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Abstract— Few-layer black phosphorus is a semiconductor material, where its allotrope is called phosphorene; a new 

two-dimensional material which is discovered in 2014. In this paper, first we use the tight-binding method to implement a 

matrix representation for single-layer and multilayer structures of phosphorene nanoribbon (PNR) to define the 

Hamiltonian of the system. Second, we investigate the band structure and the band gap of multilayer PNRs. The band gap 

of armchair PNRs with 16 atoms across the width of PNR for single-layer, bilayer, and three-layer structures are 

obtained as 1.899, 1.224, and 0.937 eV, respectively. Third, we use the atomistic description of structure to simulate the 

performance characteristics of single and multilayer PNR field effect transistors (PNRFETs) by employing the non-

equilibrium Green’s function (NEGF) formalism. Based on the properties of the material and device structures, Id-Vgs, Id-

Vds characteristics, energy band diagram in the channel, and ION/IOFF are analyzed. The ON to OFF current ratio for 

single-layer, bilayer, and three-layer PNRFETs are increasing when the channel length increases from 5nm to 15nm. The 

current ratio for single-layer increases from 1277 for Lch=5nm to 216.7×106 for Lch=15nm. The ION/IOFF in single-layer 

PNRFET is higher in comparison with those values in bilayer and three-layer PNRFETs due to very small off-current in 

the single-layer PNRFET which in turn resulted from its larger band gap. The results show that the performance of 

PNRFET changes significantly depending on the number of phosphorene layers and the length of the channel of device. 
 

Keywords: multilayer phosphorene nanoribbon; tight-binding; PNRFETs; Green’s function; 

1. Introduction 

Since 2004, a number of two-dimensional (2D) materials have been discovered such as Graphene, Molybdenum 

Disulphide (MoS2), Arsenene, and Black Phosphorus (BP). Graphene as a 2D sheet of carbon atoms with thickness 

of only one atom was the first 2D material discovered in 2004, which has attracted a great attention in the 

semiconductor industry, particularly in electronic devices, interconnects, and energy storage [1-5]. The main issue 

for graphene is its lack of energy bandgap which, limits its application as a material for electronic devices such as 

field effect transistors (FETs), because graphene devices cannot be turned OFF completely. BP in its layered form 

which is named “phosphorene”, is a 2D semiconductor material discovered in 2014. It shows interesting electronic, 

semiconducting and optical properties [6-9]. Phosphorene, like graphene, can be produced as thin as one single 

atomic layer. In fact, BP bulk crystal is composed of many individual layers stacked up over together by van der 

Waals force; however, unlike graphene layers which are perfectly flat, phosphorene layers form a puckered surface 

due to the sp
3
 hybridization [10]. 

The phosphorene nanoribbons (PNRs) can be obtained by cutting a single-layer phosphorene along its armchair or 

zigzag directions in the same way as the graphene nanoribbon (GNR) is produced. Therefore, the armchair PNRs 

(A-PNRs) or zigzag PNRs (Z-PNRs) can be identified by the number of dimer lines or the zigzag chains across the 

ribbon width, respectively [8]. Both A-PNRs and Z-PNRs have positive and much smaller formation energies 

compared to the GNRs, which means that the experimental synthesis of PNRs is fully accessible [11]. According to 

the research history of the previous 2D materials such as graphene and MoS2, the theoretical and simulation research 

studies of PNRs are necessary for future experimental works. Edge disorder is a problem in GNRs and therefore, 

patterning will be relatively difficult due to significant changes in the band gap of GNRs by different numbers of 

atoms across its widths, especially in narrower GNRs [12]. However, it should be mentioned that recently a group of 

scientists found a way to yield atomically precise zigzag graphene nanoribbon edges [13]. The band gap of GNR 

changes significantly by changing the number of carbon atoms within the width of ribbon, however by changing the 



number of phosphorous atoms within the width of the ribbon, the variation of band gap of PNR becomes very small 

and thus negligible. This makes the fabrication of PNRs more convenient [14-19].  

Theoretical and experimental studies have been carried out on few-layer phosphorene transistors. Various articles on 

phosphorene have been published since Liu et al. discovered phosphorene as a new 2D semiconductor material in 

2014 [7, 9, 20-23]. For example, doped contact multilayer (ML) phosphorene FETs are simulated by self-

consistently solving the 2D Poisson’s equation and Schrodinger’s equation based on NEGF in mode space [23]. 

FETs which use phosphorene as the channel material with a thickness of a few nanometers (meaning a few layers of 

phosphorene) were fabricated [7, 20, 24, 25]; however, in most of these experimental research articles, Schottky 

barriers junctions are used as the source and drain contacts [7, 9, 20, 26]. Multilayer Schottky barrier phosphorene 

FETs are also simulated using NEGF and 2D Poisson’s equation based on atomistic structure of the channel 

calculated from the k.p model with a band gap of 1.52 eV. The results show ambipolar behavior with a high leakage 

current in multilayers that can be reduced by several orders of magnitude in single- and bilayer phosphorene FETs 

[22]. The effect of layer stacking orders (similar to layer stacking of AA, AB, and AC in GNR) of bilayer black 

phosphorene on the device properties of MOSFETs create possible chances to immunize FETs against short channel 

effects [27]. Single-layer BP FETs outperform both MoS2 and SiFETs, either n- or p-type devices, due to higher 

carrier velocity in the armchair direction [21]. Wan et al. simulated single-layer phosphorene tunneling FETs 

(TFETs) via a self-consistent atomistic quantum transport based on the recursive scattering matrix approach using 

the density functional theory (DFT), where the band structure calculation resulted in a 0.93 eV band gap [22]. The 

proposed TFET exhibits a subthreshold slope (SS) below 60 mV/dec. Their results show that the on-current, ION, is 

dependent on the transport direction due to highly anisotropic band structure of phosphorene [19]. It also shows ION 

three orders of magnitude larger at the same ION /IOFF ratio compared to that of the single-layer MoTe2 TFETs, where 

it suggests superiority of phosphorene for TFETs application [19]. 

Cao et al. demonstrated that single-layer phosphorene FETs are promising candidates for the International 

Technology Roadmap for Semiconductors (ITRS) for the 2024 horizon [23]. Authors used the old version of tight-

binding parameters which resulted in a band gap energy of 1.6 eV [23]. Another way to define the Hamiltonian of 

the system is to use the k.p method [22, 23]. However, the k.p method is based on the effective mass approximation 

whose applicability is not well justified for BP and its Hamiltonian is not well suited for studying real space 

problems even in the low-energy range [28]. The tight-binding method [29] shows fairly accurate energy band 

structures for phosphorene materials compared to the results based on the k.p method. More importantly, the results 

from tight-binding method are comparable to the first-principle calculations based on the DFT approach, especially 

in the low energy regime. Thus, we use the new tight-binding parameters to determine the Hamiltonian of the 

system. The parameters of tight-binding model for BP with an arbitrary number of layers were derived from 

partially self-consistent GW0 approach and presented for the first time by Rudenko et al [28, 30]. 

To the best of our knowledge, there is no quantum transport simulation study on SL- and ML-PNRFETs that uses 

NEGF with new TB parameters in literature so far. Our paper overcomes this limitation by utilizing new tight-

binding parameters to form a matrix representation for single-layer and multilayer PNR structures. The defined 

matrix representation is used in the quantum transport simulation of PNRFETs using the NEGF formalism and 2D 

Poisson’s equation [31, 32]. We explore the A-PNRs because of anisotropic properties of band structure of 

phosphorene, which enable electrons to travel faster in the direction of the armchair. This suggests that the armchair 

direction in the 2D plane has the highest carrier mobility [17, 22].  

 

2. Theoretical Method 

In this section, we have presented realistic matrix representations of SL- and ML-PNRs. The modified tight-binding 
parameters are introduced and used to simulate the PNR FETs based on the non-equilibrium Green’s function 
formalism. Fig. 1 shows the view, the hopping parameter and the ball-stick model of the atomic structure of 
multilayer black phosphorus. In order to implement the tight-binding method, we use the atomic structure of (SL) 
layer phosphorene as shown in Fig. 1 (c). We supply all the model definitions in order to construct the Hamiltonian 
of the system for both the band structure calculation and the device simulation. The unit cell of phosphorene is 
composed of four atoms named as P1-P4 as shown in Fig. 1(c). The basis vectors are a1 and a2 along the armchair and 
zigzag directions, respectively. The length of a1 and a2 are 4.43 A° and 3.27 A°, respectively [6]. In order to have a 
direct bandgap material, we add hydrogen atoms to passivate the edge phosphorus atoms as shown in Fig. 1 (c) [8]. 

In our previous paper, we used the simple five-element TB parameters to investigate the electronic properties of 
phosphorene nanoribbons under the external modulated electric fields [16]. However, in this work, we apply the new 
ten-element TB parameters to determine the Hamiltonian of an A-PNR-FET for implementation of the quantum 



transport method in the NEGF formalism. The proposed matrix representation of phosphorene structures can be 
applied to all SL- and ML-PNRs with an even number of phosphorus atoms in the width of the layer. The tight-
binding model of phosphorene is given by the effective four-band Hamiltonian, considering one electron per lattice 
site. The tight-binding formula for SL- and ML- phosphorene materials is defined as follows [28]: 

|| † †

ij i j ij i j

i j i j

H t c c t c c

 

            (1) 

Where i and j run over the lattice sites, t
||
 (t

┴
) is the inlayer (interlayer) hopping parameter between the sites i and j, 

and ci
†
 (cj) is the creation (annihilation) operator of electrons at site i (j). The first term stands for the inlayer 

interactions between phosphorus atoms, and the second term describes the interactions between atoms belonging to 
different layers. We note that the Hamiltonian given by (Eq. 1) does not contain on-site terms, meaning that 
electrons have equivalent energies at all the sites.                                                                                              

Fig. 1. (a) Front view of atomic structure of multilayer phosphorene. (b) Schematic representation of the hopping parameters for 
the tight-binding model applied to the multilayer black phosphorus. The corresponding values are given in Table I [28]. (c) Top 
view of ball-stick model of atomic structures for single layer, (SL) 16-A-PNR. The unit cells αu’s are marked by dashed squares. 
The edge dangling bonds are passivated by hydrogen atoms (in white). 

First, we define a unit cell including four phosphorus atoms as shown in Fig. 1 (c). The 4-atom unit cell is 
distributed in the transverse direction (y-direction) to make a large unit cell which makes the width of the ribbon. 
Then, we distribute the new large unit cell along the transport direction (x-direction) in order to construct the full 
Hamiltonian matrix, H, of the A-PNR structure. The new tight-binding parameters for inlayer and interlayer 
interactions in phosphorene multilayer structures are introduced in Fig. 1 (b) and the values are given in Table I [28]. 

Using the phosphorene structure and the unit cells shown in Fig. 1 (c), we have the Hamiltonian matrix αu for each 
individual unit cell as follows: 
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          (2) 

βu,W is a matrix with the same size as αu describes the interactions between each two neighbor small unit cells in the 
direction across the width of the PNR. 
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         (3) 

Βu,W,F describes the lateral interaction between two unit cell atoms like unit cells αu1 and αu3. 
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         (4) 

βu,L describes the interactions between each adjoining unit cell in the transport direction (x-direction). Other matrices 
are also defined in the same way. 
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where F and B stand for front and back, respectively. Now, we can define a super unit cell which is one single 
column of each individual unit cell in the width of the ribbon (y-direction) with only one unit cell length in the 
transport direction called αSL as shown in Fig. 1 (c). The same thing can be used for interaction matrix βSL, which is 
another single-column matrix describing the connections between two super unit cells of αSL. By using αSL, we can 
work on the problem as a one-dimensional system.  
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 (6) 

N is the number of phosphorus atoms in the width of the nanoribbon. Therefore, the total number of atoms inside the 
channel of the device equals 2N times the number of the unit cells in the transport direction named as NT. Thus, the 
size of Hamiltonian is (2N×NT)×(2N×NT). 

TABLE I. Inlayer (t||) and interlayer (t┴) hopping parameters for multilayer black phosphorus, d denotes the distances between the 
corresponding interacting lattice sites. The hopping parameters are schematically shown in Fig. 1b [28]. 

No. 
Inlayer 

No. 
Inlayer 

No. 
Interlayer 

t|| (eV) d||(A
°) t|| (eV) d||(A

°) t┴ (eV) d┴(A°) 

1 -1.486 2.22 6 0.186 4.23 1 0.524 3.60 

2 3.729 2.24 7 -0.063 4.37 2 0.180 3.81 

3 -0.252 3.31 8 0.101 5.18 3 -0.123 5.05 

4 -0.071 3.34 9 -0.042 5.37 4 -0.168 5.08 

5 0.019 3.47 10 0.073 5.49 5 0.005 5.44 
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     (7) 

For multilayer PNR structures, the same method can be used to determine their Hamiltonian. Here we define the 
interaction matrices between adjacent layers by γ. When we have interactions between two layers, the size of the 
smallest matrices will be 8*8, because they are made up of two unit cells in two different layers. Here, γW and γL are 
defined in the same way as βW and βL, respectively, but with different sizes and coefficients due to the increased 
number of phosphorene layers. Based on the previous explanation, the matrices for multilayer PNR are obtained as 
follows:  
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In the case of multilayer, different types of relative location of atoms in adjacent layers are known which are called 
AA-, AB-, and AC-stacking [27]. Finally, we can define αML, βML, and HML for AB-stacked multilayer phosphorene 
materials as follows [27]: 
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Using the time-independent Schrödinger equation and Bloch’s theorem in periodic structures, the band structure of 
the SL- and ML-PNRs can be calculated using the following formulas SL and ML cases, respectively [31]:  

  ika ika

SL SL SLE k e e      
         (10-a) 

  ika ika

ML ML MLE k e e      
         (10-b) 

where k is the momentum.  
Formula (10) is used to plot the band structure of materials for the first Brillouin zone. The band gap can be easily 
calculated using the band structure of material by finding the minimum and maximum energies of conduction and 
valance bands respectively. We can also make the complete Hamiltonian of the multilayer structure using the 
Hamiltonian of each individual layer and the interaction matrices with its neighboring layers as follows: 
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  (11) 



Now, we have defined all the required matrices corresponding to the atomic structure of the channel, the source and 
the drain. Thus, we can find the retarded Green’s function as follows [31]: 

  1[(E i0 ) ]  S DE IG H U             (12) 

where E is the energy, ΣS/D is the self-energy matrix of the source/drain, and I is the identity matrix. U is the 
diagonal matrix of potential calculated from solving the Poisson’s equation in the device, and its diagonal elements 
are the potential of individual atoms inside the channel of the device. We numerically calculate the transmission and 
the electron density using the Green’s function. Then, electron density is put into the Poisson’s equation to find the 
potential in the device. The electron density and chemical potential are determined self consistently after several 
iterations. When the self-consistency between the quantum transport equation and Poisson’s equation is achieved, 
the source-drain current density is computed by using the Landauer formula as follows [31]: 

 
2 1

(E) (E ) (E )ds S D

q
I T f f dE

h W
           (13) 

where W is the width of channel, ƒ is the fermi function, and µS/D, as the chemical potential at the source/drain 
contact, is defined with respect to the Fermi level of the source electrode. T(E) is the source-drain transmission 
calculated using the following formula: 

 T( ) ( ) ( ) ( ) '( )S DE Trace E G E E G E  
       (14) 

where 
S(D)

  is the broadening quantity of each contact calculated numerically using the self-energy matrix of each 

one as follows: 

S(D) S(D) S(D)( ) iE      
                                                                                             (15) 

3. Results and Discussion 

The schematic structure of PNRFET is shown in Fig. 2, composed of n-type source and drain regions with an 

intrinsic channel region with a length that varies from 5nm to 15nm in this study. The lengths of source and drain 

regions are 7.1nm each to fulfill the ITRS 2028 node requirement, and no gate contact overlap/underlap for the 

device is considered. In order to satisfy the ITRS requirement, the 2nm thick gate oxide insulator HfO2 with relative 

dielectric constant of εr = 25 is considered to improve the gate electrostatic control over the channel. The gate 

voltage, Vgs is applied as the boundary condition at the interface between the gate electrodes and the gate oxides. For 

the artificial boundaries, the Neumann boundary condition is used, where the electric field perpendicular to the 

boundary is assumed to be zero. As mentioned before, in the quantum transport model for nano-device analysis 

based on the tight-binding approach, the device structure is described by a Hamiltonian matrix, H. The electron 

density and chemical potential are determined self consistently after several iterations. Finally, I-V characteristics of 

the device under different biases are obtained. The simulations are performed at the room temperature, T=300 K. 

The simulation results are arranged in two parts as follows: 

 

Fig. 2. The schematic structure of multilayer phosphorene FET, composed of n-type source and drain regions with an intrinsic 

channel region. The length of source and drain regions is 7.1nm each. A 2nm HfO2 with dielectric constant of εr = 25 is used as 

the gate oxide insulator. 

3.1 Electronic properties of phosphorene nanoribbon 



Calculations of the band gap of different PNRs are performed based on the above matrix representation. Fig. 3 

shows the band gap variation of A-PNRs versus the number of atoms in the width of the PNR. As shown, A-PNR is 

a semiconductor material, and its band gap decreases as the width of the nanoribbon increases due to the quantum 

confinement effect [15, 33, 34]. The band gap of the single layer PNR reaches a saturated value of 1.84 eV when the 

width of the ribbon increases significantly. The band gap values of single layer and multilayer A-PNRs calculated in 

this work are in close agreement with the previous reports which used first principle calculations and the tight-

binding method [28]. When we increase the number of layers, the band gap decreases from the saturated value of 

1.84eV to 1.14, 0.845, and 0.692 eV for 1L-, 2L-, 3L-, and 4L-PNR, respectively, where they are in close agreement 

with the previous report [28]. It confirms the accuracy of our TB method which is implemented in our simulation of 

the PNRFET. 

 
Fig. 3.  Band gap variation of multilayer A-PNRs vs. the width and the number of phosphorus atoms across the width of PNR. 

Inside graph shows the band gap variation for single layer A-PNR versus the number of atoms across the width.  

 

Fig. 4 shows the energy band structure of 1L-, 2L-, and 3L-PNRs with 16 phosphorus atoms in the widths of the A-

PNRs. By increasing the number of PNR layers, the band gap of a multilayer PNR becomes smaller than that of the 

single layer counterpart. 



 

Fig. 4.  Energy band diagrams of 1L-, 2L-, and 3L-PNR structures of 16 phosphorus atoms across the width of PNR. 

 

3.2 Simulation results for Phosphorene FETs 

In order to clearly show the difference between single-layer and multilayer phosphorene FETs, we define the current 

at the bias point of Vgs,OFF=Vdd/2=0.25 V as the off-current, and the current at the bias point of Vgs,ON =Vgs,OFF 

+Vdd=0.75 V for Vdd=0.5 V as the on-current [35]. In this case, we suppose that the gate contacts have the same 

work function as that of the channel material.  Alternatively, we could consider 0.25 V as the difference between the 

work functions of gate contacts and the channel material to be used as a device adjusting parameter to investigate the 

OFF current at Vgs,OFF=0 and Vgs,ON =0.5 V. 

Logarithmic and linear scales of Ids versus Vgs for SL- and ML-A-PNRFETs of N=16 and channel lengths of Lch=5 

and 10nm are shown in Fig. 5. As stated before, increasing the number of PNR layers reduces the band gap of 

material. Having a smaller band gap, the turn on voltage for the PNRFET reduces and the on-current increases. At 

the same time, the off-current also increases due to a higher probability of tunneling in low band gap devices. Ids 

versus Vds for ML-A-PNRFETs of Lch=5nm with N=12, 14, and 16 are presented in Fig 6. It can be seen that the Ids 

increases with increasing the number of layers due to increasing the number of transmission channels in multilayer 

structures. For example, for Vds=Vgs=0.5 V and N=16, the current is 0.627, 292.6, and 1161  µA/µm for 1L-, 2L-, 

and 3L-PNRFETs, respectively. Also, ss shown for all structures, increasing the number of atoms across the width 

of A-PNR leads to an increase in Ids due to the decrease of the band gap. 
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Fig. 5.  The current Ids vs. Vgs of multilayer A-PNRFETs of N=16 and Lch=5 and 10nm. 

 
Fig. 6.  The current Ids vs. Vds for multilayer A-PNRFETs of different Ns at Vgs=Von. N is the number of phosphorus atoms in the 
width of the PNR. Due to the large difference between the scales of currents in SL- and ML-PNR, the Ids vs. Vds curves of the 
single layer A-PNRFET of N=12, 14, and 16 are displayed inside. 

 

In Fig. 7, the current-voltage characteristics of 2L- and 3L-PNRFETs at higher drain-source voltages are simulated 

to show the saturation behavior of the device for the purpose of analyzing its transconductance coefficient. We 

cannot see the saturation behavior in Fig. 6 due to the channel length of 5nm. In this case, the device seriously 

suffers from short channel effects; however, as shown in Figure 7, devices with channel lengths of at least 7.5nm 

have good saturation behaviors. 
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Fig. 7.  The current Ids vs. Vds for 2L- and 3L-PNRFETs with N=12 and channel length of 7.5nm at Vgs=Von. 

 

The energy band structure of SL- and ML-PNRFETs are presented in Fig. 8. Fig. 8 also demonstrates the potential 

profiles of ML-PNRFETs of different channel lengths in both off- and on-states. The band gaps of material are 

1.947, 1.287, and 1.008 eV for 1L-, 2L-, and 3L 12-APNRs which are well-suited in Fig. 8.  

  
Fig. 8. (a) The energy band structure of 1L-PNRFET of Lch=5 and 10nm in both OFF and ON states. (b) The energy band 

structure of 2L- and 3L-PNRFETs of Lch=5 in both OFF and ON states. 

It can be observed from Fig. 8, that in longer channel devices, the gate can control the ON current more effectively, 

where it is in correlation with the results shown in Fig. 7. On the other hand, in A-PNRFETs, as the number of 

layers rises, the band gap decreases and causes the current to increase, where such a behavior confirms the results 

presented in Figs. 5, 6 and 7. 
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Fig. 9.  The current ratio (Ion/Ioff) versus channel length for ML-PNRFETs. The number of phosphorus atoms in the edge of 

material is considered to be N=12. 

The role of ION/IOFF of FETs in digital applications is essential, thus it is worth to be investigated. Fig. 9 shows the 

current ratio, ION/IOFF, as the channel length scales down in ML-PNRFETs of N=12. We observe that for all cases, 

both on- and off-currents increase by decreasing the channel length. Off-current is the main factor of low-power 

transistor design which is increased by scaling down the channel length. The ON and OFF current ratios for 

Lch=5nm in all 1L-, 2L-, and 3L-PNRFETs are approximately equal to 1000, however, for Lch=15nm they are almost 

saturated and equal to 216.7×10
6
, 1.350×10

6
, and  21.2×10

3
, respectively. The current ratio for single layer increases 

from 1277 for Lch=5nm to 216.7×10
6
 for Lch=15nm. The ION/IOFF in 1L-PNRFET is higher in comparison with those 

values in 2L- and 3L-PNRFETs due to very small off-current in the 1L-PNRFET which in turn resulted from its 

larger band gap.  

4. Conclusion 

Using the recently modified TB parameters of phosphorene, we have presented a matrix representation for 

multilayer PNRs. The matrices are useful for simulation of electrical and mechanical properties of armchair and 

zigzag ML phosphorene structures and the characteristics of phosphorene MOSFETs using the quantum transport 

approach. By this representation, we have investigated the performance of doped contact ML-A-PNRFETs through 

implementing quantum transport method based on non-equilibrium Green’s function formalism. We showed that 

increasing the number of PNR layers reduces the band gap of material and the turn on voltage of PNRFET, but 

increases the on-current of device. Simultaneously, the off-current also increases due to a higher probability of 

tunneling in low band gap devices. In addition, increasing the number of atoms across the width of PNR leads to an 

increase in the Ids due to the decrease of the band gap. Moreover, both on- and off-currents increase by decreasing 

the channel length in multilayer PNRFETs. Finally, it can be concluded that the ML-A-PNRFET is preferable over 

SL-A-PNRFET for some aspects of electrical behavior such as ON current and ION/IOFF.  
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Highlights: 

 We have used the tight-binding method to implement a matrix representation for single-

layer (SL) and multilayer (ML) structures of armchair phosphorene nanoribbon (A-

PNR). 

 We have investigated the doped contact ML-A-PNR FETs using NEGF formalism. 

 Increasing the number of A-PNR layers reduces the band gap of material and the turn on 

voltage of PNRFET, but increases the on-current of device. 

 Increasing the number of atoms across the width of A-PNR leads to an increase in the 

Ids.  

 Both on- and off-currents increase by decreasing the channel length in ML-A-PNRFETs. 
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