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Abstract

Amicable pairs are two integers where the sum of the proper divisors

of one is the other and vice versa. Since the Gaussian integers have many of

the properties of the regular integers, we sought to discover whether there

exist any pairs of Gaussian integers with the same property. It turns out

that they do exist. In fact, some of the normal amicable pairs carry over

as Gaussian amicable pairs. Also discovered are pairs that have a complex

part.
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Part 1

Introduction
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Sum of Divisors Function

The sum of divisors function σ(n) for a number n denotes the sum

of the positive factors of n where σ(n) =
∑
d|n

d. For example the positive

divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24, hence σ(24) = 1 + 2 + 3 + 4 +

6 + 8 + 12 + 24 = 60. This method of calculating σ(n) will become less

efficient the larger n becomes. (Imagine trying to list and then sum all

of the proper divisors of 456, 892!) In order to work more conveniently

with σ(n) we must first note that σ(n) is a multiplicative function. That

is, σ(mn) = σ(m)σ(n), where m and n are relatively prime. Since distinct

primes raised to different powers are relatively prime, if n = pα1
1 ·pα2

2 ·. . .·pαs
s

then σ(n) = σ(pα1
1 )σ(pα2

2 ) · . . . ·σ(pαs
s ). Consider again σ(24). This property

tells us that σ(24) = σ(23 · 3) = σ(23)σ(3). But how do we calculate the

values of σ(23) and σ(3) without simply listing the proper divisors of each

number?

Theorem 8.7 from [3] notes that if p is any prime and e is any positive

integer, then σ(p) = p + 1 and σ(pe) =
pe+1 − 1

p− 1
. Using these properties

and multiplicity we can evaluate:

σ(24) = σ(23)σ(3)

=

(
23+1 − 1

2− 1

)
(3 + 1)

= (15)(4)

= 60

There are many interesting numerical properties that stem from the sum

of divisors function. For example, if n is a number and σ(n) = 2n then

n is called a perfect number. Perfect numbers are interesting in their own

right, and they are also extremely significant in the study of Mersenne

primes. Mersenne primes are prime numbers of the form 2p − 1 where
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p is prime. In fact if 2p − 1 is prime, then (2p − 1)(2p−1) is a perfect

number. Amicable pairs define another relationship that stems from the

sum of divisors function. Two integers m and n are said to be amicable if

σ(m) −m = n and σ(n) − n = m. So two integers m and n are amicable

if the sum of proper divisors of m is n and the sum of the proper divisors

of n is m. The pair (m,n) is called an amicable pair. This concept will be

the primary focus of this paper.

Amicable Pairs in the Integers

Amicable pairs are also referred to as friendly numbers. The first

amicable pair, (220, 284), is credited to have been discovered by the math-

ematician Pythagoras who lived around 600 B.C. His Pythagorean broth-

erhood believed that amicable pairs had mysterious powers, and regarded

these numbers as signs of friendship [2]. Amicable pairs have been noted in

scripture, particularly in Genesis when Jacob gave Esau 220 goats as a sign

of love and comradery. There are others, such as John Conway, who are not

as convinced in the usefulness of amicable pairs. Conway has been quoted,

saying,“The only application or use for these numbers is the original one –

you insert a pair of amicable numbers into a pair of amulets, of which you

wear one yourself and give the other to your beloved!”

Despite these sentiments, amicable pairs have been studied for cen-

turies by a plethora of mathematicians. Though Pythagoras discovered the

smallest pair, mathematicians like Euler, Fermat, Descartes, and Thābit

ibn Qurra helped pave the way for modern researchers of amicable pairs.

Determining methods for generating amicable pairs focuses explicitly on

concepts of primality and manipulations of the sum of divisors function.

Before going into more depth on some methods for finding pairs, let us first

demonstrate how to use the sum of divisors function to determine if two
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numbers are amicable.

As noted above, the smallest amicable pair in the integers is the pair

(220, 284). To illustrate this, let m = 220 and n = 284. Then

σ(220) = σ(22 · 5 · 11)

= σ(22)σ(5)σ(11)

=

(
23 − 1

2− 1

)
(5 + 1)(11 + 1)

= (7)(6)(12)

= 504,

and

σ(m)−m = σ(220)− 220

= 504− 220

= 284

= n.

Similary

σ(284) = σ(22 · 71)

= σ(22)σ(71)

=

(
23 − 1

2− 1

)
(71 + 1)

= (7)(72)

= 504,
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and

σ(n)− n = σ(284)− 284

= 504− 284

= 220

= m.

Hence we see that 220 and 284 are amicable.

Amicable pairs are often organized by type. In the example above,

we see that 220 = 22 · 5 · 11 and 284 = 22 · 71. They have a common

factor of 22 and 220 has two separate distinct primes in its factorization

whereas 284 has one other distinct prime in its factorization. Because of

this, pairs like (220, 284) are called (2, 1) pairs. In the pair (10744, 10856),

discovered by Euler in 1747, 10744 = 23 · 17 · 79 and 10856 = 23 · 23 · 59.

Hence (10744, 10856) is a (2, 2) pair [4]. There are some cases where two

numbers in an amicable pair will have a common factor raised to different

powers. For example in the pair (79750, 88730), 79750 = 2 · 53 · 11 · 29 and

88730 = 2 · 5 · 19 · 467. Five is raised to a larger power in the first number

than it is in the second. In cases like these, we call (79750, 88730) an exotic

pair.

Many of the methods to generate amicable pairs deal with pairs of the

type (2, 1). Thābit ibn Qurra was a 9th century astronomer who discovered

a method for finding amicable pairs. He proved that if

p = 3 · 2n−1 − 1,

q = 3 · 2n − 1,

and

r = 9 · 22n−1 − 1
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are all prime numbers where n > 1, then (2npq, 2nr) are amicable. If n = 2

then we get (22 · 5 · 11, 22 · 71) = (220, 284). Numbers of the form 3 · 2n− 1

are hence called Thābit numbers and are sometimes referred to as 3−2−1

numbers. When a value of n yields a prime number then these are called

Thābit primes [2].

Euler also had a method for generating amicable pairs of the type

(2, 1). He proved that if

p = (2n−m + 1)(2m − 1),

q = (2n−m + 1)(2n − 1),

and

r = (2n−m + 1)2(2m+n − 1)

are all prime numbers and n > m > 0 then (2npq, 2nr) are amicable [8]. His

method is considered to be a generalization of Thābit’s method. Over the

years, many mathematicians have adopted methods for generating amicable

pairs that stem from the same ideas used by mathematicians centuries ago.

We will discuss some of these modern methods in later sections.

Gaussian Integers

The set of Gaussian integers, denoted Zi, is given by Zi = {a + bi |

a, b ∈ Z}. The Zi form a ring, and addition and multiplication are defined

below:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)× (c+ di) = (ac− bd) + (ad+ bc)i.

An important property in Zi is that every z ∈ Zi can be represented ge-

ometrically as a vector in the complex plane. The length of this vector is
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called the magnitude of a complex number z = a+ bi, denoted |z|, where

|z| = |a+ bi| =
√
a2 + b2.

The concept of magnitude is very useful when comparing two Gaussian

integers. An even more useful concept is the square of the magnitude,

called the norm. The norm of a complex number z = a+bi, denoted N(z),

is defined

N(z) = a2 + b2.

One important property of the norm of a Gaussian integer is that it is

completely multiplicative. That is, if r, s ∈ Zi, then:

N(rs) = N(r)N(s)

There are some texts that do not distinguish between the magnitude and

the norm. In this paper we will use the established conventions mentioned

above.

The norm of a Gaussian integer is important when classifying Gaus-

sian primes. In the integers, a number p is prime if its only positive divisors

are p and 1. In order to define a Gaussian prime, we first must define a

unit in Zi. If ε ∈ Zi then we say ε is a unit if there exists z ∈ Zi such that

ε · z = 1. So units are elements in the Gaussian integers whose multiplica-

tive inverses in C are also in the Gaussian integers. There are only four

elements in Zi that meet this criteria. The set {1,−1, i,−i} comprises all

four units in the Gaussian integers. Hence, if N(z) = 1 where z ∈ Zi, then

z must be a unit. Now we can define a prime p in Zi.

Suppose p ∈ Zi where p is not a unit. Then p is prime if for every

a, b ∈ Zi, p = ab implies that either a or b is a unit. Let’s consider 2, the
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first prime in the integers. In Zi, 2 = (1 + i)(1 − i), yet neither (1 + i) or

(1 − i) is a unit. Hence 2 is not prime in Zi. To see this illustrated more

clearly, consider:

N(2) = 22 = 4

and suppose that 2 = ab, where a, b ∈ Zi. Then because the norm is

completely multiplicative,

N(2) = N(a)N(b)

4 = N(a)N(b)

So we must have the N(a) = 2 and N(b) = 2. Since N(1 + i) = 12 + 12 = 2

and N(1 − i) = 12 + (−1)2 = 2 we see that neither of these norms is

equivalent to a unit in Zi and so 2 is not prime in Zi.

Let’s consider a similar calculation to determine if 2 + 3i is prime as

a Gaussian integer.

N(2 + 3i) = 22 + 32

= 13

and suppose that 13 = ab, where a, b ∈ Zi. Then because the norm is

completely multiplicative,

N(2 + 3i) = N(a)N(b)

13 = N(a)N(b)

Since 13 is prime in the integers, it must be that either N(a) = 1 or

N(b) = 1. In either case, a or b is a unit and it follows that 2 + 3i is prime

as a Gaussian integer.
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This last example illustrates a very important fact. That is, if z is a

Gaussian integer, and the N(z) = p where p is prime in Z, then z is prime

in Zi [1]. Because of this, calculating the norms of elements in Zi is an

essential tool in determining the primes p in Z that are also prime in Zi. It

is also an essential tool in determining the primality of Gaussian integers,

and hence of factoring Gaussian integers into the products of prime factors.

We have already shown that 2 is not prime in Zi, but what about

3, 5, 7, . . .? We can show that 3 is prime in Zi. First we suppose that 3 is

not prime in Zi. Then there are elements c, d ∈ Zi such that 3 = ab where

a is not a unit and b is not a unit. Then we have,

N(3) = N(a)N(b)

9 = N(a)N(b).

So it must be that N(a) = N(b) = 3 since we assumed that a, b are not

units. Then we can write a as a Gaussian integer where a = c+ di and

N(a) = c2 + d2

3 = c2 + d2.

Simplifying we have,

c2 = 3− d2

and so

c = ±
√

3− d2.

There are no integer values for d in the above equation that will give an

integer value for c, and so there are no integer values of c and d such that
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3 = c2 + d2. Hence we arrive at a contradiction and it follows that 3 must

be prime in Zi.

Aside from 2, every prime integer p is odd and is thus of the form

4k+1 or 4k+3. In the example above, 3 is obviously of the form 4k+3 and

it follows that any prime p in Z that is of the form 4k + 3, also cannot be

written as the sum a2 + b2 where a, b ∈ Z. This leads to the very important

fact that if a prime p ∈ Z can be written in the form 4k+3, then p is prime

in Zi [1]. Hence the primes 3, 7, 11, 19, etc. in the integers are also primes

in the Gaussian integers.

Now we consider primes in the integers of the form 4k + 1. Fermat

was able to prove that if p is an odd prime of the form 4k+1 then p can be

written as the sum a2 + b2 where a, b ∈ Z. So if an integer p is of the form

4k + 1 it can be written as a sum of squares [1]. It follows that such a p

in the integers will not be prime in the Gaussian integers. Instead it will

breakdown in Zi where p = (a + bi)(b + ai)ε where ε is a unit. Consider

the integer 5, then since 5 is of the form 4k+ 1 and is equivalent to 12 + 22

in Z, we have 5 = (1 + 2i)(2 + i)(−i) in Zi.

Considering all of the above, it is possible to concisely characterize

Gaussian Primes in the following manner. Let r ∈ Zi where r = a+ bi and

a, b ∈ Z. Then,

Case 1: a 6= 0 and b = 0

• If a is composite then r is not a Gaussian prime

• If a is prime of the form 4k + 1 then r is not a Gaussian prime

• If a is prime of the form 4k + 3 then r is a Gaussian prime

Case 2: a = 0 and b 6= 0

• If the N(r) = c where c is composite in Z then r is not a Gaussian prime

• If the N(r) = p where p is prime in Z then r is a Gaussian prime

10



Case 3: a 6= 0 and b 6= 0

• If the N(r) = c where c is composite in Z then r is not a Gaussian prime

• If the N(r) = p where p is prime in Z then r is a Gaussian prime

Hence, given any element in Zi it is possibly to quickly determine whether

or not it is prime. In later sections this idea will be expanded upon to find

a way to factor Gaussian integers. First we must highlight an important

formula given in the following section.

Complex Sum of Divisors Function

Let η be a Gaussian integer such that η = ε
∏
πkii where ε is a unit

and each πi lies in the first quadrant. Then we define the complex sum of

divisors function as follows:

σ?(η) =
∏ πki+1

i − 1

πi − 1

This definition of the complex sum of divisors function ensures that σ?

is multiplicative and satisfies the necessary condition that |σ?(η)| ≥ |η|.

There exist analogous definitions where each prime πi lies in the fourth

quadrant or in some combination of the first and fourth quadrants. The

above definition was discovered by Robert Spira of Berkley and was chosen

as a matter of convenience so that every associate of the Gaussian integer

η would have positive integer coefficients [5].

The complex sum of divisors function is an extension of the real-

valued sum of divisors function. However, where σ(24) = 60, the complex

σ?-function gives σ?(24) = −32 − 28i. This has to do with the different

factorizations of 24 in Z and Zi. In Zi, 24 = i(1 + i)6(3). So using the
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definition above we see:

σ?(24) =

(
(1 + i)6+1 − 1

1 + i− 1

)
(3 + 1)

= (−8− 7i)(4)

= −32− 28i

The different factorization of numbers in Z and Zi will be addressed in

later sections.

Similar to the real-valued σ function, there are several numerical prop-

erties that stem from the complex σ?-function. We can say a complex num-

bers η is perfect if σ?(η) = 2η, or more specifically if σ?(η) = (1 + i)η. As

noted previously, perfect numbers are interlinked with Mersenne primes.

Complex Mersenne primes are of the form Mp =
πp − 1

π − 1
where π = 1 + i

and p is a rational prime. If Mp is a complex Mersenne prime where p is

of the form 8k + 1, then (1 + i)p−1 ·Mp is a perfect number [5]. Another

natural extension of the complex sum of divisors function is to investigate

amicable pairs in the complex plane. For the sake of this paper, we will

henceforth focus on amicable pairs in the Gaussian integers.

Amicable Pairs in the Gaussian Integers

Similar to the definition of an amicable pair in the integers, amicable

pairs in the Gaussian integers can be identified using the complex sum of

divisors function. Two Gaussian integers m and n are said to be amicable

if σ?(m) − m = n and σ?(n) − n = m. As noted previously, in order to

calculate σ?(η) where η ∈ Zi, then we must first factor η into its unique

factorization up to order and units so that all of the factors of η lie in the

first quadrant.

This process in itself tends to be a lot of more tedious than factoring
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large numbers into the product of primes in the integers. In later sections

we will identity an algorithm to factor Gaussian integers in the manner

described above so that we can use the complex σ?-function to find amicable

pairs in Zi. Also, we will answer the question if there exist any amicable

pairs in the integers that are also amicable in the Gaussian integers. In

addition to this question we will also explore amicable pairs in the Gaussian

integers.
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Part 2

Factoring Gaussian Integers
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Factoring Algorithm for Gaussian Integers

In order to apply the complex sum of divisors function σ? to determine

whether or not a pair in the integers is amicable in the Gaussian integers,

or if two Gaussian integers are amicable, we must first be able to factor

numbers efficiently. Consider for example the Gaussian integer −46 + 20i.

How do we go about trying to factor this in Zi? It turns out that there are

several different factorizations. For example:

−46 + 20i = (1 + i)2(1 + 4i)(1 + 6i)(−i)

= (1 + i)(1− i)(1 + 4i)(1 + 6i)

= (1 + i)2(4− i)(1 + 6i)

= (1 + i)2(1 + 4i)(6− i)

= (1 + i)2(−4 + i)(1 + 6i)(−1)

and so on. But recall that the function σ? requires that every number be

broken down so that every factor lies in the first quadrant apart from units

in Zi. So in this example above, the first factorization given for −46 + 20i

is the factorization required to use σ?.

In order to factor the above example, instead of arbitrarily trying to

divide away Gaussian integers, it is most efficient to find the norm first.

When we do this we find that N(−46+20i) = 2516. We then find the prime

factorization of 2516, that is, 2516 = 22 ·17·37. Here we see the norm of this

Gaussian integer contains a power of 2 as well as two elements in Zi that

are of the form 4k+1. This means that there exist Gaussian integers a+bi

and c+di such that N(a+ bi) = 17 and N(c+di) = 37. In each case there

are 8 possibilities for both a+bi and c+di. For example a+bi could be any

members of the set {1+4i, 1−4i,−1−4i,−1+4i, 4+i, 4−i,−4−i,−4+i}.

However, because σ? requires that each factor lie in the first quadrant we

can eliminate these eight choices to just 1 + 4i or 4 + i. Similarly, we can

15



eliminate all possibilities of c + di to 1 + 6i or 6 + i. Hence determining

a factorization of −46 + 20i where each factor lies in the first quadrant is

reduced to testing the divisibility of two factors whose norms are of the

form 4k + 1 for each prime p in the factorization of the norm that meets

this criteria. These ideas led to the development of a factoring algorithm

for elements in Zi so that any Gaussian integer could be factored efficiently

in such a way that every factor lies in the first quadrant outside of units.

FACTORING ALGORITHM FOR GAUSSIAN INTEGERS

Step 1

Compute the norm (denoted N) of the Gaussian integer a+ bi where

N(a+ bi) = a2 + b2. Factor this integer into its distinct prime

factorization pn1
1 · pn2

2 · . . . · pns
s in Z

Step 2

For each pi identify whether pi = 2 or if pi is of the form 4k + 1 or of the

form 4k + 3.

16



Step 3

a.) For each pi of the form 4k+ 3, the exponent ni should be even, that is

ni = 2mi where mi ∈ Z. Then pmi
i is a factor of a+ bi. Write down this

factor.

b.) For each p = pi of the form 4k + 1, this p can be written as a

Gaussian integer c+ di where N(c+ di) = p. Use

PowerRepresentations[p,2,2] in Mathematica R© or a similar program to

find c and d. Do this for each pi of the form 4k + 1 and store each

(ci, di)[ni] where ni is the exponent on each pi.

c. If pi = 2 and mi is the exponent on pi, then (1 + i)mi is a factor of

a+ bi. Write down this factor.

Step 4

If there are no pi of the form 4k + 3 or pi = 2 let x+ yi = a+ bi and

continue to Step 5. If there are, divide a+ bi by each factor pi and

(1 + i)mi identified in Step 2. Let this result equal x+ yi.

Step 5

i.) For each pi of the form 4k + 1 consider the pairs (ci, di)[ni] found in

Step 3b). Starting with (c, d)[n] = (c1, d1)[n1] divide x+ yi by (c+ di)n.

If the result is a Gaussian integer, write (c+ di)n down as a factor of

a+ bi. Repeat for the next (ci, di)[ni]. Stop when x+ yi = {1,−1, i,−i}.

Otherwise, reduce n by 1 and divide x+ yi by (c+ d)n−1. Continue this

until the result is a Gaussian integer or n = 1.

If the result is a Gaussian integer, let k be the final reduced power of n

and write down (c+ di)k as a factor of a+ bi. Let the resulting Gaussian

integer = x+ yi. Then go to ii.)

17



If the result is not a Gaussian integer then n = 1 and go to ii.

ii.) If the step above resulted in a Gaussian Integer let m = ni − k. If not

let m = ni. In each case ni is the original exponent coupled with the

corresponding (ci, di). Divide x+ yi by (d+ ci)m. The result should be a

Gaussian integer. Write down (d+ ci)m as a factor. Let the resulting

Gaussian integer = x+ yi. Then go back to i.) for the next (ci, di)[ni]

and repeat until x+ yi = {1,−1, i,−i}.

Examples Using the Factoring Algorithm

Now we provide two examples on how to factor Gaussian integers

using the factoring algorithm outlined in the previous section.

Example 1 Factoring: −3235 + 1020i

Step 1

N(−3235 + 1020i) = (−3235)2 + (1020)2 = 11505625

11505625 = 54 · 41 · 449

Step 2

5, 41, and 449 are all of the form 4k + 1.

Step 3

b.)
54 → (c1, d1)[n1] = (1, 2)[4]

41→ (c2, d2)[n2] = (4, 5)[1]

449→ (c3, d3)[n3] = (7, 20)[1]

Step 4

18



Since there are no pi of the form 4k + 3 let x+ yi = −3235 + 1020i and

continue to Step 5.

Step 5

i. Start with (c1, d1)[n1] = (1, 2)[4] and divide −3235 + 1020i by (1 + 2i)4.

−3235 + 1020i

(1 + 2i)4
=
−367

125
− 16956

125
i

This is not a Gaussian integer. Reduce n1 by 1.

−3235 + 1020i

(1 + 2i)3
=

6709

25
− 3538

25
i

This is not a Gaussian integer. Reduce the power by 1.

−3235 + 1020i

(1 + 2i)2
=

2757

5
+

1976

5
i

This is not a Gaussian integer. Reduce the power by 1.

−3235 + 1020i

1 + 2i
= −239 + 1498i

This is a Gaussian integer. So k = 1 and 1 + 2i is a factor of

−3235 + 1020i. Let x+ yi = −239 + 1498i and go to ii.

ii. Let m = 4− 1 = 3. Now we divide −3235 + 1020i by (2 + i)3.

239 + 1498i

(2 + i)3
= 128 + 45i.

This is a Gaussian integer and (2 + i)3 is a factor of −3235 + 1020i. Let

x+ yi = 128 + 45i and go back to i.

i. Now we take (c2, d2)[n2] = (4, 5)[1] and divide 128 + 45i by 4 + 5i.

128 + 45i

4 + 5i
=

737

41
− 46041i
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This is not a Gaussian integer and n2 = 1 so we go to ii.

ii. Let m = n2 = 1 and divide 128 + 45i by 5 + 4i.

128 + 45i

5 + 4i
= 20− 7i

This is a Gaussian integer and 5 + 4i is a factor of −3235 + 1020i. Let

x+ yi = 20− 7i and go back to i.

i. Now we take (c3, d3)[n3] = (7, 20)[1] and divide 20− 7i by 7 + 20i.

20− 7i

7 + 20i
= −i

This is a Gaussian integer and 7 + 20i is a factor of −3235 + 1020i. Then

x+ yi = −i is the final factor and we have:

−3235 + 1020i = (1 + 2i)(2 + i)3(5 + 4i)(7 + 20i)(−i)
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Example 2 Factoring: 736− 16560i

Step 1

N(736− 16560i) = (736)2 + (−16560)2 = 274775296

274775296 = 28 · 232 · 2029

Step 2

We have p = 2.

2029 is of the form 4k + 1.

23 is of the form 4k + 3.

Step 3

a.) The exponent on 23 is 2 where 2 = 2 · 1. So m1 = 1 and 23 is a factor

of 736− 16560i.

b.){
2029→ (c1, d1)[n1] = (2, 45)[1]

c.) We have p = 2 so l = 8 and (1 + i)8 is a factor of 736− 16560i.

Step 4

Divide 736− 16560i by (1 + i)8 and then that result by 23.

736− 16560i

(1 + i)8
= 46− 1035i

46− 1035i

23
= 2− 45i

Let x+ yi = 2− 45i and go to Step 5.

Step 5
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i. Start with (c1, d1)[n1] = (2, 45)[1] and divide 2− 45i by 2 + 45i.

−2021

2029
− 1802029i

This is not a Gaussian integer and n1 = 1 so we go to ii.

ii. Let m = n1 = 1 and divide 2− 45i by 45 + 2i.

2− 45i

45 + 2i
= −i

This is a Gaussian integer and 45 + 2i is a factor of 736− 16560i. Then

x+ yi = −i is the final factor and we have:

736− 16560i = (1 + i)8(45 + 2i)(23)(−i)
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Part 3

Pairs that Carry Over
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Certain (2,1) Pairs

The first question of interest is whether or not there exist amicable

pairs in the integers that are also amicable in the Gaussian integers. If

so, what properties must the members of such a pair have? Consider the

smallest amicable pair mentioned earlier (220, 284). In the integers 220 =

22 · 5 · 11 and 284 = 22 · 71. However in the Gaussian integers 220 =

(1 + i)4(1 + 2i)(2 + i)(11)(i) and 284 = (1 + i)4(71)(−1). Applying the

complex sum of divisors function we have,

σ?(220) = −672− 144i

and

σ?(284) = −288 + 360i.

Thus

σ?(220)− 220 = 452− 144i

and

σ?(284)− 284 = −572− 360i

Hence the smallest amicable pair in Z does not carry over to Zi.

An important reason that this pair does not carry over has to do with

the different factorization of 220 and 284 in the Zi. Because of this when

we applied the complex sum of divisors function σ? to both 220 and 284

we end up with an imaginary part. Note that the pair (220, 284) is of the

form (22pq, 22r). We will prove that in fact there are no pairs in Z of the

form (2npq, 2nr) that are amicable in Zi. This is because for pairs of this

form, when we apply σ? to the second number in the pair we will always

end up with an imaginary part. Before we prove this however, we need the

following Theorem.
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Theorem 1. Let σ? denote the complex sum of divisors function. Let n be

an integer greater than or equal to 1. Then

σ?(2n) = (−1)(
n+4
2 )2n + (−1)(

n+3
2 )(2n + (−1)(

n+3
2 ))i

The actual proof of the formula from Theorem 1 will appear in Part

IV of this paper. For now, note that this theorem implies in general that

σ?(2n) = x + yi with y 6= 0, and specifically that x = (−1)(
n+4
2 )2n and

y = (−1)(
n+3
2 )(2n+(−1)(

n+3
2 )). Since σ? is multiplicative it will be important

to have a formula that tells us how to calculate or even generalize σ?(2n).

Lastly, before we begin the aforementioned proof, we must highlight a

relationship between p, q and r in amicable pairs. Consider again a pair of

the form (2npq, 2nr). Since they are amicable we know

σ(2npq) = σ(2nr).

Then,

σ(2npq) = σ(2nr)

σ(2n)σ(p)σ(q) = σ(2n)σ(r)

(p+ 1)(q + 1) = (r + 1)

After distributing and simplifying we are left with

r = pq + p+ q.

Using Theorem 1 and the above relationship between p, q, and r we can

now prove the following theorem.
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Theorem 2. There are no (2, 1) pairs of the form (2npq, 2nr) in Z that

are also amicable in Zi where n, p, q, r ∈ Z.

Proof:

Case 1: Prove σ?(2ar) − 2ar = c + di with d 6= 0 ∀a, p, q ∈ Z where p and

q are of the form 4k + 3.

Let p = 4k + 3 and q = 4l + 3 for some k, l ∈ N Then we have,

r = pq + p+ q

= (4k + 3)(4l + 3) + (4k + 3) + (4l + 3)

= 16kl + 12k + 12l + 9 + 4k + 3 + 4l + 3

= 16kl + 16k + 16l + 15

= 4(4kl + 4k + 4l + 3) + 3

= 4m+ 3.

where m = 4kl + 4k + 4l + 3. So r is of the form 4h + 3. Using Theorem

1, for some x, y ∈ Z where y 6= 0,

σ?(2ar)− 2ar = σ?(2a)σ?(r)− 2ar

= (x+ yi)(r + 1)− 2ar

= (x(r + 1)− 2ar) + y(r + 1)i

= c+ di.

where c = x(r + 1) − 2ar and d = y(r + 1). Since y 6= 0, then d 6= 0 so

c+ di has a non-zero imaginary part as desired.
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Case 2: Prove σ?(2ar) − 2ar = c + di with d 6= 0 ∀a, p, q ∈ Z where p and

q are of the form 4k + 1.

Let p = 4k + 1 and q = 4l + 1 for some k, l ∈ N . Then we have,

r = pq + p+ q

= (4k + 1)(4l + 1) + (4k + 1) + (4l + 1)

= 16kl + 4k + 4l + 1 + 4k + 1 + 4l + 1

= 16kl + 8k + 8l + 3

= 4(4kl + 2k + 2l) + 3

= 4m+ 3.

where m = 4kl+ 2k+ 2l. So we see r is of the form 4h+ 3. Using Theorem

1, for some x, y ∈ Z where y 6= 0,

σ?(2ar)− 2ar = σ?(2a)σ?(r)− 2ar

= (x+ yi)(r + 1)− 2ar

= (x(r + 1)− 2ar) + y(r + 1)i

= c+ di.

where c = x(r + 1) − 2ar and d = y(r + 1). Since y 6= 0, then d 6= 0 so

c+ di has a non-zero imaginary part as desired.
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Case 3: Prove σ?(2ar)− 2ar = c + di with d 6= 0 ∀a, p, q ∈ Z where p is of

the form 4k + 3 and q is of the form 4l + 1.

Let p = 4k + 3 and q = 4l + 1. Then we have,

r = pq + p+ q

= (4k + 3)(4l + 1) + (4k + 3) + (4l + 1)

= 16kl + 4k + 12l + 3 + 4k + 3 + 4l + 1

= 16kl + 8k + 16l + 7

= 4(4kl + 2k + 4l + 1) + 3

= 4m+ 3.

m = 4kl + 2k + 4l + 1. So we see r is of the form 4h + 3. Using Theorem

1, for some x, y ∈ Z where y 6= 0,

σ?(2ar)− 2ar = σ?(2a)σ?(r)− 2ar

= (x+ yi)(r + 1)− 2ar

= (x(r + 1)− 2ar) + y(r + 1)i

= c+ di.

Since where c = x(r + 1)− 2ar and d = y(r + 1). Since y 6= 0, then d 6= 0

so c+ di has a non-zero imaginary part as desired.
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The proof of Case 4, where p is of the form 4k+1 and q is of the form

4l+ 3 is similar to Case 3. Since it was shown in each of the cases outlined

above that σ?(2ar) − 2ar will always result in a Gaussian integer under

the specified conditions, then σ?(m) −m will always result in a Gaussian

integer when we consider m = 2ar and will never equal the integer n = 2apq

in Z. So there are no (2, 1) pairs of the form (2npq, 2nr) in Z that are also

amicable in Zi.

Similar proofs could be constructed for pairs of different types to

illustrate that there are many pairs in the integers that will not carry over

to the Gaussian integers. Doing so would be tedious and non exhaustive

for all existing pairs. So we now ask the question, are there any pairs in

the integers that will always carry over to the Gaussian integers? This

question is explored in the following section.

Pairs that Will Always Carry Over

The previous sections illustrated the importance of understanding the

limitations on pairs carrying over from the integers to Gaussian integers

based on their different factorizations in Zi. If a pair contains a power of

2n in Z, it will factor as (1 + i)2nε in Zi. If a pair contains an odd prime

p of the form 4k + 1 then such a p will not be prime in Zi and can be

written as the product of Gaussian integers where p = (a+ bi)(b+ai)ε and

p = N(a + bi). In these situations the factorizations of these integers will

cause the complex sum of divisors function σ? to give a different output

than the regular sum of divisors function. Recall, however, that if an odd

prime p is of the form 4k+3 then p will also be prime as a Gaussian integer.

This concept leads to the following theorem.
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Theorem 3. Let (m,n) be amicable in Z. If m = pα1
1 · pα2

2 · . . . · pαs
s and

n = qβ11 · q
β2
2 · . . . · q

βt
t where all of the pi and qj are of the form 4k+ 3, then

(m,n) is amicable in Zi.

Proof. Consider m = pα1
1 ·pα2

2 · . . . ·pαs
s and n = qβ11 · q

β2
2 · . . . · q

βt
t . Since each

pi is of the form 4k+3 the prime factorization of m in the Gaussian integers

is the same as its factorization in the integers. But (m,n) is amicable in

Z, so:

σ?(m)−m = σ(m)−m

= n

and

σ?(n)− n = σ(n)− n

= m

Hence (m,n) is also amicable in Zi.

The smallest pair satisfying the criteria for Theorem 3 is the pair

(294706414233, 305961592167) which was discovered by TeRiele in 1995 [4].

In this case, 294706414233 = 34 · 72 · 11 · 19 · 47 · 7559 and 305961592167 =

34 · 7 · 11 · 19 · 971 · 2659. Each prime in the factorization of each number is

of the form 4k+ 3, hence the prime factorization for both of these numbers

is the same in the Gaussian integers as it is in the integers. Now applying

the complex sum of divisors function we get:
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σ?(294706414233) = σ(294706414233)

= σ(34)σ(72)σ(11)σ(19)σ(47)σ(7559)

=
35 − 1

3− 1
· 73 − 1

7− 1
· 12 · 20 · 48 · 7560

= 121 · 57 · 12 · 20 · 48 · 7560

= 600668006400

Then 600668006400− 294706414233 = 305961592167. Similarly:

σ?(305961592167) = σ(305961592167)

= σ(34)σ(7)σ(11)σ(19)σ(971)σ(2659)

=
35 − 1

3− 1
· 8 · 12 · 20 · 972 · 2660

= 121 · 8 · 12 · 20 · 972 · 2660

= 600668006400

Then 600668006400− 305961592167 = 294706414233. So we see that

(294706414233, 305961592167) is also amicable in the Gaussian integers.

Theorem 3 and the previous example illustrate pairs in the integers

that will always carry over to the Gaussian integers. From this point on we

place our focus on amicable pairs that exist within the Gaussian integers

without respect to a counterpart pair in Z. We seek to answer the question:

Are there Gaussian amicable pairs?
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Part 4

Gaussian Amicable Pairs
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A Formula for 2n

We begin our search for Gaussian amicable pairs by searching for

formulas for powers of small primes using the complex sum of divisors

function σ?. We start with the smallest prime 2. The following Table 1

shows values for σ?(2n) for a small number of n values.

TABLE 1

Values of σ?(2n)

n σ?(2n)

1 2+3i

2 -4+5i

3 -8-7i

4 16-15i

5 32+33i

6 -64+65i

7 -128-127i

8 256-255i

9 512+513i

10 -1024+1025i

If we look at the sequences formed by the whole numbers and the imaginary

parts then we see that they can be obtained from the second diagonal of

Pascal’s triangle with binomial coefficient exponents on −1 of the form(
k

2

)
. By adjusting the starting points of the binomial coefficients we obtain

the following theorem.
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Theorem 1. Let σ? denote the complex sum of divisors function. Let n be

an integer greater than or equal to 1. Then

σ?(2n) = (−1)(
n+4
2 )2n + (−1)(

n+3
2 )(2n + (−1)(

n+3
2 ))i

Proof : Take the base case n = 1. Then,

σ?(21) = σ?
(
(1 + i)2

)
=

(1 + i)2+1 − 1

(1 + i)− 1

=
(1 + i)3 − 1

i

=
−2 + 2i− 1

i

=
−3 + 2i

i

= 2 + 3i

and

(−1)(
1+4
2 )21 + (−1)(

1+3
2 )(21 + (−1)(

1+3
2 ))i = (−1)(

5
2)2 + (−1)(

4
2)(2 + (−1)(

4
2))i

=
(
(−1)10 · 2

)
+
(
(−1)6(2 + (−1)6)

)
i

= (2 · 1) + (1 · (2 + 1))i

= (2) + (1 · 3)i

= 2 + 3i

So the formula holds true for the base case n = 1.
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Now assume the statement holds true for n = k.That is,

σ?(2k) = (−1)(
k+4
2 )2k + (−1)(

k+3
2 )(2k + (−1)(

k+3
2 ))i (1)

First we manipulate σ?(2n) as follows:

σ?(2n) = σ?
(
(1 + i)2n

)
=

(1 + i)2n+1 − 1

i

=
(1 + i)2n(1 + i)− 1

i

Then if we multiply both sides by i we have,

iσ?(2n) = (1 + i)2n(1 + i)− 1

= (1 + i)2n+1 − 1

This implies that

iσ?(2n) + 1 = (1 + i)2n+1 (2)

Now we consider, the statement σ?(2k+1) for n = k + 1.

σ?(2k+1) =
(1 + i)2(k+1)+1 − 1

(1 + i)− 1

=
(1 + i)2k+3 − 1

i

=
(1 + i)2k+1(1 + i)2 − 1

i

=

(
iσ?(2k) + 1

)
(1 + i)2 − 1

i
by substituting (2)
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Then,

σ?(2k+1) =

(
iσ?(2k) + 1

)
(1 + i)2

i
− 1

i

=

(
iσ?(2k) + 1

)
(2i)

i
+ i

=
(
iσ?(2k) + 1

)
(2) + i

=
(
2 + 2σ?(2k)i

)
+ i

= 2 +
(
2σ?(2k) + 1

)
i

Now that this expression is simplified into a Gaussian integer, we can use

our induction hypothesis and we have:

σ?(2k+1) = 2 +

(
2

[
(−1)(

k+4
2 )2k + (−1)(

k+3
2 )(2k + (−1)(

k+3
2 ))i]+ 1

)
i

Simplifying we see,

σ?(2k+1) = 2 +

(
2

[
(−1)(

k+4
2 )2k + (−1)(

k+3
2 )(2k + (−1)(

k+3
2 ))i]+ 1

)
i

= 2 +

(
2k+1(−1)(

k+4
2 ) +

(
2(−1)(

k+3
2 )[2k + (−1)(

k+3
2 )])i+ 1

)
i

= 2 +

([
2k+1(−1)(

k+4
2 ) + 1

]
+

[
2(−1)(

k+3
2 )(2k + (−1)(

k+3
2 ))]i)i

= 2 +

(
2(−1)(−1)(

k+3
2 )[2k + (−1)(

k+3
2 )])+

(
2k+1(−1)(

k+4
2 ) + 1

)
i

=

(
2(−1)(−1)(

k+3
2 )[2k + (−1)(

k+3
2 )]+ 2

)
+

(
2k+1(−1)(

k+4
2 ) + 1

)
i

=

(
2k+1(−1)(−1)(

k+3
2 ) + 2(−1)(−1)(

k+3
2 )(−1)(

k+3
2 ) + 2

)
+

(
2k+1(−1)(

k+4
2 ) + 1

)
i

=

(
2k+1(−1)(−1)(

k+3
2 ) + 2(−1)(−1)2(

k+3
2 ) + 2

)
+

(
2k+1(−1)(

k+4
2 ) + 1

)
i
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Now we expand the binomial exponents,

σ?(2k+1) = 2

(
2k(−1)(−1)

(k+3)(k+2)
2 + (−1)(−1)2(

(k+3)(k+2)
2

) + 1

)
+

(
2k+1(−1)

(k+4)(k+3)
2 + 1

)
i

= 2

(
2k(−1)(−1)

(k+3)(k+2)
2 + (−1)(−1)2(

(k+3)(k+2)
2

) + (−1)2(
(k+3)(k+2)

2
)

)
+

(
2k+1(−1)

(k+4)(k+3)
2 + (−1)2(

(k+4)(k+3)
2

)

)
i

Because −1 raised to any even power is still 1, we can manipulate the 1

term in the real and imaginary part above.

Now simplifying we see,

σ?(2k+1) = 2

(
2k(−1)(−1)

(k+3)(k+2)
2 + (−1)2(

(k+3)(k+2)
2

)
[
(−1) + 1

])
+

(
2k+1(−1)

(k+4)(k+3)
2 + (−1)

(k+4)(k+3)
2 (−1)

(k+4)(k+3)
2

)
i

= 2

(
2k(−1)(−1)

(k+3)(k+2)
2 + (−1)2(

(k+3)(k+2)
2

)
(
0
))

+

(
(−1)

(k+4)(k+3)
2

[
2k+1 + (−1)

(k+4)(k+3)
2

])
i

= 2

(
2k(−1)(−1)

(k+3)(k+2)
2

)
+

(
(−1)

(k+4)(k+3)
2

[
2k+1 + (−1)

(k+4)(k+3)
2

])
i

=

(
2k+1(−1)(−1)

(k+3)(k+2)
2

)
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

Note that the imaginary part is equivalent to the imaginary part for the

proposed formula for σ?(2k+1). It remains that we must now finish simpli-

fying the real part.
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σ?(2k+1) =

(
2k+1(−1)(−1)

(k+3)(k+2)
2 (1)

)
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

=

(
2k+1(−1)(−1)

(k+3)(k+2)
2 (−1)2(

2k+6
2

)

)
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

Once again, we can manipulate the constant 1 in the real part above because

(−1)2(
2k+6

2
) = 1 since we are raising −1 to an even power. So,

σ?(2k+1) =

(
2k+1(−1)

(
1+

(k+3)(k+2)
2

+2( 2k+6
2

)
))

+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

=

(
2k+1(−1)

(
2
2
+

(k+3)(k+2)
2

+ 4k+12
2

))
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

=

(
2k+1(−1)

(
2+(k+3)(k+2)+4k+12)

2

))
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

=

(
2k+1(−1)

(
k2+9k+20

2

))
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

=

(
2k+1(−1)

(
(k+5)(k+4)

2

))
+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

=

(
2k+1(−1)(

k+5
2 )
)

+

(
(−1)(

k+4
2 )[2k+1 + (−1)(

k+4
2 )])i

So we see by induction that the formula holds for n = k + 1. Hence, by

mathematical induction, it follows that,

σ?(2n) = (−1)(
n+4
2 )2n + (−1)(

n+3
2 )(2n + (−1)(

n+3
2 ))i for all n

What is the significance of finding a formula for σ?(2n) and other

small primes? Because amicable pairs are a numerical property linked to

the sum of divisors function, and because they are often classified according

to their common factors, and from there on their type, it is necessary to be

able to manipulate the sum of divisors function. In this case, if we know

how the complex sum of divisors function will behave, we can use this to
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our advantage by inputting combinations of certain powers of primes when

we search for pairs. When dealing with Gaussian integers this is certainly

more efficient, for we could begin with powers of primes in the integers and

already have an idea of what their output would be from the σ? function

which would most likely have an imaginary part. Hence, a formula for

σ?(2n) is a good start.

However, finding formulas for powers of five, thirteen, seventeen, etc.

proved to be extremely messy and there were no logical patterns. Due to the

lack of consistency in the outputs of the complex sum of divisors function

σ? for powers of these small primes, it became necessary to pursue another

option for finding amicable pairs in Zi. Instead of a specific computer search

involving inputing different values for different powers of small primes into

formulas, a general computer search was done. This is discussed in detail

in the following section.

Computer Search for Pairs in Zi

In order to search for amicable pairs in Zi it is almost necessary to use

the computer as an aid. Even in the strategy outlined in the previous sec-

tion, the reasoning for finding specific formulas for powers of small primes

centered around being able to program computers to find pairs more effi-

ciently. In this section we discuss methods for a general computer search for

pairs, some of which focus on finding pairs with specific common factors.

Suppose we want to search for pairs with a common factor of (1+ i)8.

We can write a short program in Mathematica that lets x = (1+i)8 ·(a+bi)

where a is incremented from 1 to 1, 000, 000 and b is incremented from 1

to 100, 000. Then we can let y = σ?(x)− x. Similarly we can also define a

variable z where z = σ?(y)−y. Then if z = x the result will be an amicable

pair. Similar programs can be written to find pairs with different common
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factors by replacing the (1 + i)8 with the appropriate factors. Below is an

example of the code used in Mathematica R© to find amicable pairs with a

common factor of (1 + i)8.

For [a = 1, a < 1000000, a+ +,Print [“a = ”, a ];

For [b = 1, b < 100000, b+ +, x = (1 + i)8 · (a+ bi);

y = DivisorSigma [1, x, GaussianIntegers → True] −x;

z = DivisorSigma [1, y, GaussianIntegers → True] −y;

If [z == x, Print [x, " and " , y," are amicable",

"where the first number has a factor of (1 + i)8]]]]

A similar search can be done to perform an even more general search

for Gaussian amicable pairs. In this case instead of having a common factor

attached to the a + bi in our code, we simply start with x = a + bi and

increment a from 1 to 1, 000, 000 and b from 1 to 100, 000. If given enough

computers, it is possible to extend this range even further. In these cases we

would still define the variables y and z as they are above. These methods

led to the discovery of over one hundred new Gaussian amicable pairs!

Table 2 below briefly summarizes the pairs found arranged by common

factors.
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TABLE 2

Pairs Organized by Common Factor

Common Factor Number Found

(1 + i)7 22

(1 + i)8 12

(1 + i)9 4

(1 + i)m(1 + 2i)n 4

(1 + 2i) 14

(1 + 2i)2 15

(1 + 2i)3 11

(1 + 2i)4 1

(1 + 2i)m(1 + 4i)n 14

Total 97
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After classifying the pairs above according to their common factors

it was straightforward to then organize the pairs according to type. We

found a wide range of different types of pairs, ranging from (2, 1) to (5, 5).

Exotic pairs were found as well. For example,


736− 16560i = (1 + i)8(45 + 2i)(23)(−i)

17648 + 768i = (1 + i)8(1103 + 48i)

is an example of a (2, 1) pair found,


2335041 + 13975712i = (1 + 2i)3(4 + 5i)(7 + 2i)(5 + 6i)(1 + 16i)(150 + 157i)

15760959− 1495712i = (1 + 2i)3(1 + 4i)(3 + 8i)(14 + 15i)(26 + i)(38 + 65i)(−i)

is an example of the only (5, 5) pair found, and


301559− 146012i = (1 + 2i)3(1 + 4i)(71 + 16i)(57 + 82i)

−142839− 241828i = (1 + 2i)(1 + 4i)(7 + 8i)(13 + 22i)(16 + 111i)(−i)

is an example of an exotic pair that was found after the computer search.

An exhaustive list of all pairs found arranged by type can be found in

Appendix B. Table 3 below indicates the types of pairs found and their

frequency amongst the results.
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TABLE 3

All Pairs Found

Type Number Found

(2,1) 3

(2,2) 19

(3,2) 42

(3,3) 14

(4,2) 4

(4,3) 7

(4,4) 5

(5,3) 4

(5,5) 1

exotic 12

Total 111
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Part 5

Results
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Amicable Pairs in the Integers that Carry

Over

The first question that we sought to answer was whether or not there

were amicable pairs in the integers that were also amicable in the Gaussian

Integers. A preliminary search returned a quick answer—not many. It

was shown specifically that the smallest pair (220, 284) was not amicable

in Zi. This was because the different factorizations of both numbers in

the pair caused the complex sum of divisors function to yield a Gaussian

integer with an imaginary part in both cases. Using this concept a proof

was provided that in fact there are no pairs of the form (2npq, 2nr) in Z

that are also amicable in Zi.

A proof similar to this one could be provided to show that there are

certain (2, 2) pairs, (3, 2) pairs, (3, 3) pairs, etc. in the integers that do not

carry over in the Gaussian integers, the primary reasoning being that when

you apply the complex sum of divisors σ? function to the first member of

the pair you will get an Gaussian integer a + bi where b 6= 0. Hence it

will be impossible for σ?(m) − m = n in such a case for a pair (m,n) in

the integers. Trying to construct such a proof for all amicable pairs in the

integers would be tedious and non exhaustive as new pairs are always being

found. Therefore it was necessary to instead focus on whether or not there

existed pairs in the integers that would always carry over to the integers.

Any odd prime integer p that is of the form 4k+ 3 will also be prime

in the Gaussian integers. Therefore if two members of an amicable pair

in Z have prime factorizations consisting entirely of primes of this form

then these pairs must also be amicable in Z. Their factorizations will not

change and hence the σ? function will give the same output as the regular σ

function. This proof was provided in earlier sections along with examples.

Hence there are pairs in the integers that will always always carry over to
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the Gaussian integers.

If there are other pairs in the integers that carry over they must satisfy

certain criteria. Such a pair, for instance, must consist of prime factors that

contain some combination of primes of the 4k + 1, 4k + 3, and/or powers

of 2 so that when the σ? function is applied the result is of the form a+ bi

where b = 0. If this happens for both members of the pair then it will

be possible for such a pair to also be amicable in Zi. However, up to this

point, such pairs have not been found.

More Gaussian Amicable Pairs

A general computer search for Gaussian amicable pairs combined with

a specific search for pairs with certain common factors resulted in over one

hundred amicable pairs in Zi being discovered. These pairs were then

categorized according to their types and common factors. Though an im-

pressive number of pairs were found, there still remain a great deal more

to be discovered.

For example, when using the computer to find pairs with certain

common factors, we focused on small powers of (1 + i)l, (1 + 2i)m, and

(1 + 4i)n. These are representative of powers of 2, 5, and 17 in the integers.

While we found many pairs programming the computer this way, this search

was by no means comprehensive. We could have just as easily searched for

pairs with common factors of (1 + 6i)j, (4 + 5i)k, . . . and so on as long as

the prime p in Zi has a norm of the form 4k + 1. Also, just as there was

a search done for pairs with a combination of different powers of factors,

like powers of (1 + 2i) and (1 + 4i), we could do similar searches on new

factors, or perhaps extend the search to pairs that have three, four, five,

. . . different factors in common. The possibilities are endless. This paper

provides a basis for the methodology that can be used for future searches
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for more pairs.

It is also important to note methods for finding amicable pairs of

certain types in Zi. When just looking for pairs with certain common

factors we can get results of all different types, (2, 1), (2, 2), (3, 2), etc. Is

there a way to generate pairs of a specific type? In the computer search

outlined in previous sections, the output was always a set of two Gaussian

integers a+ bi and c+ di that were amicable. However, searching for pairs

in such a way will never guarantee that they are of a specific type. Though

they may have had a common factor, upon factoring the a+ bi and c+ di

we often found other common factors that were not detailed in the initial

code. This affects the “types” of Gaussian amicable pairs found.

It was mentioned in the introduction that over time many mathemati-

cians, such as Euler and Thābit ibn Qurra, have developed methods for

finding (2, 1) pairs. Modern mathematicians have done the same. Adapt-

ing these methods for Gaussian amicable pairs is possible, but program-

ming the computer is not as “simple” as when just dealing with integers.

Dealing with units and factoring Gaussian integers makes programming a

somewhat straightforward idea extremely complicated. This could become

less tedious if a program was first adapted from the factoring algorithm

mentioned in previous sections. However, because this type of program-

ming was not the primary focus of the research done in this paper, we leave

adaptations of such methods to future study for both this author and the

reader.

Natural Extensions

A natural extension for research on Gaussian amicable pairs is to in-

vestigate whether or not there exist Gaussian aliquot sequences. An aliquot

sequence is one where the sum of divisors function of the first number sub-
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tracted by that number gives the second number of the sequence. Then the

sum of divisors functions of that number subtracted by the second number

gives the third number of the sequence, and so on. That is, if we let s(n) =

σ(n) − n, then the sequence s0(n) = n, s1(n) = s(n), s2(n) = s(s(n)), . . .

is called an aliquot sequence. There are several options for how an aliquot

sequence will terminate.

If a given sequence ends at zero, then it considered to be bounded.

Similarly, if a sequence becomes periodic it is considered bounded as well.

For example if a sequence reaches a period of two then those two numbers

are an amicable pair. If a sequence reaches a period of three or more then

those numbers are called sociable. If, however, a sequence just reaches a

constant then this constant is called a perfect number. If a sequence reaches

a constant but that constant is not perfect it is referred to as an aspiring

number. Such a sequence is still bounded because it becomes periodic with

a period of one. There are also several aliquot sequences where it has not

yet been determined if the sequence terminates.

An aliquot sequence in the Gaussian integers can be identified by us-

ing s?(n) = σ?(n)−n. Then the sequence s?0(n) = n, s?1(n) = s?(n), s?2(n) =

s?(s?(n)), . . .. As we have shown there exist Gaussian amicable pairs, we

know that there are already aliquot sequences of period two in the Gaus-

sian integers. What remains to be investigated is whether or not there

exist sociable and/or aspiring Gaussian integers. Similarly, the question

can be posed as to whether or not there are any aliquot sequences in the

integers that are also aliquot sequences in the Gaussian integers. These are

interesting tasks that we leave to the reader.
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Appendix A

Pairs Organized by Type
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(2,1) Pairs


−21246− 8807i = (1 + 2i)(1 + 4i)(6 + 11i)(2 + 3i)(45 + 32i)(−i)

5166− 26953i = (1 + 2i)(1 + 4i)(6 + 11i)(41 + 234i)
736− 16560i = (1 + i)8(45 + 2i)(23)(−i)

17648 + 768i = (1 + i)8(1103 + 48i)
−1036624 + 495520i = (1 + i)8(2 + 27i)(28 + 25i)(63 + 32i)

536656 + 1058336i = (1 + i)8(2 + 27i)(1055 + 2528i)(−i)
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(2,2) Pairs


−6468− 5251i = (1 + 2i)2(1 + 4i)(1 + 14i)(27 + 10i)(−i)

5356− 6133i = (1 + 2i)2(1 + 4i)(3 + 8i)(36 + 29i)
42696 + 4120i = (1 + i)7(13 + 2i)(215 + 192i)

4104− 43720i = (1 + i)7(20 + 3i)(143 + 128i)(−i)
50632− 14568i = (1 + i)7(11 + 4i)(393 + 62i)

−15832− 52632i = (1 + i)7(25 + 12i)(175 + 8i)(−i)
272776 + 159240i = (1 + i)7(8 + 7i)(2175 + 1472i)

154424− 298440i = (1 + i)7(79 + 120i)(199 + 56i)(−i)
287864− 25560i = (1 + i)7(11 + 6i)(1999 + 400i)

−35864− 298440i = (1 + i)7(34 + 5i)(671 + 384i)(−i)
170176 + 125296i = (1 + i)8(35 + 48i)(67 + 212i)(−i)

−130384 + 164960i = (1 + i)8(5 + 18i)(415 + 568i)
64000 + 15248i = (1 + i)8(17 + 168i)(23 + 8i)(−i)

−15952 + 65248i = (1 + i)8(23 + 48i)(61 + 50i)
53312− 10800i = (1 + i)8(61 + 76i)(31 + 16i)(−i)

10336 + 54064i = (1 + i)8(10 + 29i)(111 + 16i)
292528 + 103008i = (1 + i)8(95 + 24i)(197 + 18i)

101888− 277968i = (1 + i)8(15 + 4i)(1187 + 108i)(−i)
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
636256 + 48656i = (1 + i)8(17 + 2i)(95 + 2328i)(−i)

−51664 + 668800i = (1 + i)8(85 + 128i)(215 + 168i)
10336 + 54064i = (1 + i)8(10 + 29i)(111 + 16i)

53312− 10800i = (1 + i)8(31 + 16i)(61 + 76i)(−i)
397888 + 544688i = (1 + i)8(3 + 52i)(439 + 680i)(−i)

−551488 + 368912i = (1 + i)8(4 + 15i)(863 + 2528i)
260368 + 1316848i = (1 + i)9(11 + 20i)(1195 + 2308i)(−i)

−1329840 + 303056i = (1 + i)9(63 + 92i)(215 + 496i)
288528 + 701168i = (1 + i)9(11 + 20i)(915 + 1148i)(−i)

−703600 + 313936i = (1 + i)9(73 + 162i)(135 + 136i)
896400 + 696944i = (1 + i)9(11 + 20i)(2043 + 812i)(−i)

−681808 + 931312i = (1 + i)9(43 + 102i)(447 + 112i)
636256 + 48656i = (1 + i)8(17 + 2i)(95 + 2328i)(−i)

−51664 + 668800i = (1 + i)8(85 + 128i)(215 + 168i)
16072 + 14712i = (1 + i)7(11 + 4i)(63 + 152i)

15128− 17112i = (1 + i)7(4 + 65i)(31)(−i)
8008 + 3960i = (1 + i)7(23 + 68i)(11)

4232− 8280i = (1 + i)7(11 + 34i)(23)(−i)
69760− 16432i = (1 + i)8(13 + 8i)(207 + 208i)(−i)

18848 + 70928i = (1 + i)8(38 + 143i)(31)

54



(3,2) Pairs


−259222− 59439i = (1 + 2i)(1 + 4i)(2 + 3i)(4 + 11i)(653 + 202i)(−i)

12022− 309201i = (1 + 2i)(1 + 4i)(4 + 9i)(1343 + 3132i)
−3235 + 1020i = (1 + 2i)(2 + i)3(5 + 4i)(7 + 20i)(−i)

−3549− 4988i = (1 + 2i)(1 + 10i)(15 + 272i)
−4694 + 467i = (1 + 2i)2(4 + i)(4 + 5i)(11 + 34i)(−i)

−766− 6187i = (1 + 2i)2(1 + 6i)(116 + 169i)
−14612− 7159i = (1 + 2i)2(6 + i)(1 + 4i)(7 + 8i)(10 + 7i)(−i)

4212− 19241i = (1 + 2i)2(6 + i)(1 + 14i)(23 + 40i)
−1895 + 2060i = (1 + 2i)2(2 + i)(13 + 8i)(13 + 10i)(−i)

−3433− 2356i = (1 + 2i)2(7 + 12i)(53 + 28i)
−3970 + 2435i = (1 + 2i)2(2 + i)(8 + 3i)(21 + 44i)(−i)

−4478− 5471i = (1 + 2i)2(8 + 13i)(65 + 66i)
−24877− 15664i = (1 + 2i)2(1 + 4i)(2 + 3i)(289 + 270i)(−i)

9877− 27536i = (1 + 2i)2(3 + 2i)3(59 + 110i)
−24766− 12687i = (1 + 2i)2(6 + i)(1 + 4i)(5 + 4i)(24 + 25i)(−i)

7766− 33313i = (1 + 2i)2(6 + i)(1 + 14i)(39 + 70i)
168373− 417664i = (1 + 2i)2(4 + 5i)(7 + 10i)(23 + 12i)(38 + 23i)

−365173− 221936i = (1 + 2i)2(4 + 5i)(1 + 4i)(2203 + 2372i)(−i)
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
−203672− 30529i = (1 + 2i)2(6 + i)(3 + 2i)(1 + 4i)(384 + 245i)(−i)

−48328− 270471i = (1 + 2i)2(6 + i)(41 + 70i)(49 + 100i)
−657187− 231884i = (1 + 2i)2(6 + i)(3 + 2i)(1 + 4i)(1119 + 1060i)(−i)

14387− 928516i = (1 + 2i)2(6 + i)(22 + 43i)(199 + 600i)
−503402 + 18861i = (1 + 2i)2(6 + i)(3 + 2i)(1 + 4i)(1034 + 415i)(−i)

−237398− 628261i = (1 + 2i)2(6 + i)(21 + 46i)(295 + 322i)
293124− 106057i = (1 + 2i)3(15 + 2i)(1 + 4i)(8 + 13i)(29 + 4i)

−108484− 289463i = (1 + 2i)3(15 + 2i)(2 + 3i)2(123 + 68i)(−i)
−42529− 11098i = (1 + 2i)(1 + 4i)(2 + 3i)(5 + 24i)(53 + 10i)(−i)

5953− 51974i = (1 + 2i)(1 + 4i)(1 + 10i)(341 + 450i)
82599− 121532i = (1 + 2i)2(1 + 4i)(10 + 7i)(15 + 2i)(20 + 33i)

−121359− 98788i = (1 + 2i)2(1 + 4i)(2 + 5i)(1109 + 870i)(−i)
−22233− 7876i = (1 + 2i)(1 + 4i)(2 + 3i)(5 + 8i)(61 + 44i)(−i)

3033− 28124i = (1 + 2i)(1 + 4i)(9 + 10i)(5 + 228i)
−259222− 59439i = (1 + 2i)(1 + 4i)(2 + 3i)(4 + 11i)(653 + 202i)(−i)

12022− 309201i = (1 + 2i)(1 + 4i)(4 + 9i)(1343 + 3132i)
−5479− 396528i = (1 + 2i)2(1 + 4i)(8 + 13i)(33 + 2i)(38 + 3i)

−392801− 15432i = (1 + 2i)2(1 + 4i)(4 + 5i)(2831 + 924i)(−i)
274360 + 248216i = (1 + i)7(7 + 12i)(110 + 57i)(19)

262040− 309416i = (1 + i)7(3 + 32i)(1115 + 12i)(−i)
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
246392 + 198968i = (1 + i)7(13 + 10i)(62 + 65i)(19)

215608− 268568i = (1 + i)7(10 + 19i)(1319 + 520i)(−i)
306360 + 250424i = (1 + i)7(13 + 22i)(54 + 25i)(23)

255240− 329624i = (1 + i)7(31 + 16i)(599 + 870i)(−i)
65480 + 166952i = (1 + i)7(23 + 8i)(4 + 25i)(25 + 6i)

176920− 78152i = (1 + i)7(13 + 58i)(239 + 160i)(−i)
102120 + 136712i = (1 + i)7(4 + 21i)(29 + 10i)(23)

142680− 115112i = (1 + i)7(23 + 48i)(259 + 160i)(−i)
50104 + 212856 = (1 + i)7(17 + 2i)(14 + 25i)(23 + 32i)

228296− 61656i = (1 + i)7(15 + 38i)(319 + 400i)(−i)
157320 + 240616i = (1 + i)7(3 + 20i)(62 + 23i)(19)

248280− 178216i = (1 + i)7(59 + 40i)(159 + 344i)(−i)
151080 + 289816i = (1 + i)7(17 + 2i)(5 + 18i)(81 + 40i)

305400− 176776i = (1 + i)7(11 + 56i)(491 + 240i)(−i)
8136 + 424120i = (1 + i)7(13 + 8i)(25 + 14i)(25 + 82i)

459384− 25480i = (1 + i)7(11 + 40i)(531 + 824i)(−i)
168568 + 324600i = (1 + i)7(24 + 5i)(25 + 4i)(3 + 52i)

336632− 183000i = (1 + i)7(26 + 11i)(135 + 1192i)(−i)
146312 + 362792i = (1 + i)7(15 + 4i)(9 + 26i)(72 + 37i)

384088− 171032i = (1 + i)7(23 + 40i)(508 + 625i)(−i)
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
130504 + 418904i = (1 + i)7(17 + 10i)(13 + 28i)(59 + 24i)

439016− 161864i = (1 + i)7(90 + 77i)(95 + 336i)(−i)
132968 + 435240i = (1 + i)7(11 + 4i)(2 + 45i)(75 + 14i)

466072− 155160i = (1 + i)7(16 + 29i)(743 + 1080i)(−i)
304072 + 391848i = (1 + i)7(7 + 18i)(23 + 8i)(92 + 15i)

398648− 347208i = (1 + i)7(11 + 204i)(227 + 28i)(−i)
−36792 + 756968i = (1 + i)7(9 + 10i)(51 + 4i)(8 + 97i)

810792− 6968i = (1 + i)7(39 + 200i)(199 + 290i)(−i)
−438464 + 375280i = (1 + i)8(20 + 7i)(3 + 40i)(35 + 24i)

390416 + 467744i = (1 + i)8(2 + 15i)(1343 + 2128i)(−i)
−1118256 + 70544i = (1 + i)9(2 + 3i)(3 + 88i)(35 + 152i)(−i)

67184 + 120560i = (1 + i)9(4 + 21i)(255 + 128i)(−i)
−369976− 109432i = (1 + i)7(1 + 2i)2(1 + 4i)(5 + 2i)(11 + 6i)(5 + 24i)(−i)

−461624− 95768i = (1 + i)7(1 + 2i)2(1 + 4i)(11 + 14i)(35 + 108i)(−i)
−215223− 417336i = (1 + 2i)3(4 + 5i)(6 + 19i)(104 + 35i)(3)(−i)

551223− 310664i = (1 + 2i)3(4 + 5i)(83 + 28i)(34 + 95i)
−442001− 234332i = (1 + 2i)2(1 + 4i)(24 + 35i)(63 + 52i)(7)(−i)

261201− 516068i = (1 + 2i)2(1 + 4i)(79 + 40i)(123 + 292i)
181032 + 274360i = (1 + i)7(3 + 20i)(71 + 26i)(19)

282168− 204760i = (1 + i)7(63 + 32i)(134 + 415i)(−i)
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
246392 + 198968i = (1 + i)7(13 + 10i)(62 + 65i)(19)

215608− 268568i = (1 + i)7(10 + 19i)(1319 + 520i)(−i)
306360 + 250424i = (1 + i)7(13 + 22i)(54 + 25i)(23)

255240− 329624i = (1 + i)7(31 + 16i)(599 + 870i)(−i)
20868 + 34476i = (1 + i)5(1 + 2i)3(1 + 14i)(15 + 2i)(3)(−i)

20732 + 48724i = (1 + i)5(1 + 2i)3(1 + 4i)(183 + 88i)(−i)
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(3,3) Pairs


−629476− 461397i = (1 + 2i)(1 + 6i)(1 + 4i)(4 + i)2(431 + 696i)(−i)

439396− 963243i = (1 + 2i)(1 + 6i)(2 + 15i)(31 + 44i)(93 + 22i)
−349539− 233248i = (1 + 2i)2(6 + i)(1 + 6i)(1 + 4i)(541 + 104i)(−i)

158339− 410352i = (1 + 2i)2(6 + i)(3 + 8i)(7 + 18i)(84 + 25i)
57942− 44431i = (1 + 2i)3(1 + 4i)(24 + 25i)(45 + 8i)

−41942− 47569i = (1 + 2i)3(5 + 2i)(4 + 5i)(94 + 135i)(−i)
265256− 173533i = (1 + 2i)3(5 + 2i)(1 + 4i)(13 + 12i)(5 + 72i)(−i)

205144 + 250333i = (1 + 2i)3(5 + 2i)(5 + 6i)(1 + 24i)(14 + 25i)
1053996− 84353i = (1 + 2i)3(5 + 2i)(1 + 4i)(17 + 42i)(1 + 94i)(−i)

140244 + 1052033i = (1 + 2i)3(5 + 2i)(2 + 5i)(7 + 38i)(11 + 84i)
−185562− 570259i = (1 + 2i)2(1 + 4i)(11 + 14i)(13 + 28i)(49 + 20i)(−i)

576442− 179581i = (1 + 2i)2(1 + 4i)(1 + 14i)(20 + 7i)(81 + 56i)
−381134− 431113i = (1 + 2i)2(1 + 4i)(80 + 11i)(19 + 20i)(6 + 11i)(−i)

426334− 387687i = (1 + 2i)2(1 + 4i)(7 + 12i)(31 + 26i)(48 + 13i)
687846− 97153i = (1 + 2i)3(1 + 4i)(4 + 5i)(35 + 8i)(61 + 24i)

−143846− 718847i = (1 + 2i)3(1 + 4i)(4 + 15i)(20 + i)(51 + 4i)(−i)
−583631− 441812i = (1 + 2i)(1 + 4i)(2 + 3i)(1 + 6i)(3107 + 1858i)(−i)

283631− 750028i = (1 + 2i)(1 + 4i)(12 + 7i)(14 + 9i)(11 + 376i)
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
716246 + 602097i = (1 + 2i)2(1 + 4i)(3 + 8i)(2 + 65i)(63 + 52i)

578954− 766097i = (1 + 2i)2(1 + 4i)(1 + 24i)(31 + 26i)(19 + 44i)(−i)
582448 + 34161i = (1 + 2i)3(5 + 2i)(2 + 7i)(5 + 22i)(59)

70352− 552561i = (1 + 2i)3(5 + 2i)(1 + 4i)(29 + 6i)(29 + 70i)(−i)
237888 + 399616i = (1 + 2i)3(1 + i)12(1 + 6i)(8 + 13i)(7)(−i)

181312 + 422784i = (1 + 2i)3(1 + i)12(1 + 4i)(4 + 5i)(23 + 8i)(−i)
44764 + 38148i = (1 + i)5(1 + 2i)2(1 + 6i)(23 + 18i)(11 + 4i)(−i)

46436 + 36252i = (1 + i)5(1 + 2i)2(5 + 6i)(1 + 14i)(19)(−i)
−157567− 36594i = (1 + 2i)2(2 + 5i)(1 + 4i)(75 + 16i)(19)(−i)

12127− 162286i = (1 + 2i)2(2 + 5i)(15 + 2i)(10 + 13i)(23 + 8i)
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(4,2) Pairs


−779326− 277267i = (1 + 2i)(1 + 4i)(2 + 3i)(10 + 3i)(29 + 10i)(41 + 66i)(−i)

131326− 1090733i = (1 + 2i)(1 + 4i)(8 + 45i)(1399 + 2200i)
−1105 + 1020i = (1 + 2i)(2 + i)(4 + i)(1 + 4i)(12 + 13i)(−i)

−2639− 1228i = (1 + 2i)(5 + 22i)(25 + 52i)
−294413− 125726i = (1 + 2i)(1 + 4i)(2 + 3i)(13 + 2i)(13 + 22i)(25 + 14i)(−i)

69773− 413794i = (1 + 2i)(1 + 4i)(23 + 32i)(83 + 1152i)
−6880 + 4275i = (1 + 2i)(2 + i)(3 + 2i)2(2 + 7i)(17 + 2i)(−i)

−13056− 9187i = (1 + 2i)(6 + 19i)(67 + 352i)
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(4,3) Pairs


−12449− 2978i = (1 + 2i)(1 + 4i)(3 + 2i)(2 + 5i)(53 + 48i)(−i)

−991− 16702i = (1 + 2i)(10 + 13i)(2 + 5i)(11 + 84i)
104319− 140692i = (1 + 2i)3(8 + 13i)(29 + 6i)(24 + 25i)

−92319− 75308i = (1 + 2i)3(4 + i)(6 + i)(8 + 3i)(13 + 48i)(−i)
−498059− 299648i = (1 + 2i)(1 + 4i)(2 + 3i)(1 + 14i)(17 + 2i)(71 + 16i)(−i)

221579− 675712i = (1 + 2i)(1 + 4i)(15 + 32i)(13 + 38i)(53 + 12i)
−61678− 28721i = (1 + 2i)2(3 + 2i)(1 + 4i)(14 + i)(38 + 53i)(−i)

14518− 81999i = (1 + 2i)2(5 + 2i)(4 + 29i)(69 + 80i)
−537556− 455477i = (1 + 2i)(3 + 10i)(2 + 3i)(1 + 4i)(38 + 23i)(45 + 8i)(−i)

368116− 754603i = (1 + 2i)(3 + 10i)(4 + 5i)(1 + 14i)(371 + 150i)
−8547 + 4606i = (1 + 2i)(2 + 3i)(1 + 4i)(29 + 30i)(7)(−i)

−8733− 10366i = (1 + 2i)(1 + 6i)(1 + 14i)(71)
−95718 + 18549i = (1 + 2i)2(1 + 4i)(18 + 5i)(64 + 55i)(3)(−i)

−47962− 130309i = (1 + 2i)2(1 + 14i)(16 + i)(103 + 68i)
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(4,4) Pairs


−339374− 103253i = (1 + 2i)(2 + 3i)(1 + 4i)(1 + 6i)(1724 + 325i)(−i)

3374− 388747i = (1 + 2i)(4 + 5i)(5 + 8i)(3 + 10i)(251 + 114i)
471431− 6558i = (1 + 2i)3(7 + 2i)(9 + 10i)(1 + 14i)(29 + 10i)

40569− 409442i = (1 + 2i)3(3 + 2i)(4 + 5i)(11 + 20i)(61 + 34i)(−i)
307084− 217837i = (1 + 2i)3(1 + 4i)(7 + 2i)(1 + 14i)(55 + 58i)(−i)

220916 + 281837i = (1 + 2i)3(5 + 2i)(1 + 6i)(8 + 7i)(19 + 90i)
129276− 57893i = (1 + 2i)3(6 + i)(5 + 6i)(1 + 14i)(19)

−33276− 134107i = (1 + 2i)3(1 + 4i)(5 + 2i)(5 + 8i)(59)(−i)
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(5,3) Pairs


−31606− 9787i = (1 + 2i)(2 + 3i)(1 + 4i)(6 + 5i)(10 + 3i)(10 + 7i)(−i)

−6074− 47573i = (1 + 2i)(5 + 4i)(1 + 26i)(38 + 123i)
−30638− 951i = (1 + 2i)(2 + 3i)(1 + 4i)(5 + 2i)(10 + 3i)(13 + 10i)(−i)

−18322− 44169i = (1 + 2i)(7 + 8i)(14 + 15i)(3 + 98i)
−251422 + 39081i = (1 + 2i)(3 + 2i)(1 + 4i)(4 + 5i)(13 + 8i)(78 + 7i)(−i)

−168578− 331081i = (1 + 2i)(2 + 5i)(29 + 110i)(219 + 160i)
−211300 + 18485i = (1 + 2i)(2 + i)(1 + 4i)(7 + 2i)(22 + 25i)(35 + 24i)(−i)

−149084− 342773i = (1 + 2i)(1 + 10i)(95 + 24i)(16 + 169i)
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(5,5) Pairs


2335041 + 13975712i = (1 + 2i)3(4 + 5i)(7 + 2i)(5 + 6i)(1 + 16i)(150 + 157i)

15760959− 1495712i = (1 + 2i)3(1 + 4i)(3 + 8i)(14 + 15i)(26 + i)(38 + 65i)(−i)
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Exotic Pairs


13484− 10787i = (1 + 2i)3(5 + 4i)(3 + 8i)(26 + 11i)

−9004− 12573i = (1 + 2i)(1 + 4i)(5 + 8i)(1 + 10i)(13 + 12i)(−i)
29281− 19358i = (1 + 2i)3(3 + 2i)(14 + 15i)(24 + 35i)

−13681− 29842i = (1 + 2i)2(1 + 6i)(4 + 5i)(11 + 6i)(9 + 10i)(−i)
9912− 45641i = (1 + 2i)3(1 + 4i)(5 + 4i)(61 + 146i)(−i)

43528 + 9161i = (1 + 2i)(1 + 4i)(1 + 6i)(1 + 10i)(30 + 73i)
61908− 42619i = (1 + 2i)3(1 + 6i)(11 + 14i)(62 + 3i)

−37428− 47141i = (1 + 2i)(2 + 5i)(8 + 3i)(1 + 10i)(5 + 58i)(−i)
361049− 154582i = (1 + 2i)3(5 + 2i)(2 + 7i)(568 + 693i)

−109529− 330378i = (1 + 2i)2(5 + 2i)(2 + 7i)(3 + 8i)(135 + 158i)(−i)
301559− 146012i = (1 + 2i)3(1 + 4i)(71 + 16i)(57 + 82i)

−142839− 241828i = (1 + 2i)(1 + 4i)(7 + 8i)(13 + 22i)(16 + 111i)(−i)
95568− 430624i = (1 + i)8(1 + 2i)3(2 + 3i)(1 + 6i)(79 + 80i)(−i)

50352− 398816i = (1 + i)8(1 + 2i)(2 + 3i)3(1 + 6i)(23 + 32i)(−i)
391696− 737328i = (1 + i)9(1 + 2i)3(2 + 5i)(1 + 4i)(147 + 22i)(−i)

258064− 702992i = (1 + i)9(1 + 2i)(2 + 5i)(1 + 6i)(3 + 10i)(28 + 33i)(−i)
10028 + 23596i = (1 + i)5(1 + 2i)3(2 + 3i)(79 + 80i)(−i)

11092 + 20564i = (1 + i)5(1 + 2i)(2 + 3i)2(133 + 50i)
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
−452528− 233821i = (1 + 2i)2(3 + 2i)(1 + 4i)(59 + 44i)(85 + 38i)(−i)

155248− 563619i = (1 + 2i)(1 + 4i)(9 + 14i)(13 + 22i)(130 + 73i)
−721368− 250336i = (1 + i)6(1 + 2i)(1 + 4i)(1 + 10i)(1 + 16i)(23 + 60i)(−i)

−626472− 223904i = (1 + i)6(1 + 2i)3(4 + i)(8 + 3i)(3 + 10i)(3 + 20i)(−i)
−119184 + 45912i = (1 + i)6(1 + 2i)2(1 + 4i)(1 + 6i)(24 + 35i)(3)(−i)

−153616 + 110888i = (1 + i)6(1 + 2i)3(4 + 5i)(43 + 328i)(−i)
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Appendix B

Pairs Organized by Common

Factors
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Common Factor of (1 + i)7


8008 + 3960i = (1 + i)7(23 + 68i)(11)

4232− 8280i = (1 + i)7(11 + 34i)(23)(−i)
274360 + 248216i = (1 + i)7(7 + 12i)(110 + 57i)(19)

262040− 309416i = (1 + i)7(3 + 32i)(1115 + 12i)(−i)
42696 + 4120i = (1 + i)7(13 + 2i)(215 + 192i)

4104− 43720i = (1 + i)7(20 + 3i)(143 + 128i)(−i)
246392 + 198968i = (1 + i)7(13 + 10i)(62 + 65i)(19)

215608− 268568i = (1 + i)7(10 + 19i)(1319 + 520i)(−i)
306360 + 250424i = (1 + i)7(13 + 22i)(54 + 25i)(23)

255240− 329624i = (1 + i)7(31 + 16i)(599 + 870i)(−i)
50632− 14568i = (1 + i)7(11 + 4i)(393 + 62i)

−15832− 52632i = (1 + i)7(25 + 12i)(175 + 8i)(−i)
272776 + 159240i = (1 + i)7(8 + 7i)(2175 + 1472i)

154424− 298440i = (1 + i)7(79 + 120i)(199 + 56i)(−i)
176920− 78152i = (1 + i)7(13 + 58i)(239 + 160i)(−i)

65480 + 166952i = (1 + i)7(23 + 8i)(4 + 25i)(25 + 6i)
142680− 115112i = (1 + i)7(23 + 48i)(259 + 160i)(−i)

102120 + 136712i = (1 + i)7(4 + 21i)(29 + 10i)(23)
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
228296− 61656i = (1 + i)7(15 + 38i)(319 + 400i)(−i)

50104 + 212856 = (1 + i)7(17 + 2i)(14 + 25i)(23 + 32i)
287864− 25560i = (1 + i)7(11 + 6i)(1999 + 400i)

−35864− 298440i = (1 + i)7(34 + 5i)(671 + 384i)(−i)
248280− 178216i = (1 + i)7(59 + 40i)(159 + 344i)(−i)

157320 + 240616i = (1 + i)7(3 + 20i)(62 + 23i)(19)
305400− 176776i = (1 + i)7(11 + 56i)(491 + 240i)(−i)

151080 + 289816i = (1 + i)7(17 + 2i)(5 + 18i)(81 + 40i)
459384− 25480i = (1 + i)7(11 + 40i)(531 + 824i)(−i)

8136 + 424120i = (1 + i)7(13 + 8i)(25 + 14i)(25 + 82i)
282168− 204760i = (1 + i)7(63 + 32i)(134 + 415i)(−i)

181032 + 274360i = (1 + i)7(3 + 20i)(71 + 26i)(19)
336632− 183000i = (1 + i)7(26 + 11i)(135 + 1192i)(−i)

168568 + 324600i = (1 + i)7(24 + 5i)(25 + 4i)(3 + 52i)
384088− 171032i = (1 + i)7(23 + 40i)(508 + 625i)(−i)

146312 + 362792i = (1 + i)7(15 + 4i)(9 + 26i)(72 + 37i)
439016− 161864i = (1 + i)7(90 + 77i)(95 + 336i)(−i)

130504 + 418904i = (1 + i)7(17 + 10i)(13 + 28i)(59 + 24i)
466072− 155160i = (1 + i)7(16 + 29i)(743 + 1080i)(−i)

132968 + 435240i = (1 + i)7(11 + 4i)(2 + 45i)(75 + 14i)
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
398648− 347208i = (1 + i)7(11 + 204i)(227 + 28i)(−i)

304072 + 391848i = (1 + i)7(7 + 18i)(23 + 8i)(92 + 15i)
810792− 6968i = (1 + i)7(39 + 200i)(199 + 290i)(−i)

−36792 + 756968i = (1 + i)7(9 + 10i)(51 + 4i)(8 + 97i)
16072 + 14712i = (1 + i)7(11 + 4i)(63 + 152i)

15128− 17112i = (1 + i)7(4 + 65i)(31)(−i)
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Common Factor of (1 + i)8


17648 + 768i = (1 + i)8(1103 + 48i)

736− 16560i = (1 + i)8(45 + 2i)(23)(−i)
170176 + 125296i = (1 + i)8(35 + 48i)(67 + 212i)(−i)

−130384 + 164960i = (1 + i)8(5 + 18i)(415 + 568i)
64000 + 15248i = (1 + i)8(17 + 168i)(23 + 8i)(−i)

−15952 + 65248i = (1 + i)8(23 + 48i)(61 + 50i)
53312− 10800i = (1 + i)8(61 + 76i)(31 + 16i)(−i)

10336 + 54064i = (1 + i)8(10 + 29i)(111 + 16i)
69760− 16432i = (1 + i)8(13 + 8i)(207 + 208i)(−i)

18848 + 70928i = (1 + i)8(38 + 143i)(31)
292528 + 103008i = (1 + i)8(95 + 24i)(197 + 18i)

101888− 277968i = (1 + i)8(15 + 4i)(1187 + 108i)(−i)
636256 + 48656i = (1 + i)8(17 + 2i)(95 + 2328i)(−i)

−51664 + 668800i = (1 + i)8(85 + 128i)(215 + 168i)
10336 + 54064i = (1 + i)8(10 + 29i)(111 + 16i)

53312− 10800i = (1 + i)8(31 + 16i)(61 + 76i)(−i)
390416 + 467744i = (1 + i)8(2 + 15i)(1343 + 2128i)(−i)

−438464 + 375280i = (1 + i)8(20 + 7i)(3 + 40i)(35 + 24i)
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
397888 + 544688i = (1 + i)8(3 + 52i)(439 + 680i)(−i)

−551488 + 368912i = (1 + i)8(4 + 15i)(863 + 2528i)
536656 + 1058336i = (1 + i)8(2 + 27i)(1055 + 2528i)(−i)

−1036624 + 495520i = (1 + i)8(2 + 27i)(28 + 25i)(63 + 32i)
636256 + 48656i = (1 + i)8(17 + 2i)(95 + 2328i)(−i)

−51664 + 668800i = (1 + i)8(85 + 128i)(215 + 168i)
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Common Factor of (1 + i)9


896400 + 696944i = (1 + i)9(11 + 20i)(2043 + 812i)(−i)

−681808 + 931312i = (1 + i)9(43 + 102i)(447 + 112i)
67184 + 120560i = (1 + i)9(4 + 21i)(255 + 128i)(−i)

−1118256 + 70544i = (1 + i)9(2 + 3i)(3 + 88i)(35 + 152i)(−i)
260368 + 1316848i = (1 + i)9(11 + 20i)(1195 + 2308i)(−i)

−1329840 + 303056i = (1 + i)9(63 + 92i)(215 + 496i)
288528 + 701168i = (1 + i)9(11 + 20i)(915 + 1148i)(−i)

−703600 + 313936i = (1 + i)9(73 + 162i)(135 + 136i)
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Common Factor of (1 + i)m(1 + 2i)n


237888 + 399616i = (1 + 2i)3(1 + i)12(1 + 6i)(8 + 13i)(7)(−i)

181312 + 422784i = (1 + 2i)3(1 + i)12(1 + 4i)(4 + 5i)(23 + 8i)(−i)
20868 + 34476i = (1 + i)5(1 + 2i)3(1 + 14i)(15 + 2i)(3)(−i)

20732 + 48724i = (1 + i)5(1 + 2i)3(1 + 4i)(183 + 88i)(−i)
44764 + 38148i = (1 + i)5(1 + 2i)2(1 + 6i)(23 + 18i)(11 + 4i)(−i)

46436 + 36252i = (1 + i)5(1 + 2i)2(5 + 6i)(1 + 14i)(19)(−i)
−119184 + 45912i = (1 + i)6(1 + 2i)2(1 + 4i)(1 + 6i)(24 + 35i)(3)(−i)

−153616 + 110888i = (1 + i)6(1 + 2i)3(4 + 5i)(43 + 328i)(−i)
−461624− 95768i = (1 + i)7(1 + 2i)2(1 + 4i)(11 + 14i)(35 + 108i)(−i)

−369976− 109432i = (1 + i)7(1 + 2i)2(1 + 4i)(5 + 2i)(11 + 6i)(5 + 24i)(−i)

76



Common Factor of 1 + 2i


−3235 + 1020i = (1 + 2i)(2 + i)3(5 + 4i)(7 + 20i)(−i)

−3549− 4988i = (1 + 2i)(1 + 10i)(15 + 272i)
−1105 + 1020i = (1 + 2i)(2 + i)(4 + i)(1 + 4i)(12 + 13i)(−i)

−2639− 1228i = (1 + 2i)(5 + 22i)(25 + 52i)
−31606− 9787i = (1 + 2i)(2 + 3i)(1 + 4i)(6 + 5i)(10 + 3i)(10 + 7i)(−i)

−6074− 47573i = (1 + 2i)(5 + 4i)(1 + 26i)(38 + 123i)
−30638− 951i = (1 + 2i)(2 + 3i)(1 + 4i)(5 + 2i)(10 + 3i)(13 + 10i)(−i)

−18322− 44169i = (1 + 2i)(7 + 8i)(14 + 15i)(3 + 98i)
−12449− 2978i = (1 + 2i)(1 + 4i)(3 + 2i)(2 + 5i)(53 + 48i)(−i)

−991− 16702i = (1 + 2i)(10 + 13i)(2 + 5i)(11 + 84i)
−8547 + 4606i = (1 + 2i)(2 + 3i)(1 + 4i)(29 + 30i)(7)(−i)

−8733− 10366i = (1 + 2i)(1 + 6i)(1 + 14i)(71)
−21246− 8807i = (1 + 2i)(1 + 4i)(6 + 11i)(2 + 3i)(45 + 32i)(−i)

5166− 26953i = (1 + 2i)(1 + 4i)(6 + 11i)(41 + 234i)
−211300 + 18485i = (1 + 2i)(2 + i)(1 + 4i)(7 + 2i)(22 + 25i)(35 + 24i)(−i)

−149084− 342773i = (1 + 2i)(1 + 10i)(95 + 24i)(16 + 169i)
12022− 309201i = (1 + 2i)(1 + 4i)(4 + 9i)(1343 + 3132i)

−259222− 59439i = (1 + 2i)(1 + 4i)(2 + 3i)(4 + 11i)(653 + 202i)(−i)
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
−629476− 461397i = (1 + 2i)(1 + 6i)(1 + 4i)(4 + i)2(431 + 696i)(−i)

439396− 963243i = (1 + 2i)(1 + 6i)(2 + 15i)(31 + 44i)(93 + 22i)
−339374− 103253i = (1 + 2i)(2 + 3i)(1 + 4i)(1 + 6i)(1724 + 325i)(−i)

3374− 388747i = (1 + 2i)(4 + 5i)(5 + 8i)(3 + 10i)(251 + 114i)
−537556− 455477i = (1 + 2i)(3 + 10i)(2 + 3i)(1 + 4i)(38 + 23i)(45 + 8i)(−i)

368116− 754603i = (1 + 2i)(3 + 10i)(4 + 5i)(1 + 14i)(371 + 150i)
−251422 + 39081i = (1 + 2i)(3 + 2i)(1 + 4i)(4 + 5i)(13 + 8i)(78 + 7i)(−i)

−168578− 331081i = (1 + 2i)(2 + 5i)(29 + 110i)(219 + 160i)
−6880 + 4275i = (1 + 2i)(2 + i)(3 + 2i)2(2 + 7i)(17 + 2i)(−i)

−13056− 9187i = (1 + 2i)(6 + 19i)(67 + 352i)
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Common Factor of (1 + 2i)2


−4694 + 467i = (1 + 2i)2(4 + i)(4 + 5i)(11 + 34i)(−i)

−766− 6187i = (1 + 2i)2(1 + 6i)(116 + 169i)
−14612− 7159i = (1 + 2i)2(6 + i)(1 + 4i)(7 + 8i)(10 + 7i)(−i)

4212− 19241i = (1 + 2i)2(6 + i)(1 + 14i)(23 + 40i)
−1895 + 2060i = (1 + 2i)2(2 + i)(13 + 8i)(13 + 10i)(−i)

−3433− 2356i = (1 + 2i)2(7 + 12i)(53 + 28i)
−3970 + 2435i = (1 + 2i)2(2 + i)(8 + 3i)(21 + 44i)(−i)

−4478− 5471i = (1 + 2i)2(8 + 13i)(65 + 66i)
−61678− 28721i = (1 + 2i)2(3 + 2i)(1 + 4i)(14 + i)(38 + 53i)(−i)

14518− 81999i = (1 + 2i)2(5 + 2i)(4 + 29i)(69 + 80i)
−24877− 15664i = (1 + 2i)2(1 + 4i)(2 + 3i)(289 + 270i)(−i)

9877− 27536i = (1 + 2i)2(3 + 2i)3(59 + 110i)
−24766− 12687i = (1 + 2i)2(6 + i)(1 + 4i)(5 + 4i)(24 + 25i)(−i)

7766− 33313i = (1 + 2i)2(6 + i)(1 + 14i)(39 + 70i)
−95718 + 18549i = (1 + 2i)2(1 + 4i)(18 + 5i)(64 + 55i)(3)(−i)

−47962− 130309i = (1 + 2i)2(1 + 14i)(16 + i)(103 + 68i)
−157567− 36594i = (1 + 2i)2(2 + 5i)(1 + 4i)(75 + 16i)(19)(−i)

12127− 162286i = (1 + 2i)2(2 + 5i)(15 + 2i)(10 + 13i)(23 + 8i)
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
−349539− 233248i = (1 + 2i)2(6 + i)(1 + 6i)(1 + 4i)(541 + 104i)(−i)

158339− 410352i = (1 + 2i)2(6 + i)(3 + 8i)(7 + 18i)(84 + 25i)
−365173− 221936i = (1 + 2i)2(4 + 5i)(1 + 4i)(2203 + 2372i)(−i)

168373− 417664i = (1 + 2i)2(4 + 5i)(7 + 10i)(23 + 12i)(38 + 23i)
−203672− 30529i = (1 + 2i)2(6 + i)(3 + 2i)(1 + 4i)(384 + 245i)(−i)

−48328− 270471i = (1 + 2i)2(6 + i)(41 + 70i)(49 + 100i)
−294413− 125726i = (1 + 2i)(1 + 4i)(2 + 3i)(13 + 2i)(13 + 22i)(25 + 14i)(−i)

69773− 413794i = (1 + 2i)(1 + 4i)(23 + 32i)(83 + 1152i)
−657187− 231884i = (1 + 2i)2(6 + i)(3 + 2i)(1 + 4i)(1119 + 1060i)(−i)

14387− 928516i = (1 + 2i)2(6 + i)(22 + 43i)(199 + 600i)
−503402 + 18861i = (1 + 2i)2(6 + i)(3 + 2i)(1 + 4i)(1034 + 415i)(−i)

−237398− 628261i = (1 + 2i)2(6 + i)(21 + 46i)(295 + 322i)
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Common Factor of (1 + 2i)3


57942− 44431i = (1 + 2i)3(1 + 4i)(24 + 25i)(45 + 8i)

−41942− 47569i = (1 + 2i)3(5 + 2i)(4 + 5i)(94 + 135i)(−i)
582448 + 34161i = (1 + 2i)3(5 + 2i)(2 + 7i)(5 + 22i)(59)

70352− 552561i = (1 + 2i)3(5 + 2i)(1 + 4i)(29 + 6i)(29 + 70i)(−i)
129276− 57893i = (1 + 2i)3(6 + i)(5 + 6i)(1 + 14i)(19)

−33276− 134107i = (1 + 2i)3(1 + 4i)(5 + 2i)(5 + 8i)(59)(−i)
471431− 6558i = (1 + 2i)3(7 + 2i)(9 + 10i)(1 + 14i)(29 + 10i)

40569− 409442i = (1 + 2i)3(3 + 2i)(4 + 5i)(11 + 20i)(61 + 34i)(−i)
293124− 106057i = (1 + 2i)3(15 + 2i)(1 + 4i)(8 + 13i)(29 + 4i)

−108484− 289463i = (1 + 2i)3(15 + 2i)(2 + 3i)2(123 + 68i)(−i)
104319− 140692i = (1 + 2i)3(8 + 13i)(29 + 6i)(24 + 25i)

−92319− 75308i = (1 + 2i)3(4 + i)(6 + i)(8 + 3i)(13 + 48i)(−i)
265256− 173533i = (1 + 2i)3(5 + 2i)(1 + 4i)(13 + 12i)(5 + 72i)(−i)

205144 + 250333i = (1 + 2i)3(5 + 2i)(5 + 6i)(1 + 24i)(14 + 25i)
307084− 217837i = (1 + 2i)3(1 + 4i)(7 + 2i)(1 + 14i)(55 + 58i)(−i)

220916 + 281837i = (1 + 2i)3(5 + 2i)(1 + 6i)(8 + 7i)(19 + 90i)
1053996− 84353i = (1 + 2i)3(5 + 2i)(1 + 4i)(17 + 42i)(1 + 94i)(−i)

140244 + 1052033i = (1 + 2i)3(5 + 2i)(2 + 5i)(7 + 38i)(11 + 84i)
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
551223− 310664i = (1 + 2i)3(4 + 5i)(83 + 28i)(34 + 95i)

−215223− 417336i = (1 + 2i)3(4 + 5i)(6 + 19i)(104 + 35i)(3)(−i)
2335041 + 13975712i = (1 + 2i)3(4 + 5i)(7 + 2i)(5 + 6i)(1 + 16i)(150 + 157i)

15760959− 1495712i = (1 + 2i)3(1 + 4i)(3 + 8i)(14 + 15i)(26 + i)(38 + 65i)(−i)
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Common Factor of (1 + 2i)4


946241− 292888i = (1 + 2i)4(2 + 3i)(9 + 10i)(15 + 22i)(29 + 10i)(−i)

300559 + 980488i = (1 + 2i)4(1 + 4i)(8 + 3i)(27 + 20i)(24 + 25i)
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Common Factor of (1 + 2i)n(1 + 4i)n


−42529− 11098i = (1 + 2i)(1 + 4i)(2 + 3i)(5 + 24i)(53 + 10i)(−i)

5953− 51974i = (1 + 2i)(1 + 4i)(1 + 10i)(341 + 450i)
−6468− 5251i = (1 + 2i)2(1 + 4i)(1 + 14i)(27 + 10i)(−i)

5356− 6133i = (1 + 2i)2(1 + 4i)(3 + 8i)(36 + 29i)
−185562− 570259i = (1 + 2i)2(1 + 4i)(11 + 14i)(13 + 28i)(49 + 20i)(−i)

576442− 179581i = (1 + 2i)2(1 + 4i)(1 + 14i)(20 + 7i)(81 + 56i)
−381134− 431113i = (1 + 2i)2(1 + 4i)(80 + 11i)(19 + 20i)(6 + 11i)(−i)

426334− 387687i = (1 + 2i)2(1 + 4i)(7 + 12i)(31 + 26i)(48 + 13i)
−121359− 98788i = (1 + 2i)2(1 + 4i)(2 + 5i)(1109 + 870i)(−i)

82599− 121532i = (1 + 2i)2(1 + 4i)(10 + 7i)(15 + 2i)(20 + 33i)
687846− 97153i = (1 + 2i)3(1 + 4i)(4 + 5i)(35 + 8i)(61 + 24i)

−143846− 718847i = (1 + 2i)3(1 + 4i)(4 + 15i)(20 + i)(51 + 4i)(−i)
−22233− 7876i = (1 + 2i)(1 + 4i)(2 + 3i)(5 + 8i)(61 + 44i)(−i)

3033− 28124i = (1 + 2i)(1 + 4i)(9 + 10i)(5 + 228i)
−583631− 441812i = (1 + 2i)(1 + 4i)(2 + 3i)(1 + 6i)(3107 + 1858i)(−i)

283631− 750028i = (1 + 2i)(1 + 4i)(12 + 7i)(14 + 9i)(11 + 376i)
−259222− 59439i = (1 + 2i)(1 + 4i)(2 + 3i)(4 + 11i)(653 + 202i)(−i)

12022− 309201i = (1 + 2i)(1 + 4i)(4 + 9i)(1343 + 3132i)
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
−442001− 234332i = (1 + 2i)2(1 + 4i)(24 + 35i)(63 + 52i)(7)(−i)

261201− 516068i = (1 + 2i)2(1 + 4i)(79 + 40i)(123 + 292i)
716246 + 602097i = (1 + 2i)2(1 + 4i)(3 + 8i)(2 + 65i)(63 + 52i)

578954− 766097 = (1 + 2i)2(1 + 4i)(1 + 24i)(31 + 26i)(19 + 44i)(−i)
−498059− 299648i = (1 + 2i)(1 + 4i)(2 + 3i)(1 + 14i)(17 + 2i)(71 + 16i)(−i)

221579− 675712i = (1 + 2i)(1 + 4i)(15 + 32i)(13 + 38i)(53 + 12i)
−392801− 15432i = (1 + 2i)2(1 + 4i)(4 + 5i)(2831 + 924i)(−i)

−5479− 396528i = (1 + 2i)2(1 + 4i)(8 + 13i)(33 + 2i)(38 + 3i)
−779326− 277267i = (1 + 2i)(1 + 4i)(2 + 3i)(10 + 3i)(29 + 10i)(41 + 66i)(−i)

131326− 1090733i = (1 + 2i)(1 + 4i)(8 + 45i)(1399 + 2200i)
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Appendix C

Pairs with all Factors of the Form

4k + 3
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Pairs will all Factors of the form

4k + 3


1111259153519361 = 34 · 72 · 112 · 23 · 367 · 467 · 587

1118172210128127 = 34 · 72 · 112 · 23 · 3023 · 33487
1334118917120913 = 34 · 72 · 112 · 192 · 911 · 8447

1358566300511343 = 34 · 7 · 112 · 192 · 1367 · 40127
3270341090555847 = 34 · 72 · 11 · 19 · 439 · 587 · 15299

3281945745924153 = 34 · 72 · 11 · 19 · 1999 · 1979207
8062452835794819 = 34 · 72 · 112 · 23 · 71 · 79 · 179 · 727

8554426893254781 = 34 · 72 · 112 · 103 · 223 · 479 · 1619
11160803668867083 = 34 · 72 · 11 · 19 · 419 · 503 · 63839

11208072889468917 = 34 · 72 · 11 · 19 · 6299 · 2145023
11906276468021397 = 34 · 72 · 112 · 192 · 1087 · 63179

12117725765249643 = 34 · 7 · 112 · 192 · 971 · 503879
14375494338185673 = 34 · 72 · 112 · 192 · 743 · 111599

14642939731916727 = 34 · 7 · 112 · 192 · 1619 · 365179
14435885714987583 = 34 · 72 · 11 · 19 · 251 · 2243 · 30911

14499012954908097 = 34 · 72 · 11 · 19 · 11807 · 1576511
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
1767551875449598684552576239 = 34 · 72 · 112 · 31 · 263 · 47 · 424079 · 22648718399

1805163613534085298922111761 = 34 · 72 · 112 · 31 · 263 · 593711999 · 776527487
5349260758292158741215099687 = 34 · 72 · 112 · 31 · 79 · 311 · 5879 · 2487566303423

53673707420129601941226713 = 34 · 72 · 112 · 31 · 79 · 82817279 · 55104316847
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