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Abstract 
 

Acinetobacter baumannii is a pathogen rising in notoriety worldwide due to 
outbreaks linked to multi-drug resistant strains.  Research is currently focused on 
identifying virulence factors, which may contribute to increased ability to cause human 
disease, such as hemolytic activity and surface motility.  The aim of this study was to 
determine the presence of these two virulent traits in clinical isolates.  Forty-eight 
clinical isolates were recovered from University of Kentucky hospital in Lexington, KY.  
No hemolytic activity was observed for any of the isolates.  Evidence of surface motility 
was observed in 13 isolates.  The brand and concentration of media used allowed for 
better observation of motility.  There is potentially a multifactorial component to 
virulence not examined in this study, which contribute to increased ability of A. 
baumannii to cause disease.  Preliminary statistical tests did not indicate a relationship 
between surface motility and multi-drug resistance or being part of a complex of A. 
calcoaceticus-A. baumannii.  The lack of results indicates a need for further research to be 
performed on A. baumannii to further classify virulence factors and examine the potential for a 
multifactorial component resulting in its virulence.    
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CHAPTER 1 

 

 LITERATURE REVIEW 

 

The history of the Acinetobacter genus dates back to 1911 with the isolation of 

the first strains of an organism named Micrococcus calcoaceticus by researcher M.W. 

Beijerinck (24).  This organism was named because it appeared as small spherical balls in 

the calcium acetate-containing medium (24).  Several species similar to this organism 

were described throughout the next 40 years, but were associated with more than 15 

different genera (12, 17, 24).  Throughout the years the different genera and species 

classifications included Diplococcus mucosus, Alcaligenes haemolysans, Achromobacter 

anitatus, and Achromobacter musosus (24).  In 1954, a proposal was made to separate 

the motile from the nonmotile microorganisms within the genus Achromobacter (24).  A 

1968 paper published by Baumann et al. concluded that several of these species 

belonged to a single genus and proposed the name of Acinetobacter meaning “unable to 

move” (9, 24).  At the time it was concluded further sub-classification based on 

phenotypic characteristics was not possible (24).  The scientific community did not 

readily accept this new genus as demonstrated by the three year gap between 

description and official recognition.  Official acknowledgement of Acinetobacter was 

made by the Subcommittee on the Taxonomy of Moraxella and Allied Bacteria in 1971 

and recognized only a single species (18).  This species was initially named A. 

calcoaceticus and included organisms previously referred to by the epithet “anitratum” 

and ”lwoffi” (18). 
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The use of DNA-DNA hybridization by Bovet and Grimont in 1986 led to the 

description of an additional 12 distinct species of Acinetobacter (24).  Other significant 

taxonomic modifications have been made over the last 27 years, describing additional 

species (21, 24).  Different methods have been used to describe species, leading to 

conflicting reports regarding the number of species within the Acinetobacter genus.  

Different sources have listed the number of species in the genus as being 23 (17), 25 

(12), 27 (21), 31 (24), or 32 (14, 28).  Anton Peleg, a researcher who has published 

several different papers on Acinetobacter and A. baumannii, cites 27 validly named 

species within the genus and 9 DNA-DNA hybridization groups (25).  As of 2008, only 17 

of these species had been officially named (28).  These species include, but are not 

limited to: A. pittii, A. nosocomialis, A. lwoffii, A. junii, A. haemolyticus, A. calcoaceticus, 

and A. baumannii (25). 

In general, the free-living saprophytes of the Acinetobacter genus are 

considered to be ubiquitous pathogens in nature (12, 24, 28).  Acinetobacter johnsonii, 

A. lwoffii,  and A. radioresistens can be found as part of the normal human and animal 

skin flora, as well as in some spoiled foods (21).  The widespread nature of the genus 

falsely suggests that the species baumannii is ubiquitous in nature (21).  While A. 

baumannii has been isolated from soil, vegetables, and surface water through 

enrichment, reports of isolation should be carefully considered to ensure identification 

to the species level uses current validated methods that are more robust and accurate 

(21, 24).  Some strains of the bacteria have also been isolated from small-size living 

organisms such as ticks, body lice, human body louse, and fleas (2, 28). 
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Very few species of the Acinetobacter genus are known to consistently cause 

clinical disease.  A. baumannii, A. nosocomialis and A. pittii are the only species 

identified as being clinically relevant in the last few years (25).  Many members of the 

genus are known to comprise a part of the normal human skin flora (24, 25).  Rates of 

skin colonization by the different species of the genus have been reported to differing 

degrees.  These differences can be attributed to different research methods, as well as 

differences in the methods used to identify the bacteria.  Results with colonization rates 

on the low end of the spectrum are thought to be the result of noise (25). 

Phenotypic laboratory tests can lead to misclassification and misidentification 

of Acinetobacter baumannii.  There is difficulty in identifying, without question, 

genetically closely related species no matter the genus (28).  Misidentification of A. 

baumannii as gram-positive occurs due to difficulty in the destaining process (24). This 

would lead to the incorrect conclusion that the isolate belongs to a different species of 

bacteria (24).  It is very difficult to separate A. baumannii from A. calcoaceticus, A. pitti 

(formerly known as genomic species 3), and A. nosocomialis (formerly known as species 

13tu) using phenotypic laboratory tests (25, 28).  When these species cannot be 

separated they are referred to as the A. calcoaceticus-A. baumannii complex (12, 24, 

25,28).  Significantly less information is available regarding the non-baumannii species 

compared to the baumannii species, adding to the difficulty of the separating process 

(25).  There is also a lack of identifiable traits that may cause one species of the genus to 

be more equipped to cause human outbreaks (21, 25).  Some epidemiologists have 

concluded there is an overestimation of the prevalence of medical issues related to the 
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bacteria due to the difficulty in identification and separation from the complex (17).  The 

clinical significance of Acinetobacter baumannii has also been called into question, in 

part due to the difficulty in determining if clinically isolated cultures are the result of 

skin colonization or from an infection (17).   

The genome of Acinetobacter baumannii ranges from 3.2 Mb to 3.9 Mb 

depending upon the particular isolate analyzed (1, 11, 28).  Despite its small-sized core 

genome, A. baumannii should be taken as a serious clinical threat due to its large 

accessory genome containing numerous antibiotic resistance genes.  Horizontal gene 

transfer can be utilized by the bacterium to acquire new genetic material through 

plasmids, integrons, and transposons (6).  Plasmids have been associated with the 

transfer of antibiotic resistance genes more than transposons and integrons within the 

Acinetobacter genus (20).  The bacterium also has the capability of rearranging existing 

genes allowing for evolution of virulence factors such as resistance to antibiotics.  A 

retrospective study performed in the UK found a rise in carbapenem resistance from 

0%, in 1998, to 55%, in 2006, in A. baumannii species causing bacteremia (31).  Crude 

mortality rates for bloodstream infections resulting from A. baumannii have been 

estimated to range between 28 and 43 percent (21).  A. baumannii has been described 

as an organism threatening the current antibiotic era due to existence of pandrug-

resistant strains (24).    

While researchers acknowledge a lack of information regarding virulence 

factors, some have been identified and need to be described further.  These factors 

include, but are not limited to: siderophore-mediated iron acquisition systems, biofilm 
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formation, capsule formation, quorum-sensing, surface proteins, and expression of 

genes regarding acquisition of essential nutrients (21, 25).  Desiccation, hemolytic 

activity, and surface motility have also been identified as potential virulence factors (2).  

Some of these virulence factors, such as surface motility, have a lot of conflicting 

research regarding their properties.   

The pathogenesis of Acinetobacter baumannii has been linked to its ability to 

evade the bactericidal activity of host serum.  In particular, one study found the 

mortality of patients correlated with the serum resistance of A. baumannii (32).  The 

ability to resist the bactericidal activity of serum was linked to acquisition of a surface 

protein named factor H (32).  The study acknowledged other research that found factor 

H did not bind to the surface of the bacteria (32).  The conflicting information regarding 

whether or not factor H binds to the surface of the bacteria could be the result of the 

different strains of the bacteria used for each study or it could be the result of other 

unknown factors such as differing laboratory conditions.  A phospholipase D and 

transposon mutant in a gene for penicillin binding protein 7/8 have also been linked to 

reduced serum resistance (2).   

A number of hemolysin-related genes and two phospholipase C (plc) genes 

have also been found in all of the strains sequenced, despite A. baumannii historically 

being classified as non-hemolytic (2, 28).  This classification may be linked to the type of 

blood used as well as the assay method performed.  Hemolysis has never been observed 

on sheep blood agar, but some evidence of hemolysis on horse blood agar exists (2, 24).  

Liquid assays have shown to be more sensitive at showing the hemolytic activity (2).  
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Even though the sensitivity is higher using liquid assays the hemolytic activity is 

significantly lower than that observed in species of bacteria known to be hemolytic. 

Despite A. baumannii being historically described as being non-motile, 

researchers have also examined the role of motility in the pathogenesis of the 

bacterium due to the presence of several genes related to motility (8). Genomic analysis 

has revealed a lack of flagellar genes (27).  Type IV pilus apparatus and pilus assembly 

genes have been identified within the A. baumannii genome.  Type IV pilus assembly 

protein genes identified within the A. baumannii genome are pilQ, pilO, pilN, pilW, and 

pilM (2, 25, 27).  Type IV pilus biogenesis protein genes pilB and pilJ have also been 

identified (2, 25).  Fimbrial biogenesis genes fimT, pilB, and pilZ have also been found 

within the genome of A. baumannii (2, 25, 27).  pilU, pilI, and pilT genes, which are 

responsible for pilus retraction through twitching motility, have also been identified 

within the genome (25, 27).  The A. baumannii strain M2, lacking a functional pilT gene, 

was found to have a 54% reduction in motility compared to strains with a functional 

gene (27).  Twitching motility represents a significant component in overall motility (27).   

A single conclusion regarding the motility, or lack thereof, has not been drawn 

due to conflicting results.  Differences in laboratory conditions can play a part in not 

allowing for observation of motility in all clinical isolates studied (8, 22).  Studies have 

shown that most movement tends to occur on the surface of semi-solid media and 

decreases as the concentrations of agar increase (8, 22).  A study of the M2 strain of A. 

baumannii found robust surface motility on Luria-Bertani (LB) broth modified with 10 g 

tryptone, 5 g yeast extract, and 5 g NaCl with 0.2-0.4% concentration agar plates, while 
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higher concentrations of agar showed less evidence of motility (8).  Similar to results 

observed in other bacteria, differences in evidence of surface motility have been 

observed depending on the brand of media used (8).  When the test was performed 

using the modified LB broth base described above with Difco agar media inhibition was 

observed at 0.35%, while inhibition of motility was observed at 0.5% when Eiken agar 

was used (8).  Inhibition of motility occurs at higher concentrations of agar because the 

media is harder than at lower concentrations.  Eiken agar is thought to have compounds 

that promote motility of bacteria and/or increase the “wettability” allowing the bacteria 

cells to spread easier (8).  Specific compounds in EIken agar, which promote spreading 

of the bacteria, have not been identified. 

The patterns of motility observed have been shown to differ within and 

between different strains (8, 22).  Branching patterns of motility have been observed in 

the M2 strain of A. baumannii using Difco media with a modified LB broth base (8).  

Evenly distributed patterns of migration from the point of inoculation have been 

observed in the M2 strain using Eiken media with a modified LB broth base (8).   Other 

strains tested in the same study found varying patterns of motility ranging from simple 

concentric rings to complex flower-like patterns as well as a few strains with no signs of 

motility as shown below in Figure 1 (8).  A translucent zone observed just ahead of the 

advancing colony was thought to be a secreted surfactant (8¸ 33).  Further studies are 

needed to determine if motility differs by using different mechanisms, if the capacity of 

the organism to sense environmental cues differs, or if other factors are in play. 
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Figure 1: Motility on agar plates adapted from Source: Clemmer, K.M. R.A. Bonomo & 
P.N. Rather.  2011.  Genetic analysis of surface motility in Acinetobacter baumannii.  
Microbiology 157: 2534–2544. 
 
Motility on Difco Bacto agar (a) and Eiken agar (b) at the percentages indicated. 
Branching pattern of motility shown on (a) and concentric rings of motility on (b). 

 

A. baumannii has also been studied to determine how well it can resist drying 

out or dessication.  Desiccation has been studied because it has potential to be a major 

contributing factor to the persistence of A. baumannii in hospital environments.  The 

survival times of A. baumnnii are significantly longer than other species within the 

Acinetobacter genus and are comparable to those of Staphylococcus aureus (2).  A study 

by Jawad et al. found the mean survival time of 22 studied strains to be 27.29 days by 

looking at well-defined hospital-outbreak related strains and sporadic isolates from 

hospitalized patients in the same geographic area (16).  Another study by Giannouli et 

al. looked at several different distinct genotypes of international clonal lineages I-III and 

found survival times ranged from 16 to 96 days (13).  Strains belonging to genotypes 

ST1, ST78, and ST25, all part of international clonal lineage I, were found to have higher 
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survival times ranging from 75 to 89 days (13).  A typical reference strain, ATCC 19606, 

has been shown to resist desiccation for less than 29 days in the Giannouli et al. (13) 

study and 6 days in the Jawad et al. (16).  The differences in survival times can be 

attributed to different strategies used by the strains, differences in research protocol, 

unknown factors, or a combination of the above.  Desiccation is another example of the 

lack of information known about A. baumannii. Further research is needed to better 

describe and determine virulence factors such as desiccation. 

International clonal lineages have been studied to determine if differences 

exist in the virulence factors between the strains.  Each international clonal lineage has 

a central, predominant genotype with a very few single locus variants (30).  It has been 

found these international epidemic clonal lineages have selective advantage for causing 

disease over non-epidemic strains, although the reasons are still unknown (30).  One 

particular study of international clonal lineages found regional differences in regards to 

aminoglycoside-resistance genes.  Strains from the Czech Republic were determined to 

have a limited number of resistant genes and integron structures when compared to 

strains from other European countries (23).  Differences in antibiotic usage and local 

availability of resistance genes, to acquire through lateral gene transfer, were 

considered factors for these differences (23).  International clonal lineages I and II from 

the Czech Republic were found to share all resistance genes except one as well as 

integron regions (23).  The lack of differences of aminoglycoside-resistance genes in the 

two clonal lineages examined indicate the possibility that strains occupying one 
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geographical region may share gene pools more readily through horizontal gene transfer 

than strains in differing geographical regions (23). 

The ability for bacteria to acquire iron from their environment is essential to 

growth and inability to acquire iron in iron-poor environments leads to death (2).  Hosts 

can defend themselves against potential bacterial infections by reducing the amount of 

free extracellular iron concentrations.  One reason Acinetobacter baumannii has been 

able to infect numerous patients is due to the different strategies developed to collect 

iron from the environment.  Several different mechanisms for iron-uptake have been 

observed and examined through studies of A. baumannii strains living in different 

environments.  Direct contact between the bacteria and hemoglobin, such as in the gut 

of a host, allow the bacteria to aggregate and destroy the cells releasing the iron into 

the environment.  This allows for quick uptake of the iron as exhibited in the SDF strain 

isolated from a human body louse (2, 28).  Other systems involve the use of high affinity 

molecules released outside of the cells to collect the iron.  A. baumannii strains AYE and 

ATCC 19606 use the acinetobactin sideophore to chelate iron by competing with host 

iron-binding proteins (28, 33).  A genetic analysis of ATCC strain 17978 revealed two 

independent siderophore-mediated iron acquisition systems acquired through 

horizontal gene transfer and transposition (33).   

Despite the official genus name of Acinetobacter being relatively new, the 

history of the genus dates back to organisms originally classified as belonging to other 

genera.  A particular species of the genus, A. baumannii, has been known to cause 

human disease throughout the world.  Despite some conflict regarding the extent of 



11 

 

clinical significance researchers agree more information regarding the species is needed 

as it is a valid clinical concern.  One focus of research regarding this particular species is 

the examination of virulence factors potentially responsible for increases in human 

disease.  Motility, hemolytic activity, desiccation, and ability to acquire iron from the 

environment are among the virulence factors studied.  Thus far, there is conflicting 

research regarding the significance of each potential virulence factor and further 

research is needed to further describe each factor.  
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CHAPTER 2 

 

 INTRODUCTION 

 

The 23 species found in the Acinetobacter genus include environmental 

organisms, all of which can be human pathogens although most are not associated with 

human disease.  The most prevalent and worrisome clinical species worldwide is 

Acinetobacter baumannii, which has been identified as the source of multiple outbreaks 

and is emerging globally as a troublesome pathogen (14, 24).  According to the CDC, 

approximately 80% of infections caused by the Acinetobacter genus are specific to the 

baumannii species (7).  Strains of A. baumannii are isolated in up to 1% of nosocomial 

infections (28).  A. baumannii, a gram-negative, glucose non-fermentative, non-motile, 

non-hemolytic, catalase-positive, oxidase-negative aerobic coccobacillus, is frequently 

found as an opportunistic pathogen in patients with mechanical ventilation, urinary or 

respiratory catheters (5, 12, 14, 16, 17, 24).  Critically-ill patients and patients with 

openings in their skin and respiratory tract are those most often afflicted by A. 

baumannii (24).  

The majority of infections are hospital-acquired or nosocomial infections.  

Researchers have seen a rise in infections in long-term care facilities, such as nursing 

homes, and in wounded military personnel (21).  Infection with A. baumannii can occur 

through contact with contaminated hospital personnel or by exposure to contaminated 

hospital equipment (21, 29).  Evidence has shown the bacterium can colonize implanted 

removable devices, such as catheters, arterial pressure monitoring devices, and 
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respiratory equipment (16, 21).  Dry environmental objects, such as mattresses, pillows, 

and remotes, have also been implicated as a method of transmission (16).  

 While mortality rates are largely unknown, evidence supports prolonged 

hospital stays in ICUs leading to poorer outcomes in afflicted patients and increased 

attributable mortality (19, 21).   Hospital-acquired pneumonia is the most commonly 

observed clinical presentation (14, 21).  Bloodstream infections, urinary tract infections, 

hospital-acquired meningitis, wound infections, and bone infections are also clinical 

syndromes due to infections with A. baumannii (14, 16, 21).  Intensive care units 

experience outbreaks which are difficult to control and quick to spread; the source of 

infections may be difficult to identify in these outbreaks (14).   

In the past, A. baumannii was considered to be a pathogen of low virulence, 

meaning it was thought to have a lowered ability to infect and cause disease (14).  In the 

past, most studies involving A. baumannii were based on describing the outbreaks, 

source of outbreaks, risk factors, and outcomes to help improve therapeutic treatment 

(21).  Several epidemiological studies have shown the bacteria can survive in harsh 

hospital environments as well as cause disease outbreaks.  Recognition that limited 

knowledge exists regarding the organism’s pathogenicity and virulence factors have 

caused many researchers to question the status quo.  Virulence factors have been 

recently identified for A. baumannii, although relatively few were identified (2, 24).  

Limited data has been collected concerning their function to date (2, 24).  These factors 

include, but are not limited to, resistance to desiccation, the ability to evade the 

bactericidal activity of blood serum, resistance to iron starvation, biofilm formation, and 
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motility (2, 32).  In addition to phenotypic virulence factors, genes which influence iron-

uptake, biofilm formation, and quorum sensing have been found to differ between 

species in the Acinetobacter genus (14, 28).   

Previously isolated strains of Acinetobacter baumannii have shown differences 

in their ability to lyse blood cells as well as differences in motility (2).  Resistant 

(outbreak related) and antibiotic susceptible (non-outbreak related) isolates have been 

shown to exhibit limited hemolytic activity in liquid medium using defibrinated horse 

blood, but not using defibrinated sheep blood (2).  Surface motility levels have been 

shown to differ between multi-drug resistant and antibiotic susceptible isolates (2, 21).  

Differences in motility have also been seen within clinical isolates as not all strains have 

displayed motility under laboratory conditions (21).   

PURPOSE OF RESEARCH 

The objective of this study was to identify the virulence factors present in 

clinical isolates of Acinetobacter baumannii collected from the University of Kentucky 

Hospital in Lexington, KY. The virulence factors to be assessed in this study included 

hemolytic activity (using two different methods) and surface motility.  The ability of A. 

baumannii to persist in hospital environments, as well as to develop multi-drug 

resistance, increases the likelihood of the species becoming endemic in local hospitals.  

Identifying the characteristics of A. baumannii isolates will allow hospital staff to make 

informed decisions about patients who have risk factors for A. baumannii infection. 
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CHAPTER 3  

 

MATERIALS AND METHODS 

 

COLLECTION AND STORAGE OF ISOLATES 

Isolate ATCC 19606 was ordered from Microbiologics to act as a control.  The 

clinical isolates for this study were obtained from the University of Kentucky Medical 

Center.  A total of 50 isolates were collected from the medical center and mailed 

overnight on TSA slants; only 48 isolates were recovered.  Sixteen of the isolates 

obtained were previously determined to be multi-drug resistant.  Nine isolates were 

determined to be a complex of A. calcoaceticus-A. baumannii .  Four isolates were a 

complex of A. calcoaceticus-A. baumannii  and multi-drug resistant.  More information 

about the isolates can be found in Appendix A, Table 2: Characteristics of bacterial 

strains used in this study.  On the day the isolates arrived, they were transferred from 

the TSA slants onto Luria-Broth (LB) plates and incubated for 24 hours at 35°C.   All 

isolates were harvested and then stored in a -80°C freezer in one milliliter of 10% 

serum-sorbitol solution.  Prior to each test, the isolates were cultured onto LB plates 

using isolation streaks and incubated for 24 hours at 35°C.  Each procedure was 

performed three different times.   

HEMOLYTIC ACTIVITY 

Hemolytic activity of the isolates was determined using both an agar plate 

method and a liquid hemolytic assay.  Activity for the plate assay was determined by 

incubating 5 μL of bacteria-containing saline, normalized to an OD600 = 1.00 ± 0.1, on 
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Columbia agar with 5% defibrinated horse blood for 18 hours at 35°C.  Zones of 

clearance were used to determine whether hemolytic activity was present or not.  

Staphylococcus aureus was used as a control to indicate a positive reading. Bouvet et al. 

determined A. baumannii ATCC 19606 to be non-hemolytic and thus this isolate was 

used a negative control (4). 

The liquid hemolytic activity assay was performed by incubating one colony of 

the isolate, grown on a LB plate as described above, for 3 hours at 37°C with gentle 

agitation in Tryptic-Soy broth (TSB) with 1% defibrinated horse blood.  Prior to the horse 

blood being added to the TSB the blood cells were washed with phosphate buffer 

solution (PBS) and centrifuged for 10 minutes at 1000 g and 4°C.  Excess liquid was 

removed and discarded.  The process of washing the horse blood was performed three 

separate times.  After incubation, the TSB containing bacteria mixture was centrifuged 

for 20 minutes at 1000 g and 4°C.  The supernatant was removed and the OD600 was 

determined.  Prior to each OD600 reading, the spectrometer was set to zero using sterile 

distilled water.  The percentage (P) of blood lysis was determined using the Antunes 

equation P = (X-B)/(T-B)X100 by subtracting the OD600 of sterile distilled water (B) from 

the value of the supernatant (X) and dividing by the difference of the OD600 of distilled 

water (B) and TSB with horse blood(T) (2).   

SURFACE MOTILITY 

Surface motility was determined by stab inoculating petri dishes containing 

surface motility agar with 1% TTC.  Sterile saline containing bacteria was normalized to 

OD600 = 1.00 ± 0.1 prior to stab inoculation.  Plates were incubated at 35°C for 18 hours.  
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Motility was determined to be positive or negative based on the amount of red 

indication from the TTC. 
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CHAPTER 4  

 

RESULTS 

 

HEMOLYTIC PLATE ASSAY 

There were no zones of clearance indicating hemolytic activity for any of the 

48 isolates tested.  This hemolytic test was also performed on a negative control (ATCC 

19606) and positive control (Staphylococcus aureus).  Figure 2 shows a representative 

sample indicating a lack of hemolytic activity and the positive control indicating the 

presence of hemolytic activity. 

 
Figure 2: Hemolytic-negative and hemolytic-positive representative plates. 

(a): A representiave sample of Acinetobacter baumannii including the negative control, 
ATCC 19606.  This plate shows no zones of clearance indicating a lack of presence of 
hemolytic activity. 

(b): Staphylococcus aureus was used as a positive control of hemolytic acitivy.  Note the 
zones of clearance indicated by the lighter circles surrounding the darker circles. 

(a) (b) 
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HEMOLYTIC LIQUID ASSAY 

The average OD600 of the isolates ranged between 0.018 and 0.136.  

Percentage of blood cells lysed differed from 2% to 12%.  The negative control, ATCC 

19606, had an average OD600 of 0.052 while the positive control, S. aureus, had an 

average OD600 of 0.606. The negative control had an average of 6.501% of blood cells 

lysed, while the negative control had an average of 75.320% of blood cells lysed. 

Differences in the average percentage of blood cells lysed by isolate are illustrated in 

Figure 3 and Figure 4.  Differences in the average OD600  by isolate are illustrated in 

Figure 5 and Figure 6. 

 
Figure 3: Average Percentage of Blood Cells Lysed in Supernatant without a Positive 
Control. 
 
This graph shows the average percentage of three assays for each isolate of blood cells 
lysed.  The Positive Control is not represented in this figure to show how the isolates 
compared to each other. 
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Figure 4:  Average Percentage of Blood Cells Lysed in Supernatant with a Positive 
Control Species Staphylococcus aureus. 
 
This graph shows the average percentage of three assays for each isolate of blood cells 
lysed including the Positive Control species Staphylococcus aureus, located on the far 
right of the graph.  This graph is intended to show how the percentage of blood cells 
lysed by Acinetobacter baumannii compared to the Positive Control. 
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Figure 5: Average OD600 of Supernatant without a Positive Control. 
 
This graph shows the average OD600 of three assays for each isolate without a Positive 
Control.  This graph is intended to show how the average OD600 compared to the other 
isolates. 
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Figure 6: Average OD600 of Supernatant including a Positive Control Species 
Staphylococcus aureus. 
 
This graph shows the average OD600 of three assays for each isolate, including a Positive 
Control, Staphylococcus aureus. This graph is intended to show how the average OD600 

of each isolate compared to the Positive Control species Staphylococcus aureus.  
 
SURFACE MOTILITY 

Of the 48 clinical isolates and one reference strain (ATCC 19606) tested, only 

13 clinical isolates had evidence of surface motility.  36 clinical isolates and reference 

strain ATCC 19606 did not show motility.  Figure 7 shows a representative sample 

determined to be positive for surface motility and a representative sample determined 

to be negative for surface motility.  Table 1 shows the motility results for all strains 

tested. Figure 8 and Figure 9 show the differences in count of isolates by motility and 
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multi-drug resistance and complex of A. calcoaceticus-A. baumannii. Figure 10 and 

Figure 11 are statistical results showing the relationship between motility and multi-

drug resistance and complex of A. calcoaceticus-A. baumannii. 

   
Figure 7: Surface motility-negative and surface motility-positive representative plates. 

(a): This plate shows a representative sample, isolate 35, which was determined to have 
surface motility.  The bright red spots are from an indicator, TTC, included in the 
preparation of the surface motility agar.  The bright red spots indicate surface motility. 
Note the spots are larger than the plate on the right indicating no surface motility. 

(b): This plate shows a representative sample, isolate 9, which was determined to have 
no surface motility.  Note the lack of bright red spots and smaller diameter of the dull 
red spots when compared to the plate on the left. 

 

 

(a) (b) 
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Figure 8: Graph of Multi-drug resistant vs Surface Motility. 

This graph shows the count of isolates determined to be positive and negative for 
surface motility categorized by determination of multi-drug resistance.  Note the lack of 
difference of count for each surface motility characterization within each MDR 
categorization. 

 

Figure 9: Graph of Complex vs. Surface Motility. 

This graph shows the count of isolates determined to be positive and negative for 
surface motility categorized by determination of whether the isolate was a complex of 
A. calcoaceticus-A. baumannii or not.  Note the lack of difference of count for each 
surface motility characterization within each complex categorization. 
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Statistical Tests for Multi-drug resistant vs. Surface Motility 
 

 
Test Value p-value  

Chi-Square 1.931a 0.381  

Phi Coefficient 0.195 0.381  

 a. 2 cells (33.3%) have expected count less than 5. The minimum expect  
count is .78. 

Figure 10: Statistical Tests for Multi-drug resistant vs. Surface Motility. 

This chart shows the statistical test values for the Chi-Square and Phi Coefficient tests 
performed to determine if a relationship exists for isolates classified as Multi-drug 
resistant and whether or not they have surface motility.  Note the much higher test 
value when compared to the p-value for the Chi-Square test.  Note the much lower test 
value when compared to the p-value for the Phi Coefficient test. 

 

 

 

Statistical Tests for Isolates that are part of a complex vs. Surface Motility 
 

 
Test Value p-value  

Chi-Square 1.870b 0.393  

Phi Coefficient 0.191 0.393  

 b. 3 cells (50.0%) have expected count less than 5. The minimum expected 
count is .51. 

Figure 11: Statistical Tests for Complex vs. Surface Motility. 

This chart shows the statistical test values for the Chi-Square and Phi Coefficient tests 
performed to determine if a relationship exists for isolates classified as being part of an A. 
calcoaceticus-A. baumannii complex and whether or not they have surface motility.  Note the 
much higher test value when compared to the p-value for the Chi-Square test. Note the much 
lower test value when compared to the p-value for the Phi Coefficient test. 
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Table 1: Surface Motility results for all A. baumannii isolates tested broken down by multi-
drug resistance and if the isolate was determined to be A. calcoaceticus-A. baumannii  
complex 
Strain Part of a Complex? Multi-drug Resistant Motility 

1 - + + 

2 - - + 

4 - - + 

5 - - - 

6 - - - 

7 - - - 

8 - - - 

9 - - - 

10 + - - 

11 + - - 

12 - + - 

13 - + - 

14 - + - 

15 - + - 

16 + - - 

18 - - - 

19 - - - 

20 - + - 

21 - - + 

22 - - + 

23 - + + 

24 - - - 

25 - - + 

26 - + + 
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Table 1: (continued) 
Strain Part of a Complex? Multi-drug Resistant Motility 
27 - + - 

28 - - + 

29 - + - 

30 - + - 

31 + + - 

32 + - - 

33 + + - 

34 + - - 

35 - - + 

36 - + - 

37 + - - 

38 - - - 

39 - - - 

40 + + - 

41 + - - 

42 + - - 

43 + + - 

44 - + - 

45 - - - 

46 - - - 

47 + - + 

48 + - + 

49 - - + 

50 - - - 

ATCC 19606 - - - 
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CHAPTER 5  

 

DISCUSSION 

 

Acinetobacter baumannii has emerged as a worldwide pathogen of concern 

due to the increasing number of outbreaks of disease associated with the bacteria and 

the arise of multi-drug resistant strains of the bacteria (2, 24).  Many different studies 

attempting to identify, classify, and describe virulence factors have stemmed from this 

concern.  In an attempt to further our understanding of the role of surface motility and 

hemolytic virulence factors, isolates were acquired for study from the University of 

Kentucky hospital in Lexington, KY. A total of 50 isolates were collected from different 

areas of the hospital over a period of 6 months.  Only 48 of those isolates were 

recovered for testing.  Reference strain ATCC 19606 was also purchased as a control 

organism. 

In order to determine hemolytic activity two different assay methods were 

used; one was qualitative while the other was quantitative.  Defibrinated horse blood 

was chosen for both assays as studies have shown hemolysis can be observed on horse 

blood agar, but not sheep blood agar.  The qualitative method involved plating the 

bacteria onto a blood agar plate and observing the zone of clearance or lack thereof.  

The qualitative method involved growing the bacteria in a suspension of tryptic soy 

broth and using the optical density to determine the amount of blood cells lysed.  No 

zones of clearance were observed for any of the clinical isolates for the qualitative 

method; see Figure 2 to view representative plates of positive and negative hemolytic 
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results.  The lack of hemolytic activity on plates is consistent with the species historically 

being described as non-hemolytic (2).  The quantitative liquid assay showed limited 

signs of hemolytic activity averaging approximately 6% of blood cells lysed.  A strain of 

Staphylococcus aureus was used as a positive control and lysed approximately 75% of 

the blood cells. 

Figure 3 shows the percentage of blood cells lysed by the clinical isolates and 

the reference strain ATCC 19606.  In this figure it appears there is a significant difference 

in the percent of blood cells lysed; however Figure 4 shows the clinical strains as 

compared to the positive control.  In this figure it is easy to see there is a significant 

difference between the percent of blood cells lysed by the A. baumannii isolates and the 

positive control, but not within the clinical isolates and reference strain.  The significant 

difference in percentage of blood lysed compared to the positive control led to the 

conclusion that there was no hemolytic activity for the clinical isolates or the reference 

strain.  Using a limited number of isolates (4), Antunes et al also observed limited 

hemolytic activity using a liquid assay with an average of approximately 12% of blood 

cells lysed for all clinical isolates (2).  Compared to the Antunes study, this study tested 

more isolates, 48 isolates versus 4, accounting for the difference, 6% vs. 12%, of average 

blood cells lysed by all isolates.   

Staphylococcus aureus is a gram-positive bacterium known to have hemolytic 

activity.  S. aureus damages blood cells by releasing alpha-hemolysins which bind to the 

surface membrane of host blood cells causing the release of eicosanoids and cytokines 

and resulting in an inflammatory response (26).  Leukocytes and platelets are the most 
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sensitive components of blood in humans to the alpha-hemolysins (26).  Alpha-

hemolysins are also responsible for osmotic phenomena, cell depolarization, and loss of 

ATP (26).  Mutants of S. aureus, which produce lowered levels of alpha-hemolysins were 

created in the lab, have shown to have a lowered ability to cause infection in several 

different animal models (26).  Purified versions of the alpha-toxin have been used to 

show an increased ability to cause infection in the same animal models (26).  As a result 

of alpha-hemolysins, hemolytic activity is shown to be an important virulence factor for 

S. aureus.   

A gram-negative bacterial species identified as lacking hemolytic activity is 

Klebsiella pneumoniae.  Similar to A. baumannii, it is an opportunistic pathogen known 

to infect patients with an underlying disease.  It is ranked second to Escherichia coli as a 

cause of nosocomial gram-negative bacteremia (26).  A disadvantage to lacking the 

ability to lyse blood cells is that the bacteria must develop other methods to cause 

disease in a host.  Capsular antigens, pili, serum resistance, lipopolysaccharide, and 

siderophores have been identified as virulence factors for Klebsiella pneumoniae (3).  

The capsular antigens create a thick surface surrounding the cell membrane, making 

phagocytosis by host cells extremely difficult (3).  Pili, sometimes referred to as fimbriae, 

are used to attach the bacteria to the human mucosal surfaces making the first step of 

infection possible. Siderophores are iron chelators, which compete with host factors for 

iron, allowing more iron to be available for use by the bacterial cell. 

Some of these virulence factors can be neutralized easier than others.  Studies 

have shown cranberry juice is effective at preventing adhesion for enterobacteria in the 
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gastrointestinal tract (3, 26).  The prevention of adhesion has been successful in 

preventing infection and in the eradication of existing infection in colonized patients.  

Adhesion is the first step of infection, thus when the bacterial cells cannot adhere to the 

human host cells then infection does not occur. It would be a greater advantage for 

bacteria, such as Acinetobacter baumannii, to have the ability to lyse blood cells than to 

have higher adhesive ability because the effects of hemolysis cannot be overcome as 

easy.  As demonstrated by Staphylococcus aureus, hemolysis elicits an inflammatory 

reaction resulting in the death of the invading bacteria in a healthy human host.  The 

inflammatory reaction can cause a cascade of effects that lasts after the bacteria is 

eradicated, resulting in more damage than is caused by adhesion.     

Another potential virulence factor assessed was surface motility.  Thirteen of 

48 isolates assessed did show evidence of surface motility (Table 1).  The concentric rings 

of motility observed in this study were similar to those observed on Eiken agar by 

Clemmer et al (see Figure 1 versus Figure 7).  The other 35 strains and reference strain 

ATCC 19606 did not show evidence of surface motility.  Signs of motility were 

unexpected because the name Acinetobacter derives from a greek word meaning non-

motile and the species is typically described as being non-motile (8).  However, despite 

the historical categorization of being non-motile, other researchers have shown it is very 

difficult to observe surface motility in laboratory conditions accounting for the signs of 

motility observed by this study.  Surface motility has also been found to be highly 

variable between several environmental and clinical isolates of A. baumannii from 

different geographic regions (8).  Clemmer et al. also found evidence that surface 
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motility for the M2 strain differs based on the brand and concentration of agar (8).  

Surface motility was best evidenced on Eiken agar with a concentration of 0.2-0.4% (8).  

Concentrations above 0.4% allowed for less motility observed (8).  

The observations of surface motility in this study are either evidence of actual 

motility or false positives resulting from the methods used.  Surface motility genes could 

have been acquired by the A. baumannii strains through lateral gene transfer from other 

bacteria found inside the hospital environment.  Observation of motility in this study 

could be attributed to the low concentration (0.2%) of agar.  The low concentration of 

agar and use of TTC indicator may have allowed for low levels of motility to be 

observed.  These levels may not prove statistically significant when compared to 

bacterial species with known motility.  Results were not collected to rule out this 

possibility.  Genetic testing for motility genes would provide more evidence for either of 

these options, but were not included in the scope of this study.  

The unexpected evidence of surface motility is most likely not linked to the 

complex of A. calcoaceticus-A. baumannii (this will be referred to as a complex from this 

point forward).  Similar to A. baumannii, Acinetobacter calcoaceticus is not identified as 

being motile historically.  Nine of the 48 recovered isolates for this study were 

determined to be part of a complex and only 2 of these isolates had evidence of surface 

motility.  The low ratio of complex isolates with evidence of surface motility versus the 

complex isolates without evidence of surface motility does not indicate a relationship 

between the two variables.  The surface motility observed in this study is possibly the 

result of acquisition of motility genes from foreign sources.  
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Specific genes could be identified through whole genome sequencing although 

this would be time consuming and costly.  Whole genome sequencing would allow for 

the identification of all genes related to a specific virulence factor.  This would be 

especially useful because a gene may be identified that researchers may not expect.  It 

would be more cost effective to use primers to look for specific genes using PCR if there 

was evidence to support the presence of those genes.  There are several different 

molecular fingerprinting methods that can be used to study the genome of A. 

baumannii, including f-AFLP (fluorescent amplified fragment length polymorphism), 

RAPD (random amplified polymorphic DNA), PFGE (pulsed-field gel electrophoresis), and 

REP-PCR (repetitive extragenic palindromic PCR).  f-AFLPhas been identified as a way to 

determine the genetic relatedness of strains with high discriminatory power (10).  This 

test can take 72 to 96 hours to perform.  REP-PCR has been identified as a cost-effective 

efficient method to determine the genetic relatedness of specific strains of A. 

baumannii, requiring only 4 hours to perform (10).  REP-PCR was also found to have high 

discriminatory power and to be a reliable and reproducible method of identifying the 

relationship of two particular isolates (10), REP-PCR fingerprint analysis can be 

combined with the use of specialized software, VIGI@ct DiversiLab, to help automate 

surveillance surveys to identify outbreaks quickly by comparing the fingerprints of 

multiple isolates at once (10).  f-AFLP needs additional software before automated 

surveillance can occur (10).   

Chi-square and phi coefficient statistical tests were performed to determine if 

a relationship exists between multi-drug resistant strains and surface motility as well as 
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strains consisting of a complex of A. calcoaceticus-A. baumannii and surface motility.  

Due to the lack of observed hemolysis, these statistical tests were not conducted for the 

hemolytic activity virulence assays.  Similarly, there were no isolates where surface 

motility was observed that were both multi-drug resistant and were determined to be a 

complex.  Therefore no statistical tests were performed to determine if there was a 

possible relationship between multi-drug resistant, complex organisms with surface 

motility.  The chi-square test was used to determine if a relationship existed and the phi 

coefficient determined the strength of the relationship.  

The chi-square test result was not statistically significant indicating that no 

relationship exists between surface motility and multi-drug resistance or being part of a 

complex of A. calcoaceticus-A. baumannii (see Figure 10 and Figure 11).  Similarly, the 

phi coefficient test indicated an extremely poor strength of relationship.  Figure 8 and 

Figure 9 show the lack of differences of count of isolates testing positive and negative 

for motility against multi-drug resistance and a complex.  These tests should only be 

considered as preliminary results due to the low sample size resulting in no statistical 

power.  In order for either test to have any statistical power there needs to be at least 

five results for each combination of factors (+surface motility +MDR, +surface motility –

MDR, –surface motility +MDR, and –surface motility –MDR).  There were only three 

isolates positive for surface motility and multi-drug resistance.  Only two isolates were 

determined to be positive for surface motility and part of a complex.  The probability of 

type-II error, failure to reject the null hypothesis of no relationship existing, is very high 

due to the low number of results.  The lack of statistical significance does not mean no 
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relationship exists between these factors; it can only be assumed a potential 

relationship was not detected in this study.  Despite the lack of significance for this 

study, the idea that a relationship exists should not be disregarded.  Further studies 

should be performed to classify with greater statistical confidence if a relationship does 

or does not exist.  

Highly virulent isolates may not have been detected because this study did not 

assay for all potential virulence factors.  These additional factors have been shown to 

play a part in virulence for other bacterial species.  Iron-uptake is an example of 

virulence factor that was not  assessed.  Given that iron is essential for bacterial growth 

iron acquisition genes, which allow the bacteria to acquire iron in low-iron conditions, 

would be a significant advantage.  Another example would be desiccation.  In hospital 

environments, the ability to survive for long period of times without drying out would 

allow bacteria on environmental objects to cause disease in more patients.      

Another potential reason the results of this study did not find highly virulent 

isolates is possibly because the multi-factorial aspect of virulence was not taken into 

account.  A multi-factorial approach to virulence means that several different factors all 

play a role in the pathogenicity.  Surface motility, hemolytic activity, increased 

desiccation times, greater ability to obtain iron from the environment, increased 

adhesion ability, etc. are not individually responsible for the fact that a particular strain 

can cause disease more readily than another.  The presence of several of these factors 

account for the overall virulence of an isolate.  Specific virulence factor assays may not 

have statistically higher results when compared with other species known to possess the 
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virulence factor.  The combination of all the slight differences would allow the bacteria 

to have more opportunities to cause disease.  This study did not assess enough virulence 

factors to be able to determine if there was a multi-factorial component of virulence for 

these isolates.  Future studies should consider the possibility that a combination of 

virulence factors have a positive and statistically significant relationship with the ability 

of the species to cause disease. 

It is important to remember the small scope of this study means the results or 

lack of results cannot be applied worldwide.  Genetic differences have been described 

between different A. baumannii strains from different epidemic lineages, such as 

international clonal lineages I-III.  The lack of genetic testing in this study is a hindrance 

in relating the results with other studies due to the lack of information to classify the 

lineage.  For example, isolate data from appendix A shows isolates 21 and 22 were both 

isolated from the axilla/groin area in the A07A area of the hospital.  Genetic testing 

would have been able to determine if these isolates are in fact the same strain of 

bacteria or different.  The lack of genetic testing also made it impossible to determine 

the international clonal lineage relationship.  This lack of information should be 

considered when comparing these results to other studies with more thorough testing.  

These results should only be considered accurate within the hospital.  Even within the 

hospital, these results should be interpreted with caution as the presence of virulent 

traits can change through time.  

Despite the lack of results from this study, Acinetobacter baumannii should be 

considered as a legitimate threat to patient health in the University of Kentucky 



37 

 

hospital.  Lateral gene transfer is one method by which this bacterium can become more 

harmful as time passes.  The acquisition of multi-drug resistance is a prime example of 

how the bacteria can become more harmful.  Any acquisition of virulent traits allows for 

a higher possibility of poorer patient outcomes from infection by this opportunistic 

pathogen.  Hospital staff should be cognizant of the potential for harm and take 

additional precautions to lower the risk of infection.  These precautions include proper 

sterilization of medical instruments such as catheters and disinfection of environmental 

objects including pillowcases and remotes. Standard EPA-approved disinfectant or 

detergent-disinfectant including the use of hypochlorite solutions should be used for 

disinfection procedures on environmental objects contaminated with Acinetobacter 

baumannii (10, 12, 15).  When these precautions fail, microbiologists and 

epidemiological staff members can utilize the REP-PCR technique and the VIGI@ct 

DiversiLab software to determine the genetic relationships of isolates and therefore 

identify outbreak situations earlier (10).  After outbreak situations are identified hospital 

staff can take appropriate measures, such as further disinfection, disposal of potentially 

contaminated reusable equipment, or even temporary ward closures, to limit the 

outbreak. 

CONCLUSION 

Overall, the results of this study and literature review show a need for further 

research to be conducted on the virulence factors of Acinetobacter baumanni.  There 

are conflicting results regarding different factors and whether or not they play a part in 

the overall virulence of the organism.  For example, studies have shown surface motility 
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to be highly variable.  No definite link has been determined as the cause for the 

variability.  Studies should be designed to look at one specific virulence factor using 

variable laboratory conditions to determine the role of that specific factor.  For example, 

to study surface motility of a particular strain, different types and concentrations of 

media could be used with the exact same protocol.  This will also help determine under 

what laboratory conditions it is easiest to observe the motility and create a baseline for 

comparing results.  Similar studies could be designed for each virulence factor.  The 

potential for a multi-factorial component to virulence should also be examined 

thoroughly.  One virulence factor alone may not be the determining factor in whether or 

not a particular strain is virulent.  Increased pathogenic potential could be linked to the 

presence of multiple virulence factors. 
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Table 2: Characteristics of bacterial strains used in this study 
Isolate MDR or Complex? Source/Wound 

Type 
Hospital 
Location 

1 MDR Decubitis Ulcer 3N 
2 None Axilla/groin A07 

3* MDR Axilla/groin 1MED 
4 None Axilla/groin A07J 
5 None Axilla/groin 2MED 
6 MDR Axilla/groin 2MED 
7 None Axilla/groin Unknown 
8 None Axilla/groin Unknown 
9 None Axilla/groin Unknown 

10 A. calcoaceticus-A. baumannii  complex Axilla/groin Unknown 
11 A. calcoaceticus-A. baumannii  complex Chest Tissue 7W 
12 MDR Axilla/groin 2MED 
13 MDR Unknown Unknown 
14 MDR Unknown Unknown 
15 MDR Unknown Unknown 
16 A. calcoaceticus-A. baumannii  complex Unknown Unknown 

17* None Wound Unknown 
18 None Unknown Unknown 
19 None Unknown Unknown 
20 MDR Blood 7E 
21 None Axilla/groin A07A 
22 None Axilla/groin A07A 
23 MDR Ischeal Wound Unknown 
24 None Nares SSE 
25 None Nares SSE 
26 MDR Decubitis Ulcer S4 (ICU) 
27 MDR Decubitis Ulcer 1MED 
28 None Neck Abscess ER 
29 MDR Rectal SS3E 
30 MDR Butt Unknown 
31 MDR A. calcoaceticus-A. baumannii  complex Catheter tip Unknown 
32 A. calcoaceticus-A. baumannii  complex Axilla/groin Unknown 
33 MDR A. calcoaceticus-A. baumannii  complex Trach Unknown 
34 A. calcoaceticus-A. baumannii  complex Alveolar lauage Unknown 
35 None Sputum Unknown 
36 MDR Trach aspirate Unknown 
37 A. calcoaceticus-A. baumannii  complex Axilla/groin Unknown 
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Table 2: (continued) 
Isolate MDR or Complex? Source/Wound 

Type 
Hospital 
Location 

38 None Axilla/groin Unknown 
39 None Nares Unknown 
40 MDR A. calcoaceticus-A. baumannii  complex Bronch wash Unknown 
41 A. calcoaceticus-A. baumannii  complex Axilla/groin Unknown 
42 MDR Coccyx wound Unknown 
43 MDR A. calcoaceticus-A. baumannii  complex Axilla/groin Unknown 
44 MDR Bone Unknown 
45 None Wound Unknown 
46 None Wound Unknown 
47 A. calcoaceticus-A. baumannii  complex Right leg Unknown 
48 A. calcoaceticus-A. baumannii  complex Axilla/groin Unknown 
49 None Axilla/groin Unknown 
50 None Axilla/groin Unknown 

*indicates the strain was unable to be recovered 
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APPENDIX B: 

Materials 
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Hema Resource and Supply, Inc. Defibrinated Horse Blood ordered from Hardy 

Diagnostics 

Microbiologics Acinteobacter baumannii ATCC 19606 

Difco Motility Test Medium 
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