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POSITIVE SOLUTIONS
OF A SINGULAR FRACTIONAL
BOUNDARY VALUE PROBLEM

WITH A FRACTIONAL BOUNDARY CONDITION

Jeffrey W. Lyons and Jeffrey T. Neugebauer

Communicated by Theodore A. Burton

Abstract. For α ∈ (1, 2], the singular fractional boundary value problem

Dα
0+x+ f

(
t, x,Dµ

0+x
)

= 0, 0 < t < 1,

satisfying the boundary conditions x(0) = Dβ

0+x(1) = 0, where β ∈ (0, α− 1], µ ∈ (0, α− 1],
and Dα

0+ , Dβ

0+ and Dµ

0+ are Riemann-Liouville derivatives of order α, β and µ respectively,
is considered. Here f satisfies a local Carathéodory condition, and f(t, x, y) may be singular
at the value 0 in its space variable x. Using regularization and sequential techniques and
Krasnosel’skii’s fixed point theorem, it is shown this boundary value problem has a positive
solution. An example is given.

Keywords: fractional differential equation, singular problem, fixed point.

Mathematics Subject Classification: 26A33, 34A08, 34B16.

1. INTRODUCTION

For α ∈ (1, 2], we consider the singular fractional boundary value problem

Dα
0+x+ f

(
t, x,Dµ

0+x
)

= 0, 0 < t < 1, (1.1)

satisfying the boundary conditions

x(0) = Dβ
0+x(1) = 0, (1.2)

where β ∈ (0, α − 1], µ ∈ (0, α − 1], and Dα
0+ , Dβ

0+ and Dµ
0+ are Riemann-Liouville

derivatives of order α, β and µ respectively. Here f satisfies the local Carathéodory
condition on [0, 1]×D, D ⊂ R2, (f ∈ Car([0, 1]×D))and f(t, x, y) may be singular at
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the value 0 in its space variable x. By a positive solution, we mean x satisfies (1.1),
(1.2) and x(t) > 0 for t ∈ (0, 1].

The study of fractional boundary value problems has seen a tremendous expansion
in recent years motivated by both general theory and physical representations and
applications. For the reader interested in such works, we refer to [2,4,7,8]. Of interest
to the work presented, we point to research investigating the existence of solutions to
fractional boundary value problems [1, 6, 9–12].

In [1], the authors proved the existence of at least one positive solution to the
Dirichlet boundary value problem

Dα
0+x+ f(t, x,Dµ

0+x) = 0,
x(0) = x(1) = 0

with α ∈ (1, 2), µ > 0 and α − µ ≥ 1 using Green’s functions and the Krasnosel’skii
fixed point theorem after placing certain conditions upon f .

Our aim in this work is to use the same differential equation, but instead of
Dirichlet boundary conditions, we incorporate fractional boundary conditions, x(0) =
Dβ

0+x(1) = 0 with β ∈ (0, α − 1]. Recently, the Green’s function for (1.1), (1.2) was
found in [3] which affords us the opportunity to utilize operators and an application of
Krasnosel’skii’s fixed point theorem . Since f might have a singularity in the function
space at x = 0, we must also use regularization and sequential techniques.

In section 2, we introduce definitions, assumptions, and define a sequence of func-
tions, {fn}, to handle the possible singularity at x = 0. Section 3 is where one will find
the Green’s function and its associated properties along with the Krasnosel’skii fixed
point theorem. Additionally, we prove the existence of a sequence of positive solu-
tions, {xn(t)}, to the auxiliary problem. Finally, in section 4, we make the jump from
a sequence of auxiliary solutions to a positive solution x(t) of (1.1), (1.2). We conclude
with an example.

2. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

We start with the definition of the Riemann-Liouville fractional integral and fractional
derivative. Let ν > 0. The Riemann-Liouville fractional integral of a function x of
order ν, denoted Iν0+u, is defined as

Iν0+x(t) = 1
Γ(ν)

t∫

0

(t− s)ν−1x(s)ds,

provided the right-hand side exists. Moreover, let n denote a positive integer and
assume n− 1 < α ≤ n. The Riemann-Liouville fractional derivative of order α of the
function x : [0, 1]→ R, denoted Dα

0+x, is defined as

Dα
0+x(t) = 1

Γ(n− α)
dn

dtn

t∫

0

(t− s)n−α−1x(s)ds = DnIn−α0+ x(t),

provided the right-hand side exists.
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We will make use of the power rule, which states that [2]

Dν2
0+t

ν1 = Γ(ν1 + 1)
Γ(ν1 + 1− ν2) t

ν1−ν2 , ν1 > −1, ν2 ≥ 0, (2.1)

where it is assumed that ν2 − ν1 is not a positive integer. If ν2 − ν1 is a positive
integer, then the right hand side of (2.1) vanishes. To see this, one can appeal to the
convention that 1

Γ(ν1+1−ν2) = 0 if ν2 − ν1 is a positive integer, or one can perform
the calculation on the left hand side and calculate

Dntn−(ν2−ν1) = 0.

We say that f satisfies the local Carathéodory condition on [0, 1]×D, D ⊂ R2, if
1. f(·, x, y) : [0, 1]→ R is measurable for all (x, y) ∈ D;
2. f(t, ·, ·) : D → R is continuous for a.e. t ∈ [0, 1]; and
3. for each compact set H ⊂ D, there is a function ϕH ∈ L1[0, 1] such that

|f(t, x, y)| ≤ ϕH(t),

for a.e. t ∈ [0, 1] and all (x, y) ∈ H.
Throughout the paper,

‖x‖L =
1∫

0

|x(t)|dt, ‖x‖0 = max
t∈[0,1]

|x(t)|,

and
‖x‖ = max{‖x‖0, ‖Dµ

0+x‖0}.
We assume the following conditions on f .

(H1) f ∈ Car([0, 1]×D), D = (0,∞)× R,

lim
x→0+

f(t, x, y) =∞,

for a.e. t ∈ [0, 1] and all y ∈ R, and there exists a positive constant m such that,
for a.e. t ∈ [0, 1] and all (x, y) ∈ D,

f(t, x, y) ≥ m.
(H2) f satisfies the estimate for a.e. t ∈ [0, 1] and all (x, y) ∈ D,

f(t, x, y) ≤ γ(t) (q(x) + p(x) + ω(|y|)) ,
where γ ∈ L1[0, 1], q ∈ C(0,∞), and p, ω ∈ C[0,∞) are positive, q is nonin-
creasing, p and ω are nondecreasing, and

1∫

0

γ(t)q(Mtα−1)dt <∞, M = mβ

(α− β)Γ(α+ 1) ,

lim
x→∞

p(x) + ω(x)
x

= 0.
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We use regularization and sequential techniques to show the existence of solutions
of (1.1), (1.2). Thus, for n ∈ N, define fn by

fn(t, x, y) =
{
f(t, x, y), x ≥ 1/n,
f
(
t, 1
n , y

)
x < 1/n,

for a.e. t ∈ [0, 1] and for all (x, y) ∈ D∗ := [0,∞)× R. Then fn ∈ Car([0, 1]×D∗),

fn(t, x, y) ≥ m,

for a.e. t ∈ [0, 1] and all (x, y) ∈ D∗,

fn(t, x, y) ≤ γ(t)(q(1/n) + p(x) + p(1) + ω(|y|)),

for a.e. t ∈ [0, 1] and all (x, y) ∈ D∗, and

fn(t, x, y) ≤ γ(t)(q(x) + p(x) + p(1) + ω(|y|)),

for a.e. t ∈ [0, 1] and all (x, y) ∈ D.

3. POSITIVE SOLUTIONS OF THE AUXILIARY PROBLEM

To use these techniques, we first discuss solutions of the fractional differential equation

Dα
0+x+ fn(t, x,Dµ

0+x) = 0, 0 < t < 1, (3.1)

satisfying boundary conditions (1.2).
The Green’s function for −Dα

0+u = 0 satisfying the boundary conditions (1.2)
is given by (see [3])

G(t, s) =
{
tα−1(1−s)α−1−β

Γ(α) − (t−s)α−1

Γ(α) , 0 ≤ s ≤ t < 1,
tα−1(1−s)α−1−β

Γ(α) , 0 ≤ t ≤ s < 1.
(3.2)

Therefore, x is a solution of (3.1), (1.2) if and only if

x(t) =
1∫

0

G(t, s)fn(s, x(s), Dµ
0+x(s))ds, 0 ≤ t ≤ 1.

Lemma 3.1. Let G be defined as in (3.2). Then

1. G(t, s) ∈ C([0, 1]× [0, 1]) and G(t, s) > 0 for (t, s) ∈ (0, 1)× (0, 1);

2. G(t, s) ≤ 1
Γ(α) for (t, s) ∈ [0, 1]× [0, 1]; and

3.
1∫
0
G(t, s)ds ≥ βtα−1

(α− β)Γ(α+ 1) for t ∈ [0, 1].
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Proof.
1. G is continuous by definition. The proof that G(t, s) > 0 for (t, s) ∈ (0, 1)× (0, 1)

can be found in [3].
2. Next, we remark that since 0 ≤ t ≤ 1 and α > 1, tα−1 ≤ 1. Also, notice that

since 0 ≤ β ≤ α − 1 and 0 ≤ s ≤ 1, (1 − s)α−1−β ≤ 1. So G(t, s) ≤ 1
Γ(α)

for (t, s) ∈ [0, 1]× [0, 1].
3. Now, for t ∈ [0, 1],

1∫

0

G(t, s)ds =
t∫

0

tα−1(1− s)α−1−β

Γ(α) − (t− s)α−1

Γ(α) ds+
1∫

t

tα−1(1− s)α−1−β

Γ(α) ds

= 1
Γ(α)


tα−1

1∫

0

(1− s)α−1−βds−
t∫

0

(t− s)α−1




= tα−1

Γ(α)
α− t(α− β)
α(α− β) .

But for t ∈ [0, 1], α− (tα− β) > β. Therefore,
1∫

0

G(t, s)ds = tα−1

Γ(α)
α− t(α− β)
α(α− β)

≥ βtα−1

(α− β)Γ(α+ 1) ,

for t ∈ [0, 1].
Define

Qnx(t) =
1∫

0

G(t, s)fn(s, x(s), Dµ
0+x(s))ds, 0 ≤ t ≤ 1.

Let X = {x ∈ C[0, 1] : Dµ
0+x ∈ C[0, 1]} with norm ‖ · ‖ defined earlier. Notice X is

a Banach space. Define a cone P in X as

P = {x ∈ X : x(t) ≥ 0 for t ∈ [0, 1]}.

Note if x ∈ P is a fixed point of Qn, then x is a positive solution of (3.1), (1.2). To
that end, we will use the well-known Krasnosel’skii Fixed Point Theorem, which is
stated below, to show the existence of positive solutions of (3.1), (1.2).
Theorem 3.2 (Krasnosel’skii’s Fixed Point Theorem [5]). Let B be a Banach space,
and let P ⊂ X be a cone in P. Assume that Ω1, Ω2 are open sets with 0 ∈ Ω1, and
Ω1 ⊂ Ω2. Let T : P ∩ (Ω2\Ω1)→ P be a completely continuous operator such that

‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2\Ω1).
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Lemma 3.3. Let (H1) and (H2) hold. Then Qn : P → P and Qn is a completely
continuous operator.

Proof. Suppose that x ∈ P. Then,

Qnx(t) =
1∫

0

G(t, s)fn(s, x(s), Dµ
0+x(s))ds.

From Lemma 3.1 (1.), G(t, s) is continuous and nonnegative on [0, 1] × [0, 1].
So Qnx ∈ C[0, 1]. Also, by using (2.1),

(Dµ
0+Qn)x(t) = 1

Γ(α− µ)


tα−µ−1

1∫

0

(1− s)α−β−1fn
(
s, x(s), Dµ

0+x(s)
)
ds

−
t∫

0

(t− s)α−µ−1fn
(
s, x(s), Dµ

0+x(s)
)
ds


 ,

and so Dµ
0+Qnx ∈ C[0, 1]. So Qn : X → X. By (H1) and the definition of fn(t, x, y),

we have fn
(
s, x(s), Dµ

0+x(s)
)
≥ m > 0 for a.e. t ∈ [0, 1]. Therefore, for x ∈ P,

Lemma 3.1 (1.) gives that Qnx(t) ≥ 0 for t ∈ [0, 1]. Thus, Qn : P → P.
Next, we show that Qn is a continuous operator. To that end, let {xk} ⊂ P be

a convergent sequence such that limk→∞ ‖xk − x‖ = 0. Then, limk→∞ xk(t) = x(t)
uniformly on [0, 1] and limk→∞Dµ

0+xk(t) = Dµ
0+x(t) uniformly on [0, 1]. Also, x ∈ P.

Let

ρk(t) = fn
(
t, xk(t), Dµ

0+xk(t)
)
, ρ(t) = fn(t, x(t), Dµ

0+x(t)).

Then, limk→∞ ρk(t) = ρ(t) for a.e. t ∈ [0, 1]. Since fn ∈ Car([0, 1]×R2) and {xk} and
{Dµ

0+xk} are bounded in C[0, 1], there exists ϕ ∈ L1[0, 1] such that m ≤ ρk(t) ≤ ϕ(t)
for a.e. t ∈ [0, 1] and all k ∈ N. By the Lebesgue Dominated Convergence Theorem,

lim
k→∞

1∫

0

|ρk(s)− ρ(s)|ds = 0.

By Lemma 3.1 (2.),

|(Qnxk)(t)− (Qnx)(t)| ≤ 1
Γ(α)

1∫

0

|ρk(s)− ρ(s)|ds.
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Therefore, limk→∞(Qnxk)(t) = (Qnx)(t) uniformly for t ∈ [0, 1]. Also,

|(Dµ
0+Qnxk)(t)− (Dµ

0+Qnx)(t)| ≤ 1
Γ(α− µ)


tα−µ−1

1∫

0

(1− s)α−β−1|ρk(s)− ρ(s)|ds

+
t∫

0

(t− s)α−µ−1|ρk(s)− ρ(s)|ds




≤ 2
Γ(α− µ)

1∫

0

|ρk(s)− ρ(s)|ds.

So, limk→∞(Dµ
0+Qnxk)(t) = (Dµ

0+Qnx)(t) uniformly for t ∈ [0, 1]. Thus,
‖Qnxk −Qnx‖ → 0 and hence, Qn is a continuous operator.

For W ∈ R+, define W = {x ∈ P : ‖x‖ ≤W} to be a bounded subset of P. Let ρ
be as before. Then there exists a ϕ ∈ L1[0, 1] with m ≤ ρ(t) ≤ ϕ(t) for a.e. t ∈ [0, 1]
as before. Since, for x ∈ W,

|(Qnx)(t)| ≤ 1
Γ(α)

1∫

0

ϕ(s)ds = ‖ϕ‖1Γ(α) ,

and

|(Dµ
0+Qnx)(t)| ≤ 2

Γ(α− µ)

1∫

0

ϕ(s)ds = 2‖ϕ‖1
Γ(α− µ) ,

it follows that {Qnx : x ∈ W} and {Dµ
0+Qnx : x ∈ W} are uniformly bounded. Next,

let 0 ≤ t1 < t2 ≤ 1. Then for x ∈ W,

|Qnx(t2)−Qnx(t1)| ≤ 1
Γ(α)


(tα−1

2 − tα−1
1

) 1∫

0

(1− s)α−1−βϕ(s)ds

+
t1∫

0

(
(t2 − s)α−1 − (t1 − s)α−1)ϕ(s)ds

+ (t2 − t1)α−1
t2∫

t1

ϕ(s)ds



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and

|(Dµ
0+Qnx)(t2)− (Dµ

0+Qnx)(t1)|

≤ 1
Γ(α− µ)



(
tα−µ−1
2 − tα−µ−1

1

) 1∫

0

(1− s)α−β−1ϕ(s)ds

+
t1∫

0

(
(t2 − s)α−µ−1 − (t1 − s)α−µ−1)ϕ(s)ds+ (t2 − t1)α−µ−1

t2∫

t1

ϕ(s)ds


 .

Thus, with the appropriate choice of δ, it can be shown that for ε > 0, if
t2 − t1 < δ, |Qnx(t2)−Qnx(t1)| < ε and |(Dµ

0+Qnx)(t2)− (Dµ
0+Qnx)(t1)| < ε. There-

fore, {Qnx : x ∈ W} and {Dµ
0+Qnx : x ∈ W} are equicontinuous, and by the

Arzelà-Ascoli theorem, Qn is a completely continuous operator.

Lemma 3.4. Let (H1) and (H2) hold. Then (3.1), (1.2) has a positive solution x∗

with x∗(t) ≥Mtα−1 for t ∈ [0, 1].
Proof. Define Ω1 = {x ∈ X : ‖x‖ < M}. Then for x ∈ P ∩ ∂Ω1 and t ∈ [0, 1],

(Qnx)(t) =
1∫

0

G(t, s)fn
(
s, x(s), Dµ

0+x(s)
)
≥ m

1∫

0

G(t, s) ≥Mtα−1.

So ‖Qnx‖0 ≥M . Consequently, ‖Qnx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1.
Next, notice that for x ∈ P and t ∈ [0, 1],

|(Qnx)(t)| ≤ 1
Γ(α)

1∫

0

γ(s)
(
q (1/n) + p(x(s)) + p(1) + ω

(∣∣Dµ
0+x(s)

∣∣))

≤ 1
Γ(α)

(
q (1/n) + p(‖x‖0) + p(1) + ω

(∥∥Dµ
0+x

∥∥
0
))
‖γ‖L.

Also, for x ∈ P,

|Dµ
0+(Qnx)(t)| =

∣∣∣∣∣∣
1

Γ(α− µ)


tα−µ−1

1∫

0

(1− s)α−β−1fn
(
s, x(s), Dµ

0+x(s)
)

−
t∫

0

(t− s)α−µ−1fn
(
s, x(s), Dµ

0+x(s)
)


∣∣∣∣∣∣

≤ 2
Γ(α− µ)

(
q (1/n) + p(‖x‖0) + p(1) + ω

(∥∥Dµ
0+x

∥∥
0
))
‖γ‖L.

So for K = max
{

1
Γ(α) ,

2
Γ(α−µ)

}
,

‖Qnx‖ ≤ K (q (1/n) + p(‖x‖) + p(1) + ω (‖x‖)) ‖γ‖L
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for x ∈ P. Since limx→∞
p(x) + ω(x)

x
= 0, there exists an S > 0 such that

K (q (1/n) + p(S) + p(1) + ω(S)) ‖γ‖L < S.

Let Ω2 = {x ∈ X : ‖x‖ < S}. Then ‖Qnx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2.
It follows from Theorem 3.2 that Qn has a fixed point x∗ ∈ P ∩ (Ω2\Ω1). Conse-

quently, (3.1), (1.2) has a solution x∗ with ‖x∗‖ ≥M .

4. POSITIVE SOLUTIONS OF THE SINGULAR PROBLEM

Lemma 4.1. Let (H1) and (H2) hold. Let xn be a solution to (3.1), (1.2). Then
the sequences {xn} and {Dµ

0+xn} are relatively compact in C[0, 1].
Proof. Similar to the proof of Lemma 3.3, we use Arzelà-Ascoli to show these
sequences are relatively compact. Note that

xn(t) =
1∫

0

G(t, s)fn
(
s, xn(s), Dµ

0+xn(s)
)
ds

and

Dµ
0+xn(t) = 1

Γ(α− µ)


tα−µ−1

1∫

0

(1− s)α−β−1fn
(
s, xn(s), Dµ

0+xn(s)
)
ds

−
t∫

0

(t− s)α−µ−1fn
(
s, xn(s), Dµ

0+xn(s)
)
ds




for t ∈ [0, 1] and n ∈ N. It follows from the proof of Lemma 3.4 that xn(t) ≥ Mtα−1

for all t ∈ [0, 1], n ∈ N. But

fn
(
t, xn(t), Dµ

0+xn(t)
)
≤ γ(t)

(
q(xn(t)) + p(xn(t)) + p(1) + ω

(∣∣Dµ
0+xn(t)

∣∣)) .
It was assumed that q is nonincreasing and p and ω are nondecreasing. Therefore,

fn(t, xn(t), Dµ
0+xn(t)) ≤ γ(t)(q(Mtα−1) + p(‖xn‖0) + p(1) + ω(‖Dµ

0+xn‖0).

This implies

xn(t) ≤ 1
Γ(α)




1∫

0

γ(t)q(Mtα−1)dt+ (p(‖xn‖0) + p(1) + ω(‖Dµ
0+xn‖0))‖γ‖L


 ,

and
Dµ

0+xn(t)

≤ 2
Γ(α− µ)




1∫

0

γ(t)q(Mtα−1)dt+ (p(‖xn‖0) + p(1) + ω(‖Dµ
0+xn‖0))‖γ‖L


 ,
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for all t ∈ [0, 1] and n ∈ N. Note it was assumed that
1∫
0
γ(t)q(Mtα−1)dt < ∞.

Therefore, by again setting K = max
{

1
Γ(α) ,

2
Γ(α−µ)

}
,

‖xn‖ ≤ K




1∫

0

γ(t)q(Mtα−1)dt+ (p(‖xn‖0) + p(1) + ω(‖Duxn‖0))‖γ‖L


 ,

for n ∈ N. Since limx→∞
p(x) + ω(x)

x
= 0, there exists an S > 0 such that

K




1∫

0

γ(t)q(Mtα−1)dt+ (p(v) + p(1) + ω(v))‖γ‖L


 < S,

for each v ≥ S. Thus ‖xn‖ < S for n ∈ N and the sequences {xn} and {Dµ
0+xn} are

uniformly bounded in C[0, 1].
Now, we show the sequences {xn} and {Dµ

0+xn} are equicontinuous in C[0, 1]. Let
0 ≤ t1 < t2 ≤ 1. Using the fact that

0 < fn(t, xn(t), Dµ
0+xn(t)) ≤ γ(t)(q(Mtα−1) + p(S) + p(1) + ω(S)),

we have

|xn(t2)− xn(t1)|

≤ Γ(α)


(tα−1

2 − tα−1
1 )

1∫

0

(1− s)α−1−β(γ(s)(q(Msα−1) + p(S) + p(1) + ω(S)))ds

+
t1∫

0

(
(t2 − s)α−1 − (t1 − s)α − 1

)
(γ(s)(q(Msα−1) + p(S) + p(1) + ω(S)))ds

+ (t2 − t1)α−1
t2∫

t1

(γ(s)(q(Msα−1) + p(S) + p(1) + ω(S)))ds


 ,
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and

|(Dµ
0+xn)(t2)− (Dµ

0+xn)(t1)|

≤ 1
Γ(α− µ)

(
(tα−µ−1

2 − tα−µ−1
1 )×

1∫

0

(1− s)α−β−1(γ(s)(q(Msα−1) + p(S) + p(1) + ω(S)))ds

+
t1∫

0

(
(t2 − s)α−µ−1 − (t1 − s)α−µ−1) (γ(s)(q(Msα−1) + p(S) + p(1) + ω(S)))ds

+ (t2 − t1)α−µ−1
t2∫

t1

(γ(s)(q(Msα−1) + p(S) + p(1) + ω(S)))ds


 .

Thus, with the appropriate choice of δ, it can be shown that for ε > 0, if t2 − t1 < δ,
|xn(t2) − xn(t1)| < ε and |(Dµ

0+xn)(t2) − (Dµ
0+xn)(t1)| < ε. Therefore, {xn} and

{Dµ
0+xn} are equicontinuous in C[0, 1]. So {xn} and {Dµ

0+xn} are relatively compact
in C[0, 1].

Theorem 4.2. Let (H1) and (H2) hold. Then (1.1), (1.2) has a positive solution x
with x(t) ≥Mtα−1 for t ∈ [0, 1].
Proof. From Lemma 3.4, (3.1), (1.2) has a positive solution for each n ∈ N. Call
these solutions xn. From Lemma 4.1, the sequence {xn} is relatively compact in X.
Therefore, without loss of generality, there exists an x ∈ X with limn→∞ xn = x
uniformly in X. Consequently, x ∈ P , x(t) ≥Mtα−1 for t ∈ [0, 1] and

lim
n→∞

fn(t, xn(t), Dµ
0+xn(t)) = f(t, x(t), Dµ

0+x(t)),

for a.e. t ∈ [0, 1]. Since

0 ≤ G(t, s)fn(xn(s), Dµ
0+xn(s)) ≤ 1

Γ(α)γ(s)(q(Msα−1)+p(S)+p(1)+ω(S)) ∈ L1[0, 1]

for a.e. s ∈ [0, 1] and all t ∈ [0, 1], n ∈ N, it follows from the Lebesgue Dominated
Convergence Theorem that

lim
n→∞

1∫

0

G(t, s)fn(xn(s), Dµ
0+xn(s))ds =

1∫

0

G(t, s)f(t, x(t), Dµ
0+x(t))ds.

Since

xn(t) =
1∫

0

G(t, s)fn(s, xn(s), Dµ
0+xn(s))ds,

for t ∈ [0, 1],
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x(t) =
1∫

0

G(t, s)f(t, x(t), Dµ
0+x(t))ds,

for t ∈ [0, 1]. Thus, x is a positive solution of (1.1), (1.2).

5. EXAMPLE

Example 5.1. Fix α ∈ (1, 2], β ∈ (0, α − 1], µ ∈ (0, α − 1]. Let i, k ∈ (0, 1),
j ∈

(
0, 1

α−1

)
. Define

f(t, x, y) = 1√
|2t− 1|

(
xi + 1

xj
+ |y|k

)
.

Additionally, set γ(t) = 1√
|2t−1|

, q(x) = 1
xj , p(x) = xi, ω(y) = yk, m = 1 and

M = β
(α−β)Γ(α+1) .

Notice that for t ∈ [0, 1] \ { 1
2} and (x, y) ∈ (0,∞)× R,

f(t, x, y) ≥ 1√
|2t− 1|

≥ 1 = m.

Hence f satisfies condition (H1). Also, f(t, x, y) = γ(t)(q(x) + p(x) + ω(|y|),
γ ∈ L1[0, 1], q ∈ C(0,∞) is nonincreasing, and p, ω ∈ C[0,∞) are nondecreasing.
Last,

1∫

0

M−jt−j(α−1)
√
|2t− 1|

dt <∞,

since j(α− 1) < 1, and

lim
x→∞

xi + xk

x
= 0,

since i, k ∈ (0, 1). So (H2) is also satisfied. Thus, Theorem 4.2 provides that there is
at least one positive solution x(t) to the fractional differential equation

Dα
0+x+ 1√

|2t− 1|

(
xi + 1

xj
+ |Dµ

0+x|k
)

= 0,

satisfying
x(0) = Dβ

0+x(1) = 0.

Further, for t ∈ [0, 1],

x(t) ≥ βtα−1

(α− β)Γ(α+ 1) .
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