyrin, as the sorret band at 423 nm in Cp9 shifted to 402 nm after 

the metallation in Cp11. The product was isolated in good yields at 80%.  

 

3.2.6 Synthesis of Cp12 

Cp10 was metallated and analyzed by both IR and UV-Vis. As expected the IR 

spectrum (Figure A.11, p. 92) does show the strong Fe-N peak at 991 cm-1. The UV-Vis 

spectrum actually did show a red shift in the sorret band. The sorret band red shifted 

from 418 nm in Cp10 to 452 nm in Cp12. The red shift indicates the metallation caused 

the porphyrin core to become less planar.60 The variation from the other three 

compounds is likely associated with the absence of  donation from the butyl group 

whereas the other three all are donors. DFT calculations have shown that this donation 

from substituents on the phenyl rings in the meso positions of a porphyrin actually 

decrease the HOMO-LUMO gap by destabilizing the HOMO.61 This phenomenon is also 

known to be enhanced by distortions in the center of porphyrin molecule.62 
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3.3 SYNTHESIS OF PROPOXY IONIC LIQUID TAGGED PORPHYRINS 

3.3.1 Synthesis of Cp13 

 The synthesis of Cp13 (Figure 3.7, p. 62) was completed, as a porphyrin with the 

ionic tag further from the porphyrin center was thought to potentially be a more 

recyclable catalyst. The longer arms of the catalyst would likely allow for more of a  

interaction with the ionic linkages and the metal center. This should protect the 

porphyrin as well as make incoming ligands more labile and active. Synthesis of the 

product was completed and successful, however with much lower yields than that of 

the publication taken from. A yield of 80% was reported, much higher than the 

experimentally obtained 25%. The expected variation in yields came from the addition 

of 1,3-dibromopropane. It is a reaction that can easily form porphyrin dimers or even 

oligomers. It was noted that much of the residual solid that was left after removing the 

DMF solvent did not dissolve in the dichloromethane as expected. This caused difficulty 

in the wash step as much of the insoluble solid was just floating in between layers 

making them near indistinguishable.  

 Isolation of the product was successful as can be seen from the sharp UV-Vis 

sorret band at 420 nm and 1H-NMR data. The literature only had 1H-NMR data and 

elemental analysis to compare to. The 1H-NMR data (Figure 3.7, p. 62) does matchup 

well with a few discrepancies in some peak signals upfield. The major literature 

discrepancies are in the alkyl groups located upfield at 3.79 and 2.52 ppm. The 
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literature for these two peak shifts are at 3.57 and 2.3 ppm.57 Considering the largest 

discrepancy is 0.05 ppm outside of these two numbers and the integration and peak 

splittings fit the structure, it can be concluded that the isolation of the product was 

successful.  

 

  

 

 

              R =  

 

Figure 3.7: Structure and 1H-NMR Spectrum of Cp13. 

3.4 CATALYTIC RESULTS AND DISCUSSION 

Porphyrins do degrade and unravel over time and reusability is a major problem 

due to their synthetic costs. Studies by Liu and others have demonstrated that coupling 

a pyridinium tagged porphyrin in a similar ionic liquid actually extends the life of the 

porphyrin when compared to a non-ionic porphyrin in an organic solvent.59 The 

reusability of the catalyst was examined with both types of systems until the level of 

conversion of styrene fell off below 65% for the ionic system and 10% for the non-ionic 

system (Figure 3.8, p. 63). The non-ionic System was Mn(II)Cp7 in acetonitrile and the 
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Figure 3.8: Porphyrin Reusability System Comparison.59 Source : Liu, Y.; Zhang, H.-J.; Lu, 

Y.; Cai, Y.-Q.; Liu, X.-L., Mild oxidation of styrene and its derivatives 

catalyzed by ionic manganese porphyrin embedded in a similar structured 

ionic liquid. Green Chemistry 2007, 9 (10), 1114-1119. 

 

 
The group used a slightly different ionic porphyrin and similar reusability results were 

obtained.63 Possibly even more interesting than their first study was the finding that 

the ionic porphyrin had a very similar degradation pattern to the nonionic porphyrin in 

the acetonitrile solution. Also, a very important finding was the enhancement of the 

turnover rate with the optimized water concentration in the ionic liquid. The reaction 

rate went from 4% conversion in 5 minutes to 93% conversion in 5 minutes with a 5 
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mmol addition of water. This enhancement was not seen for the same catalyst in 

acetonitrile.63 

The catalytic data obtained was done in accordance with studies from Anil and 

others (Figure 3.9).64
  

 

     

 

 

 

Figure 3.9: The Catalytic Oxidation Scheme. 

Veratryl alcohol contains two methoxy groups as well as a benzyl alcohol substituent, 

common structures seen in lignin itself. It is a known mediator in white rot fungi 

delignification.65 It has been shown that Phanerochaete Chyrsosporium fungi is not 

able to degrade polymeric lignin without the presence veratryl alcohol.66 It is expected 

that it transfers a one electron oxidizing species to the large polymer from the heme 

active sights in LiP. Mechanistic proposals for the formation of veratraldehyde and the 

quinone have been developed based on the radical cation mediator and its known 

decomposition with increasing OH- concentration.67 

Major    Minor  
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 Comparison studies (Figure 3.10) were done with Cp5 and Cp11 and another 

common polar porphyrin analogue that was also used by Anil FeT1239 (Figure 2.1, 

p.42). 

 

Figure 3.10: The Conversion of Veratryl Alcohol. 

 

From our preliminary results in the comparison study it is clear that there is 

significantly higher activity with our ionic porphyrin catalysts. This was really just a trial 

run and there are far more optimizations to be studied. The catalytic studies were 

stopped mainly due to injection issues with the autosampler found shortly after the 

data taken here. However, the ionic liquid tagged porphyrins were much more active 

with the hydrogen peroxide and produced a higher overall conversion% with a slightly 

lower amount of catalyst. From the literature,59, 63-64 the ionic liquid tagged catalysts 
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also could be expected to degrade at a slower rate compared to the nonionic 

counterparts if tests were permitted. All of the porphyrins had low yields relative to 

Anil’s results, even with the same catalyst FeT1239. After 6 hours in BMIMPF6
- with a 

1% (mol) of FeT1239 catalyst, he obtained a 27% aldehyde yield based on the alcohol 

content. The higher yields are most likely a solvent effect due to the very weakly 

coordinating strength of the hexafluorphosphate anion in the ionic liquid.  It can also 

be explained by the possible oxidation of the ionic liquid used AMIMXS. The peroxy 

radicals formed as side products in the reaction of the peroxide and the porphyrin 

could be oxidizing the allyl substituent on the ionic liquid. The decrease in yields would 

be expected as some of the radicals will recombine to reform the peroxide and be used 

again by the porphyrin.49 The chromatograms obtained from the oxidation do show 

increasing small amounts of very polar unidentified products coming off around the 

dead time (Figure 3.11, p. 67) ; these peaks could also be signals from small amounts of 

quinones formed. It is more likely to be a derivative of the ionic liquid as the quinones 

would be expected to stick to the non-polar column more than AMIMXS. It is not the 

porphyrin as there were no corresponding signals before the addition of the peroxides. 

Further evidence of this affecting the resulting yields is that the peak size of this 

unknown product stopped increasing after the two hour mark, same time as the 

conversion of the veratryl alcohol.   
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Figure 3.11: Chromatogram from the Oxidation of Veratryl Alcohol. 

 

 

 

 

 

 

 

 



68 

 

CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

Two different synthetic paths to ionic liquid tagged metalloporphyrins have 

been exploited. After mastering the synthesis both schemes can be accomplished in 

about a week with moderate yields. Both the Adler and Lindsey methods were utilized 

successfully for the initial formation of the porphyrin. The reaction conditions 

necessary for the tagging of the ionic liquid to the porphyrin were found to be heavily 

dependent on the strength of the nucleophile or electrophile depending on the system. 

The ionic liquid tagged porphyrins all have a large water impurity that is apparent in the 

1H-NMR spectra, leading to the speculation of hydrates. The metallation of each ionic 

liquid tagged porphyrin with FeCl24H2O in water was shown to be successful by the 

formation of a strong sharp peak between 991 and 1000 cm-1 corresponding to the Fe-

N bond formation. The most intriguing part to the research was the significantly 

increased activity of the catalysts tested in the oxidation of veratryl alcohol. There are 

numerous possibilities for the higher activity including increased mobility in the solvent 

caused from the increased polarity of the ionic liquid tags. Also increased electron 

deficiency because of the cationic meso substituents causing for metal displacement 

and better selectivity as has been seen in the literature before with electron deficient 

porphyrin catalysts.46, 52  
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There are lots of optimizations that need to be continued both synthetically and 

especially catalytically. Our initial studies are very exciting, however these were simply 

comparison studies of the nonionic versus ionic porphyrins without either being 

properly optimized. Some synthetic optimization has been done, but it can be 

improved with more experimental trials. Along with synthetic optimization is finding a 

method to grow crystals for absolute verification of the structures and further detail 

into the confirmations. There are many aryl functionalities to experiment with, 

including continuation of the longer alkyl ligand synthesis. More simple adjustments 

are with the axial ligands of the metal center and the metal center itself, only an iron 

chloride has been tested here but there are many others known to exist including 

perchlorates and triflates that are likely to be more active. Possibly the most important 

would be analysis with other lignin model compounds, including one with a β–O-4 

linkage. There was only one ionic liquid tested, as there are hundreds of thousands of 

possibilities, it would be useful to obtain a library of sorts as to the effect they have on 

the porphyrin oxidation studies. Along with solvent effects, are pH studies of the ionic 

liquids. It is common in the literature to see drastic differences in catalytic results at 

different pH levels. Although the nonionic manganese porphyrins did not perform well 

in the veratryl alcohol system relative to the iron porphyrins, manganese ionic 

porphyrins should be looked at as they are more active in many cases in the literature. 

Finally, for catalytic studies reusability of the porphyrin catalysts should be looked at. In 

the literature, different systems have shown to produce drastic effects on the number 

of catalytic cycles before the porphyrins are degraded and inactive.64 
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Table A.1: 1H-NMR DATA. 

Compound 1H-NMR Signals 

      Cp1 Solvent CDCl3 - 9.93(s, 1H, alde), 7.79(d, 2H, CH phenyl), 7.49(d, 2H, CH 

phenyl), 4.43(s, 2H, CH2 methyl) ppm 

Literature CDCl3 - 10.04(s, 1H, alde), 7.85(d, 2H, phenyl), 7.55(d, 2H, 

phenyl), 4.50 (s, 2H, methyl) ppm  

      Cp2 Solvent CDCl3 - 8.91(s, 8H, CH pyr), 8.24(d, 8H, CH phenyl), 7.74(d, 8H, 

CH phenyl), 4.92(s, 8H, CH methyl), -2.91(s, 2H, NH ring) ppm 

Literature CDCl3 8.85(s, 8H, CH pyr), 8.19(d, 8H, CH phenyl), 7.82(d, 8H, 

CH phenyl), 4.84(s, 8H, CH methyl), 2.8(s, 2H, NH ring) ppm55 

     Cp3 Solvent Methanold4 - 9.54(s, 4H, CH imid), 8.79(s, 8H, CH pyr), 8.26(d, 

8H, CH phenyl), 8.08(d, 4H, CH imid), 7.88(d, 8H, CH phenyl) 7.85(d, 4H, 

CH imid), 5.81(s, 8H, CH2 alpha), 3.97(s, 12H, CH3 imid), -2.97(s, 2H, NH 

ring) ppm 

     Cp4 Solvent DMSOd6 - 8.79(s, 8H, CH pyr), 8.05(d, 24H, CH phos), 8.02(d, 8H, 

CH phenyl), 7.99(m, 24H, CH phos), 7.96(m, 12H, CH phos), 7.48(d, 8H, 

CH phenyl), 5.66(d, 8H, CH2 methyl) ppm 

     Cp7 Solvent CDCl3 - 9.00(d, 8H, CH pyridyl), 8.80(s, 8H, CH pyr), 8.10(d, 8H, 

CH pyridyl), -2.99(s, 2H, NH ring) ppm 

Literature CDCl3 - 9.1(d, 8H, CH pyridyl), 8.9(s, 8H, CH pyr), 8.2(d, 8H, CH 

pyridyl), -2.9(s, 2H, NH ring) ppm59 
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Table A.1 Continued 

     Cp8 Solvent DMSOd6 - 9.50(d, 8H, CH phenyl), 9.21(d, 8H, CH pyr), 8.98(d, 8H, 

CH phenyl), 5.06(t, 8H, CH), 2.85(m, 8H, CH allyl), 2.51(t, 4H, CH2 alkyl), -

3.13(s, 2H, NH) ppm 

     Cp9 Solvent DMSOd6 - 9.57(d, 8H, CH phenyl), 9.28(d, 8H, CH pyr), 9.08(d, 8H, 

CH phenyl), 6.51(m, 4H, CH allyl), 5.87(d, 4H, CH allyl), 5.66(s, 4H, CH 

allyl), 5.63(d, 8H, CH2 alkyl) ppm 

     Cp10 Solvent Methanold4 - 9.52(d, 8H, CH phenyl), 9.37(s, 8H, CH pyr), 9.01(d, 

8H, CH phenyl), 5.04(t, 8H, CH2 alkyl), 2.39(m, 8H, CH2 alkyl), 1.72(m, 8H, 

CH2 alkyl), 1.19(t, 12H, CH3 alkyl) ppm 

     Cp13 Solvent CDCl3 - 8.86(s, 8H, CH pyr), 8.14(d, 8H, CH phenyl), 7.30(d, 8H, 

CH phenyl), 4.40(t, 8H, OCH2 propyl), 3.79(t, 8H, CH2Br propyl), 2.52(m, 

8H, CH2 propyl), -2.75 (s, 2H, NH ring) ppm 

Literature CDCl3 - 8.98 (s, 8H, CH pyr), 8.12-8.14 (d, 8H, CH phenyl), 7.32-

7.34 (d, 8H, phenyl), 4.35 (t, 2H, OCH2 propyl), 3.57 (t, 2H, CH2Br propyl), 

2.3 (m, 2H, CH2 propyl), -2.79 (s, 2H, NH ring) ppm57 
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Figure A.1: 1H-NMR of Cp3 in Methanold4.68 
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Figure A.2: 1H-NMR of Cp4 in DMSOd6. 
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Figure A.3: 1H-NMR of Cp9 in DMSOd6. 
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Figure A.4: 1H-NMR of Cp10 in Methanold4.  
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Table A.2: IR DATA. 

Compound IR Signals 

       Cp2 Experimental – 3326 and 3307 (m, N-H), 3028 (m, C-H), 1608, 1555, and 

1502 (m, C=C), 1259 (s, CH2Br) cm-1 

Literature – 3325 and 3308 (m, N-H), 3027 (m, C-H), 1614, 1575, 1540 

(m, C=C), 1221 (s, CH2Br), 595 (s, C-Br)55 cm-1 

      Cp3 Experimental – 3142 and 3106 (m, C-H), 1611, 1571, and 1559 (m, C=C), 

1157 (s, C-N) cm-1 

      Cp5 Experimental – 3141 and 3105 (m, C-H), 1613, 1572, and 1560 (m, C=C), 

1158 (s, C-N), 998 (s, N-Fe)69 cm-1 

      Cp6 Experimental – 3056(m, C-H), 1615, 1586, and 1553 (m, C=C), 1436 and 

1110 (s, C-P)70, 996 (s, N-Fe) cm-1 

      Cp7  Experimental – 3312(m, N-H), 3089(m, C-H), 1594(s, C=C) cm-1 

      Cp9 Experimental – 3088 and 3030 (m, C-H), 1630, 1592, 1559, and 1507 (m, 

C=C) cm-1 

      Cp10 Experimental – 3309 (m, N-H), 3092, 3058, and 3022 (m, C-H), 1592, and 

1542 (m, C=C), 1350 (s, C-N) cm-1 

      Cp11 Experimental – 3112, 3085, and 3051 (m C-H), 1631, 1610 and 1596 (m, 

C=C), 1000 (s, N-Fe) cm-1 

      Cp12 Experimental –3122, 3083, and 3054 (m, C-H), 1596, 1538, and 1494 (m, 

C=C), 991 (s, N-Fe) cm-1 
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Figure A.5: IR of Cp3. 
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Figure A.6: IR of Cp5. 
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Figure A.7: IR of Cp6. 
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Figure A.8: IR of Cp9. 
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Figure A.9: IR of Cp11. 
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Figure A.10: IR of Cp10. 
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Figure A.11: IR of Cp12. 
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Table A.3: UV-VIS DATA. 

Compound  Signals 

      Cp2  Experimental in CHCl3 – 420max, 517, 551, 589, 646 nm 

Literature in CHCl3– 420max, 516, 551, 589, 646 nm 

      Cp3  Experimental in H2O- 415max, 516, 558 nm 

      Cp5   Experimental in H2O – 394max, 524 nm 

      Cp6  Experimental in H2O – 419max, 520 nm 

      Cp7  Experimental in CHCl3 – 419max, 513, 543, 587, 643 nm 

Literature – 417max, 513, 547, 588, 644 nm 

      Cp9  Experimental in H2O - 423max, 519, 585 nm 

      Cp10 Experimental in H2O – 422max, 529, 565, 598 nm 

      Cp11 Experimental in H2O – 402max, 414, 523 nm 

      Cp12 Experimental in H2O – 418, 452max, 544 nm 

      Cp13 Experimental in CHCl3 – 420max, 518, 555, 593, 650 nm 
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CATALYTIC DATA TABLES 

Table A.4: Average Mass of Veratryl Alcohol in AMIMXS Mixture Based on HPLC. 
 
Time (h) FeT1239 Veratryl (mg) 

 

 

Time (h) Cp5 Veratryl (mg) Cp11 Veratryl (mg) 

0 23.49 0 25.56 27.59 

3.32 21.25 2 19.98 21.51 

6.64 19.82 4 20.04 21.60 

9.96 19.54 6 20.14 21.53 

13.28 19.45 8 20.10 21.35 

     

 
Table A.5: Average Mass of Veratraldehyde in AMIMXS Mixture Based on HPLC 
 

Time (h)   FeT1239 Aldehyde (mg) 

 

 

Time (h)  Cp5 aldehyde (mg)  Cp11 aldehyde (mg) 

0 0 0 0 0 

3.32 1.28 2 3.50 3.76 

6.64 1.86 4 3.50 3.82 

9.96 1.94 6 3.51 3.87 

13.28 1.97 8 3.51 3.87 
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Figure A.12: Synthesized Chemical Structures. 
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