
Eastern Kentucky University Eastern Kentucky University 

Encompass Encompass 

EKU Faculty and Staff Scholarship Faculty and Staff Scholarship Collection 

1-2018 

Noncommutative Reality-based Algebras of Rank 6 Noncommutative Reality-based Algebras of Rank 6 

Allen Herman 
University of Regina 

Mikhael Muzychuk 
Netanya Academic College 

Bangteng Xu 
Eastern Kentucky University, bangteng.xu@eku.edu 

Follow this and additional works at: https://encompass.eku.edu/fs_research 

 Part of the Algebra Commons 

Recommended Citation Recommended Citation 
Herman, A., Muzychuk, M., & Xu, B. (2018). Noncommutative Reality-based Algebras of Rank 6. 
Communications In Algebra, 46(1), 90-113. doi:10.1080/00927872.2017.1355372 

This Article is brought to you for free and open access by the Faculty and Staff Scholarship Collection at 
Encompass. It has been accepted for inclusion in EKU Faculty and Staff Scholarship by an authorized administrator 
of Encompass. For more information, please contact Linda.Sizemore@eku.edu. 

https://encompass.eku.edu/
https://encompass.eku.edu/fs_research
https://encompass.eku.edu/fs_scholarship
https://encompass.eku.edu/fs_research?utm_source=encompass.eku.edu%2Ffs_research%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=encompass.eku.edu%2Ffs_research%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Linda.Sizemore@eku.edu


ar
X

iv
:1

60
8.

08
46

3v
2 

 [
m

at
h.

R
A

] 
 2

1 
Ju

n 
20

17

Noncommutative reality-based algebras of rank 6
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Abstract

We show that noncommutative standard reality-based algebras (RBAs) of dimension 6
are determined up to exact isomorphism by their character tables. We show that the possible
character tables of these RBAs are determined by seven real numbers, the first four of which are
positive and the remaining three real numbers can be arbitrarily chosen up to a single exception.
We show how to obtain a concrete matrix realization of the elements of the RBA-basis from
the character table. Using a computer implementation, we give a list of all noncommutative
integral table algebras of rank 6 with orders up to 150. Four in the list are primitive, but
we show these cannot be realized as adjacency algebras of association schemes. In the last
section of the paper we apply our methods to give a precise description of the noncommutative
integral table algebras of rank 6 for which the multiplicity of both linear characters is 1.

Key words : Table algebras, Reality-based algebras, association schemes, character tables.

AMS Classification: Primary: 05E30; Secondary: 05E10,16S99.

1 Introduction

An algebra with involution over the complex field C is an algebra A over C that is equipped with
a C-conjugate semilinear involution ∗ that satisfies (αx)∗ = ᾱx∗ and (xy)∗ = y∗x∗ for all α ∈ C

and x, y ∈ A. Here ᾱ denotes the complex conjugate of α ∈ C. A reality-based algebra (or RBA)
(A,B) consists of a finite-dimensional algebra with involution A over C that has a distinguished
basis B = {b0, b1, . . . , br−1} satisfying the following properties:

(i) b0 = 1A is the multiplicative identity of A;

(ii) B2 ⊆ RB, in particular all of the structure constants λijk generated by the basis B in the

expressions bibj =
r−1
∑

k=0

λijkbk are real numbers;

(iii) B∗ = B, so ∗ induces a transposition on the set {0, 1, . . . , r − 1} given by bi∗ = (bi)
∗ for all

bi ∈ B;

(iv) λij0 6= 0 if and only if j = i∗; and

(v) λii∗0 = λi∗i0 > 0.

∗The first author was supported by an NSERC Discovery Grant.
†The second author was supported by the Wilson Endowment of Eastern Kentucky University.
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We will refer to the distinguished basis B of an RBA (A,B) as an RBA-basis. The dimension r is
called the rank of the RBA.

Reality-based algebras were introduced by Blau in [8] in order to collect several generalizations
of group algebras appearing in the literature into a single definition. Examples of RBAs beyond
the elementary group algebra (CG,G) example that are more-or-less well-known include Brauer’s
pseudogroups, Kawada’s C-algebras, table algebras (both commutative and noncommutative), and
the Bose-Mesner algebras of finite association schemes (both commutative and noncommutative)
(see [1], [2], [6], and [25]). Table algebras correspond to RBAs for which all structure constants λijk
relative to the RBA-basis are nonnegative. A table algebra is realized by an association scheme when
the RBA-basis can be realized as the set of adjacency matrices of the relations in an association
scheme.

An RBA (A,B) has a positive degree map when there is a one-dimensional algebra homomor-
phism δ : A → C such that δ(a∗) = δ(a) for all a ∈ A and δ(bi) > 0 for all bi ∈ B. When the RBA
(A,B) has a positive degree map δ, we will say that the distinguished basis B is an RBAδ-basis.
An RBAδ-basis B can be positively rescaled to arrange that δ(bi) = λii∗0 for all bi ∈ B. This

rescaling is achieved by the unique map bi 7→
δ(bi)

λii∗0
bi for all bi ∈ B. This unique rescaling is called

the standard RBAδ-basis. Two standard RBAδ-bases B and D of the algebras with involutions A
and C are in exact isomorphism when there is a bijection π : B → D for which the linear extension
of π is an algebra isomorphism. To classify the RBA-bases of algebras with involutions that have a
fixed one-dimensional algebra representation, one needs to distinguish the standard RBA-bases up
to exact isomorphism.

The main results of this article provide a complete characterization of noncommutative 6-
dimensional RBAs which admit a positive degree map. We show that every such algebra is isomor-
phic (as abstract algebra) to C⊕C⊕M2(C) and then we characterize the standard RBAδ-bases of
the algebra A = C⊕ C⊕M2(C) up to exact isomorphism. This is a follow-up to a similar charac-
terization by the authors of standard RBAδ-bases of the noncommutative 5-dimensional semisimple
algebra [18]. In Section 2 we review the character theory of RBAs with positive degree maps, intro-
duce the standard feasible trace, and give character-theoretic formulas for the centrally primitive
idempotents of RBAs with positive degree maps. In Section 3 we characterize the standard RBAδ-
bases of the 6-dimensional noncommutative semisimple algebra A. We show that the standard
RBAδ-bases of A are determined by their character tables. We show that the standard RBAδ-basis
is determined by the values of δ and the other irreducible linear character φ. We describe the possi-
bilities for these character values, showing the values of δ are arbitrarily positive, and the values of
φ are freely determined up to a ratio condition. We obtain a matrix realization of the standard basis
elements. In Section 4 we use a computer implementation to generate a list of all noncommutative
integral standard table algebras of rank 6 up to order 150. Some of the examples we generate are
unexpectedly primitive, so in Section 5 we show these do not arise from association schemes. In
Section 6 we describe all noncommutative table algebras of rank 6 for which both irreducible linear
characters have multiplicity 1.

2 Character theory of RBAs

Being a finite-dimensional algebra with involution over C, the algebra A appearing in an RBA is
always semisimple (see [20, Theorem 11.2]). Also crucial to our discussion is the existence of a
feasible trace, which is a linear map t : A→ C for which t(xy) = t(yx) for all x, y ∈ A. It is easy to
see from the RBA definition that the map given by t(

∑

i αibi) = α0, for all elements
∑

i αibi of A
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expressed in terms of the distinguished basis B with coefficients in C, is a feasible trace.
Now suppose (A,B) is an RBA with a positive degree map δ, and suppose B is the standard

basis. The positive number n =
∑

i δ(bi) is called the order of the RBA (A,B). A normalization of
our initial feasible trace produces the standard feasible trace of (A,B), which is given by τ(

∑

i αibi) =
nα0, for all

∑

i αibi ∈ A. The standard feasible trace induces a sesquilinear form on A, given by

〈x, y〉 = τ(xy∗), for all x, y ∈ A.

(Here “sesquilinear” means it is a real bilinear form that is C-linear in the first variable and C-
conjugate-linear in the second.) This form is particularly useful for calculating structure constants
in an RBA with positive degree map δ, since when the RBAδ-basis is standard, we have

λijk =
1

nδ(bk)
〈bibj , bk〉, for all 0 ≤ i, j, k ≤ r − 1. (1)

Since A is finite-dimensional and semisimple, any feasible trace can be expressed as a linear com-
bination of the irreducible characters of A (see [19, Proposition 5.1]). Let Irr(A) be the set of
irreducible characters of A, and let τ =

∑

χ∈Irr(A)mχχ be the expression of the standard feasible
trace as a linear combination of irreducible characters of A. The coefficients mχ in this expression
are called the multiplicities of the RBA. It is always the case that mδ = 1 [8, Proposition 2.21] and
mχ > 0, for all χ ∈ Irr(A) (see [8, Lemma 2.11]).

Since A is semisimple, we have that for each χ ∈ Irr(A), there is a unique centrally primitive
idempotent eχ of A such that χ(eχ) 6= 0, and for this idempotent we have that χ(eχ) = χ(b0)
is a positive integer. With respect to our C-conjugate-linear involution, the centrally primitive
idempotents satisfy (eχ)

∗ = eχ, for all χ ∈ Irr(A) [8, Proposition 2.9]. In particular this implies the
simple components of A are ∗-invariant. Important for us will be the character-theoretic formula
that expresses the centrally primitive idempotents eχ in terms of the RBAδ-basis B, which was first
established in this generality in the work of Higman [19, §5]: for all χ ∈ Irr(A),

eχ =
mχ

n

r−1
∑

i=0

χ(b∗i )

λii∗0
bi. (2)

One can see from this formula that χ(bi∗) = χ(bi), for all bi ∈ B and χ ∈ Irr(A). When the
RBAδ-basis B is standard, we have δ(bi) = λii∗0, for all i = 0, 1, . . . , r − 1. Also important for us
will be the orthogonality relations: for all ψ, χ ∈ Irr(A),

ψ(eχ) = 0 unless ψ = χ, and in that case ψ(eψ) = ψ(b0).

3 Noncommutative standard RBAδ-bases of rank 6

Let us assume for the moment that (A,B) is a noncommutative 6-dimensional RBA with positive
degree map δ, and that B = {b0 = 1A, b1, b2, b3, b4, b5} is its standard RBAδ-basis. Let τ be the
standard feasible trace, so we have from Section 2 that τ(x∗x) ≥ 0 for all x ∈ A. Let Irr(A) =
{δ, φ, χ}, where φ is the other linear character of A and χ is the irreducible character of degree 2.
Again from Section 2 we have that τ = δ+mφφ+mχχ with positive multiplicities mφ and mχ. We
denote the values of δ, φ, and χ on B by δ(bi) = δi, φ(bi) = φi, and χ(bi) = χi for each bi ∈ B, for
i = 0, 1, . . . , 5. In particular, δ0 = 1, φ0 = 1, χ0 = 2 and δ1, . . . , δ5 > 0. The values of φ on B are
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necessarily real as the complex conjugate of φ is itself, and the values of χ on B must also be real
as it is the unique irreducible character of degree 2.

Since the real subalgebra RB is a semisimple 6-dimensional noncommutative algebra over R, it
has a unique noncommutative simple component, which is isomorphic to either M2(R) or H (the
algebra of real quaternions). We begin by excluding the latter case. The transpose of a matrix M
is denoted by M⊤.

Lemma 1. Let (A,B) be a noncommutative reality-based algebra of rank six with an RBAδ-basis
B. Then the algebra RB is isomorphic to R ⊕ R⊕M2(R) and, up to a change of basis, ∗ acts on
M2(R) as matrix transposition. In particular, B has exactly four ∗-invariant elements.

Proof. Since A is non-commutative, the basis B contains at least one pair bi, b
∗
i of non-symmetric

elements. Therefore the number of ∗-fixed elements of B is either 2 or 4. In the first case the
dimension of ∗-invariant subspace of RB is 4 while in the second one it is equal to 5. Suppose
first that RB ∼= R ⊕ R ⊕ H. The noncommutative simple component of RB is ∗-invariant, and
in particular 1∗

H
= 1H. Since the dimension of the ∗-invariant subspace of RB is at least 4, there

exists a purely imaginary unit quaternion q ∈ H such that q∗ = q. On the other hand, since q is
purely imaginary, q = −q̄. Therefore for this q we have q∗q = −1H. But then τ(q

∗q) = mχχ(q
∗q) =

−mχχ(1H) = −mχχ(1) < 0, so this is a contradiction. This excludes the case of RB ∼= R⊕R⊕H,
so we must have that RB ≃ R⊕ R⊕M2(R).

Let ∆ : RB → M2(R) be the two-dimensional irreducible representation of RB given by pro-
jection to the component M2(R), which affords the character χ. We have that ∆(x∗)⊤ is a 2-
dimensional irreducible representation equivalent to ∆. Thus there exists an S ∈ GL2(R) such
that ∆(x∗)⊤ = S−1∆(x)S. Equivalently, ∆(x∗) = S⊤∆(x)⊤(S−1)⊤. Substituting x∗ for x in
∆(x∗) = S⊤∆(x)⊤(S−1)⊤, we obtain that

∆(x) = S⊤∆(x∗)⊤(S−1)⊤ = (S⊤S−1)∆(x)(S⊤S−1)−1,

for each x ∈ RB. Combining this together with ∆(RB) =M2(R) we obtain that S−1S⊤ = αI2 for
some α ∈ R. It follows from S⊤ = αS and (S⊤)⊤ = S that α = ±1, i.e. S is either symmetric or
antisymmetric.

Assume first that S is antisymmetric, that is S =

[

0 a
−a 0

]

. A direct check shows that in this

case the map X 7→ SX⊤S−1, X ∈ M2(R) has a one-dimensional space of fixed points. So, in this
case the dimension of the ∗-invariant subspace of RB is three, a contradiction.

Assume now that S is symmetric. Then S = P⊤DP for some D ∈ {I2, Diag(1,−1),−I2}
and P ∈ GL2(R). Replacing ∆(x) by the equivalent representation Σ(x) := (P−1)⊤∆(x)P⊤ we
obtain Σ(x∗) = DΣ(x)⊤D−1. If D = ±I2, then we are done. It remains to deny the case of
D = Diag(1,−1). Consider the standard feasible trace τ(x) for x ∈ RB. Since τ(x) = δ(x) +
mφφ(x) +mχχ(x) for all x ∈ A, and δ(eχx) = φ(eχx) = 0 for all x ∈ A, we must have that for all
x ∈ A,

χ(xx∗) = χ((eχx)(eχx)
∗) =

1

mχ
(τ((eχx)(eχx)

∗) ≥ 0.

In particular, tr(∆(x)∆(x∗)) = χ(xx∗) ≥ 0 for all x ∈ RB. Since Σ : RB → M2(R) is an
epimorphism, we conclude that tr(XDX⊤D−1) ≥ 0 holds for all X ∈ M2(R). Now choosing

X =

[

0 1
1 0

]

we get a contradiction.
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By Lemma 1, we can replace A by an isomorphic image R ⊕ R ⊕M2(R). Any standardized
RBAδ-basis of A is of the form

B = {b0 = (1, 1, B0), b1 = (δ1, φ1, B1) = b∗1, b2 = (δ2, φ2, B2) = b∗2,
b3 = (δ3, φ3, B3) = b∗3, b4 = (δ4, φ4, B4), b5 = b∗4 = (δ4, φ4, B

⊤
4 )},

(3)

with B0 = I2, B1, B2, B3, and B4 all being 2 × 2 real matrices. Here δi = δ(bi) for i = 0, . . . , 4,
where δ is the positive degree map, and the φi = φ(bi) for i = 0, . . . , 4 are the values of the other
linear character φ of A on B. If χ is the irreducible character of A with degree 2, then its values
on B are χi := χ(bi) = tr(Bi) for i = 1, 2, 3, 4, and the map ∆ given by ∆(bi) = Bi for i = 0, . . . , 4
and ∆(b5) = B⊤

4 defines a real representation of A that affords χ.
The goal of this section is to give necessary and sufficient conditions for two lists of real numbers

[δ, φ] = [(δ1, . . . , δ4), (φ1, . . . , φ4)] to be the values of the degree map and the other linear character
of a noncommutative rank 6 RBA. We will show that, under these conditions, the two lists of values
[δ, φ] = [(δ1, . . . , δ4), (φ1, . . . , φ4)] completely determine the RBA up to a basis permutation and a
possible conjugation of the 2× 2 real matrices Bi by an orthogonal matrix.

Recall that the standard feasible trace τ of A induces the sesquilinear form 〈x, y〉 = τ(xy∗), for
all x, y ∈ A. Since τ = δ +mφφ+mχχ, this form can be expressed as

〈x, y〉 = τ(xy∗) = δ(x)δ(y∗) +mφφ(x)φ(y
∗) +mχχ(xy

∗). (4)

Here χ(xy∗) agrees with the usual trace bilinear form on real 2 × 2 matrices. That is, if X and Y

are the images of x and y under a representation affording χ, then χ(xy∗) = tr(XY
⊤
).

By [19, Formula (7.4)] the feasible multiplicitymψ of an irreducible character ψ may be computed

via
∑

i
|ψ(bi)|2
δi

= ψ(1) n
mψ

. Therefore, mδ = 1,
∑

i
φ2i
δi

= n
mφ
,
∑

i
χ2

i

δi
= 2 n

mχ
. It follows from n = τ(b0)

that n = 1 +mφ + 2mχ.
Let E = {e0, ..., e5} denote a “standard” basis of the algebra R⊕ R⊕M2(R):

e0 = (1, 0, O2), e1 = (0, 1, O2), e2 = (0, 0, E11),
e3 = (0, 0, E22), e4 = (0, 0, E12), and e5 = (0, 0, E21),

where Eij are the standard matrix units of M2(R). It follows from the definition of E that each
of the numbers δ(eie

∗
j ), φ(eie

∗
j ), χ(eie

∗
j ) is zero whenever i 6= j. Therefore E is an orthogonal basis

with respect to the form 〈 , 〉 defined in (4). Notice that B is an orthogonal basis with respect to
the same form.

Starting from now we assume that B = {b0, ..., b5} is an arbitrary basis of the algebra A =
R ⊕ R ⊕ M2(R) which has form (3). In what follows we denote by P (B) the transition matrix
between the bases E and B. That is, the j-th column of P (B) consists of the coordinates of bj in
the basis E:

bj =
5

∑

i=0

P (B)ijei, where P (B)ij is the (i, j)-entry of P (B).

Following the usual notation (for example, see [6]), we denote by Q(B) the matrix that satisfies
P (B)Q(B) = nI6, where n =

∑

i δi 6= 0. Thus

ej = n−1
5

∑

i=0

Q(B)ijbi.
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If B is a standardized RBAδ-basis, then it is an orthogonal basis with respect to the bilinear form
〈 , 〉 defined in (4). Computing 〈bi, ej〉 in two ways we obtain the following formula

Q(B)ij
mj

=
P (B)ji
δi

(5)

where mi := 〈ei, ei〉.
Let σ := (σ0, σ1, . . . , σ5) ∈ R6, where each σi > 0. For u = (u0, u1, . . . , u5), v = (v0, v1, . . . , v5) ∈

R6, define

(u, v)σ :=
∑

i

uiviσ
−1
i . (6)

Then ( , )σ is an inner product on R6.
Remark. Although the “only if” part of the theorem below may be directly deduced from

Higman’s paper [19], we prefer to give a direct proof here to make the paper self-contained.

Theorem 2. Let B := {bi = (δi, φi, Bi) | i = 0, ..., 5} be an arbitrary basis of the algebra A :=
R⊕R⊕M2(R), and P (B) the transition matrix between the bases E and B. Then B is an RBAδ-
basis of A with respect to the involution (x, y, Z)∗ = (x, y, Z⊤) and the degree map δ((x, y, Z)) = x
if and only if the following conditions are satisfied (up to the renumbering of the elements of B).

(i) δi > 0, i = 0, ..., 5 and δ0 = φ0 = 1, B0 = I2.

(ii) φ5 = φ4, δ5 = δ4, B
T
i = Bi, i = 1, 2, 3, and BT

4 = B5.

(iii) Let n :=
∑

i δi, mδ = 1, mφ = n∑
i(φ

2

i /δi)
, and mχ =

n−1−mφ
2

. Then

mχ > 0 and (P (B)i, P (B)j)δ =
n

mi
δij , 0 ≤ i, j ≤ 5,

where P (B)i is the i-th row of P (B), 0 ≤ i ≤ 5, δ = (δ0, δ1, . . . , δ5) (by abuse of the notation),
δij is the Kronecker delta, and m0 = mδ, m1 = mφ, m2 = · · · = m5 = mχ.

Proof. First, suppose B is an RBAδ-basis of A with b0 = 1A. Since the degree map δ of A is the
projection on the first coordinate, the numbers δi are positive. Also b0 = 1A implies δ0 = φ0 =
1, B0 = I2. Thus (i) holds.

It follows from Lemma 1 that B contains only two non-symmetric elements. Without loss of
generality we may assume that they are b4 and b5. Thus b∗1 = b1, b

∗
2 = b2, b

∗
3 = b3, b

∗
4 = b5, b

∗
5 = b4,

and (ii) holds.
Since E is an orthogonal basis, we can write

δℓkmk = 〈eℓ, ek〉 = n−2

5
∑

i=0

Q(B)iℓQ(B)ik〈bi, bi〉.

Using (3) we obtain that

δℓkmk = n−2

5
∑

i=0

mℓ

δi
P (B)ℓi

mk

δi
P (B)ki(nδi).

Therefore,

mℓ

5
∑

i=0

P (B)ℓiP (B)kiδ
−1
i = nδℓk.

6



That is,

(P (B)ℓ, P (B)k)δ =
n

mℓ
δℓk, 0 ≤ ℓ, k ≤ 5.

Note that τ = mδδ+mφφ+mχχ, and mχ > 0 (cf. [19]). It follows from e0 = eδ that m0 = 〈eδ, eδ〉 =
τ(eδ) = 1 = mδ. The equality e1 = eφ implies that m1 = 〈eφ, eφ〉 = τ(eφ) = mφ. For each 2 ≤ i ≤ 5
we have mi = 〈ei, ei〉 = τ(eie

∗
i ) = mχχ(eie

∗
i ) = mχ. This proves (iii).

Assume now that the basis B satisfies the assumptions (i)-(iii) of the theorem. Parts (i)-(ii)
of the assumptions imply that the basis B satisfies the first three axioms of an RBAδ-basis. The
third assumption implies that P := P (B) satisfies the matrix equation MP∆−1P T = nI6, where
∆ and M are diagonal matrices defined via ∆ii = δi,Mii = mi. Therefore P TMP∆−1 = nI6, and
consequently, P TMP = n∆. Let Pi

⊤ be the i-th row of P⊤, 0 ≤ i ≤ 5. Then,

(

Pi
⊤, Pj

⊤)
σ
= nδiδij , 0 ≤ i, j ≤ 5,

where σ := (m−1
0 , m−1

1 , . . . , m−1
5 ). Note that

bib
∗
j = P0iP0je0 + P1iP1je1 + (P2iP2j + P4iP4j)e2 + (P5iP5j + P3iP3j)e3

+(P2iP5j + P4iP3j)e4 + (P5iP2j + P3iP4j)e5.

Since P⊤
0 = (1, 1, 1, 1, 0, 0), m2 = m3 = m4 = m5, and bib

∗
j =

∑

k λij∗kbk, we get that

(

Pi
⊤, Pj

⊤)
σ
=

∑

k

λij∗k
(

P⊤
k , P0

⊤)
σ
= λij∗0

(

P⊤
0 , P0

⊤)
σ
= nλij∗0.

Thus, λij∗0 = δiδij , 0 ≤ i, j ≤ 5. Furthermore, since δi = δi∗ , we have λii∗0 = λi∗i0 = δi > 0. So B is
an RBAδ-basis.

Denoting Bi by

[

ri si
ti ui

]

, we can write the transition matrix P := P (B) in the following form

b0 b1 b2 b3 b4 b5
e0 1 δ1 δ2 δ3 δ4 δ4
e1 1 φ1 φ2 φ3 φ4 φ4

e2 1 r1 r2 r3 r4 r4
e3 1 u1 u2 u3 u4 u4
e4 0 s1 s2 s3 s4 t4
e5 0 s1 s2 s3 t4 s4

(7)

Notice that eδ = e0, eφ = e1 and eχ = e2+e3. It follows from the row orthogonality (Theorem 2(iii))
that the sum of each row of P (except for the first row) is zero. In particular 1+φ1+φ2+φ3+2φ4 = 0.

We claim that it is impossible to have φi
δi

= φ4
δ4

for all i = 1, 2, 3. If these ratios were all equal
to the same constant λ, then the orthogonality of the second and the third rows of P would imply
that

0 = 1 +

5
∑

i=1

φiriδ
−1
i = 1 + λ

5
∑

i=1

ri = 1− λ.

Thus, λ = 1. But then all of the φi would be positive, a contradiction to that 1 +
∑5

i=1 φi = 0.
Now we are ready to prove the main result of the section.
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Theorem 3. Let δ1, ..., δ4 and φ1, ..., φ4 be real numbers such that δi > 0 for all i = 1, . . . , 4 and
1 + φ1 + φ2 + φ3 + 2φ4 = 0. Assume that δ0 = 1, δ5 = δ4, φ0 = 1, φ5 = φ4, and φ4/δ4 6= φi/δi for
some i ∈ {1, 2, 3}. Then there exist real matrices

B0 = I2, B1 =

[

r1 s1
s1 u1

]

, B2 =

[

r2 s2
s2 u2

]

, B3 =

[

r3 s3
s3 u3

]

, B4 =

[

r4 s4
t4 u4

]

, B5 := B⊤
4

such that the basis B = {bi := (δi, φi, Bi) | 0 ≤ i ≤ 5} is an RBAδ-basis of A.
Furthermore, the matrices B0, B1, ..., B5 are unique up to a conjugation by an orthogonal 2 × 2

matrix and a permutation of the indices of Bi by an element of the group 〈(1, 2), (1, 2, 3)〉× 〈(4, 5)〉.

Proof. First of all, let us fix the following numbers:

n :=
5

∑

i=0

δi, mφ :=
n

∑5
i=0(φ

2
i /δi)

, mχ :=
n− 1−mφ

2
.

Without loss of generality, for the rest of the proof we assume that φ3
δ3

6= φ4
δ4
.

In what follows we will need the inequality mχ > 0. For this reason let us first prove this
inequality. It is clear that mχ > 0 if and only if mφ < n − 1, which is equivalent to n < (n −
1)

∑5
i=0(φ

2
i /δi). Since δ0 = φ0 = 1, we see that

mχ > 0 if and only if

5
∑

i=1

φ2
i

δi
>

1

n− 1
.

The expression
∑5

i=1
φ2i
δi

is a function of the real variables φi which satisfy φ1 + ... + φ5 = −1.

Using the Lagrange multipliers, one can find that the minimal value of
∑5

i=1
φ2i
δi

is 1
n−1

, and this

value is reached when the ratios φi/δi, i = 1, ..., 5 are all equal to − 1
n−1

. Thus,
∑5

i=1
φ2i
δi

≥ 1
n−1

,

and the equality holds only when φi/δi = − 1
n−1

, i = 1, ..., 5. But by the assumption, the equality

φi/δi = − 1
n−1

is not satisfied for all i ∈ {1, ..., 5}. Thus,
∑5

i=1
φ2i
δi
> 1

n−1
, and hence mχ > 0, as

desired.
To prove the existence of matrices Bi, 1 ≤ i ≤ 4, such that B = {bi := (δi, φi, Bi) | 0 ≤ i ≤ 5} is

an RBAδ-basis of A, it is equivalent to prove that the transition matrix

P := P (B) =

















1 δ1 δ2 δ3 δ4 δ4
1 φ1 φ2 φ3 φ4 φ4

1 r1 r2 r3 r4 r4
1 u1 u2 u3 u4 u4
0 s1 s2 s3 s4 t4
0 s1 s2 s3 t4 s4

















satisfies the condition (iii) of Theorem 2. Since any symmetric matrix is conjugate to a diagonal
matrix by an orthogonal matrix, we may assume that one of B1, B2, B3 is diagonal. So for the rest
of the proof, we assume that B1 is diagonal. That is, s1 = 0.

By our assumptions the first two rows of P do satisfy the condition (iii) of Theorem 2. It remains
to find the other rows of P that will satisfy the condition (iii) of Theorem 2.
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Let Pi be the i-th row of P , 0 ≤ i ≤ 5, and let

P ′ :=

















P0

P1

P2 + P3

P2 − P3

P4 + P5

P4 − P5

















.

Let P ′
i be the i-th row of P ′, 0 ≤ i ≤ 5. It is easy to see that P satisfies the condition (iii) of

Theorem 2 if and only if (P ′
i , P

′
j)δ = 0 for all i 6= j, and

(P ′
0, P

′
0)δ = n, (P ′

1, P
′
1)δ =

n

mφ

, (P ′
2, P

′
2)δ = (P ′

3, P
′
3)δ = (P ′

4, P
′
4)δ = (P ′

5, P
′
5)δ = 2

n

mχ

,

where by abuse of the notation, δ = (δ0, δ1, . . . , δ5).

Since P ′
5 = (0, 0, 0, 0, s4− t4, t4−s4), (P ′

5, P
′
5)δ = 2 n

mχ
if and only if P ′

5 = ±
√

nδ4
mχ

(0, 0, 0, 0, 1,−1).

The choice of the sign is equivalent to the permutation b4 ↔ b5.
Thus it remains to find the third, fourth and fifth rows of P ′. We take

P2 + P3 :=
1

mχ
((n, 0, 0, 0, 0, 0)−mφP1 − P0) .

(This choice follows from the equality b0 = eδ + eφ + eχ). Direct computation shows that

(P2 + P3, P0)δ = (P2 + P3, P1)δ = 0, and (P2 + P3, P2 + P3)δ = 2
n

mχ
.

Notice that the choice for P2 + P3 is unique, because its entries are the values of χ.
Since the row P4 + P5 = (0, 0, 2s2, 2s3, s4 + t4, s4 + t4) is orthogonal to both P0 and P1, we see

that

s2 + s3 + (s4 + t4) = 0 and
φ2

δ2
s2 +

φ3

δ3
s3 +

φ4

δ4
(s4 + t4) = 0.

But φ3/δ3 6= φ4/δ4. So the above system has rank two, and therefore has a one-dimensional solution
space spanned by the vector

w =

(

0, 0,
φ4

δ4
− φ3

δ3
,
φ2

δ2
− φ4

δ4
,
φ3

δ3
− φ2

δ2
,
φ3

δ3
− φ2

δ2

)

.

To satisfy the condition (P4 + P5, P4 + P5)δ = 2 n
mχ

, one has to set P4 + P5 := λw, where λ =

±
√

2n
mχ(w,w)δ

. The choice of the sign is free, because a different choice of the sign is equivalent to

the conjugation of Bi’s by the matrix

[

−1 0
0 1

]

. Notice that the above P4+P5 is also orthogonal to

P2 + P3, because P2 + P3 is a linear combination of (1, 0, 0, 0, 0, 0), P0 and P1.
It remains to find P2−P3 = (0, r1−u1, r2−u2, r3−u3, r4−u4, r4−u4). From the orthogonality

conditions of the rows of P ′ with respect to the inner product ( , )δ, we obtain the following system
of equations:











(r1 − u1) + (r2 − u2) + (r3 − u3) + 2(r4 − u4) = 0
φ1
δ1
(r1 − u1) +

φ2
δ2
(r2 − u2) +

φ3
δ3
(r3 − u3) + 2φ4

δ4
(r4 − u4) = 0

(

φ4
δ4

− φ3
δ3

)

(r2 − u2) +
(

φ2
δ2

− φ4
δ4

)

(r3 − u3) + 2
(

φ3
δ3

− φ2
δ2

)

(r4 − u4) = 0
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This system has rank three. Therefore, up to a sign there exists a unique solution u with (u, u)δ =
2 n
mχ

. We can chose either one to be our P2−P3. As before, a different choice of the sign is equivalent

to a conjugation by the matrix

[

0 1
1 0

]

. It is clear now that the above constructed matrix P ′ also

satisfies the property (P ′
i , P

′
j)δ = 0 for all i 6= j. So the theorem holds.

A consequence of Theorem 3 is that every possible character table of a noncommutative rank 6
RBA from Theorem 2 actually occurs.

Corollary 4. The possible character tables of noncommutative rank 6 RBAs with positive degree
map δ are precisely those of the form

b0 b1 b2 b3 b4 b5 multiplicity
δ 1 δ1 δ2 δ3 δ4 δ4 1
φ 1 φ1 φ2 φ3 φ4 φ4 mφ

χ 2 χ1 χ2 χ3 χ4 χ4 mχ

where
δi > 0 for i = 1, . . . , 4,

1 + φ1 + φ2 + φ3 + 2φ4 = 0,
φi
δi

6= φ4

δ4
for some 1 ≤ i ≤ 3,

mφ =
n

∑

i(φ
2
i /δi)

and mχ =
n−1−mφ

2
, where n = 1 + δ1 + δ2 + δ3 + 2δ4, and

χi =
−δi −mφφi

mχ

, for i = 1, 2, 3, 4.

Conversely, any such character table determines a noncommutative rank 6 RBA up to exact
isomorphism.

Proof. This follows from Theorem 2, since we now know that every such set of parameters [(δi), (φi)]
determines the standard basis of a noncommutative rank 6 RBA up to exact isomorphism. To
compute the values of χ we use the fact that 0 = τ(bi) = δi +mφφi +mχχi for i = 1, 2, 3, 4.

In the above corollary, if the algebra is a standard table algebra, then |φi| ≤ δi and |χi| ≤ 2δi.

4 Examples

Using the results in Section 3, we have been able to use a computer to enumerate noncommutative
integral RBAδ-bases of rank 6 of order n ≤ 150. Since our main interest focuses on standard
integral table algebras, we restricted the parameters by the inequality |φi| ≤ δi, i = 1, . . . , 4 (see
[22, Proposition 4.1]), so our list includes all non-commutative standard integral table algebras of
rank 6 up to order 150. To achieve an enumeration for order n, we first find all feasible character
tables with integer entries. For each character table, we compute a standard RBAδ-basis using the
procedure explained in Theorem 2, then check for integrality of structure constants using (1).

In this table, Cm represents a cyclic group (thin scheme) of order m, Km represents a rank 2
scheme of order m, Um and Tm represent symmetric and anti-symmetric rank 3 schemes of order m,
respectively. Dm denotes a table algebra of rank 2 having non-integral rational order m, and Em is
a noncommutative rank 5 RBA of order m. Extensions of a normal closed subset U are indicated by
U⋊T or U : T depending on whether or not the extension splits. Almost always the extensions of a
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table algebra by a table algebra results in a table algebra, but there are a few exceptions. Only in a
few circumstances do we know when a table algebra that is an extension of two schemes is realized
by a scheme. One new imprimitive family we encountered is a circle product of a noncommutative
rank 5 RBA with a rank 2 scheme, which we label with E ◦K. As the order increases these occur
with increasing frequency, and so in the table only those E ◦K’s with order up to 50 are listed. In
some cases the RBA or table algebra our construction produces is primitive. Such examples were
not noted previously.

Table 1: Parameter Sets for Rank 6 RBAs of order ≤ 150 with |φi| ≤ δi.

n [δ, φ] (mφ,mχ) comments

6 [(1, 1, 1, 1), (−1,−1,−1, 1)] (1, 2) The group S3 ≃ C3 ⋊ C2

10 [(1, 2, 2, 2), (−1, 2, 2,−2)] (1, 4) U5 ⋊ C2, as10-10
14 [(1, 3, 3, 3), (−1,−3,−3, 3)] (1, 6) T7 ⋊ C2, as14-10
15 [(4, 4, 4, 1), (−1,−1,−1, 1)] (4, 5) C3 : K5, 3-array, as15-16
18 [(1, 4, 4, 4), (−1, 4, 4,−4)] (1, 8) U9 ⋊ C2, as18-37
21 [(2, 2, 8, 4), (−1,−1,−1, 1)] (8, 6) CS(b1, b2) = PG(1, 2), as21-19
22 [(1, 5, 5, 5), (−1,−5,−5, 5)] (1, 10) T11 ⋊ C2, as22-8
24 [(7, 7, 7, 1), (−1,−1,−1, 1)] (7, 8) C3 : K8, as24-72
26 [(1, 6, 6, 6), (−1, 6, 6,−6)] (1, 12) U13 ⋊ C2, as26-21
30 [(1, 7, 7, 7), (−1,−7,−7, 7)] (1, 14) T15 ⋊ C2, as30-73
33 [(10, 10, 10, 1), (−1,−1,−1, 1)] (10, 11) C3 : K11, TA not AS
34 [(1, 8, 8, 8), (−1, 8, 8,−8)] (1, 16) U17 ⋊ C2, as34-9
35 [(2, 2, 6, 12), (2, 2,−1,−2)] (6, 14) U5 : K7, TA not AS
38 [(1, 9, 9, 9), (−1,−9,−9, 9)] (1, 18) T19 ⋊ C2, as38-19
42 [(1, 10, 10, 10), (−1, 10, 10,−10)] (1, 20) U21 ⋊ C2

42 [(6, 10, 15, 5), (−1, 0, 0, 0)] (36, 5/2) E6 ◦K7, Not TA
42 [(13, 13, 13, 1), (−1,−1,−1, 1)] (13, 14) C3 : K14, TA
45 [(4, 4, 4, 16), (−1, 0, 0, 0)] (36, 4) E9 ◦K5, Not TA
45 [(4, 12, 12, 8), (−1, 0, 0, 0)] (36, 4) E9 ◦K5, Not TA
46 [(1, 11, 11, 11), (−1,−11,−11, 11)] (1, 22) T23 ⋊ C2

48 [(4, 12, 15, 8), (0, 0,−1, 0)] (45, 1) E3 ◦K16, Not TA
50 [(1, 12, 12, 12), (−1, 12, 12,−12)] (1, 24) U25 ⋊ C2

50 [(5, 10, 24, 5), (0, 0,−1, 0)] (48, 12) E2 ◦K25, Not TA
51 [16, 16, 16, 1], [−1,−1,−1, 1] (16, 17) C3 : K17, TA
52 [3, 3, 27, 9], [−1,−1,−1, 1] (27, 12) CS(b1, b2) = PG(1, 3)
54 [1, 13, 13, 13], [−1,−13,−13, 13] (1, 26) T27 ⋊ C2, TA
58 [1, 14, 14, 14], [−1, 14, 14,−14] (1, 28) U29 ⋊ C2

60 [2, 2, 11, 22], [2, 2,−1,−2] (11, 24) U5 : K12, TA
60 [19, 19, 19, 1], [−1,−1,−1, 1] (19, 20) C3 : K20, TA
62 [1, 15, 15, 15], [−1,−15,−15, 15] (1, 30) T31 ⋊ C2

63 [8, 24, 24, 3], [−1,−3,−3, 3] (8, 27) T7 : K9, 7-array AS
64 [7, 7, 35, 7], [−1,−1, 3,−1] (35, 14) Not TA, primitive
64 [7, 14, 14, 14], [7,−2,−2,−2] (7, 28) K8 : T8, TA
64 [9, 9, 27, 9], [1, 1,−5, 1] (27, 18) Not TA, primitive
66 [1, 16, 16, 16], [−1,−16,−16, 16] (1, 32) U33 ⋊ C2

66 [5, 15, 15, 15], [−1, 1, 1,−1] (45, 10) K6 : T11, Not TA
69 [22, 22, 22, 1], [−1,−1,−1, 1] (22, 23) C3 : K23, TA
70 [1, 17, 17, 17], [−1,−17,−17, 17] (1, 34) T35 ⋊ C2
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n [δ, φ] (mφ,mχ) comments

74 [1, 18, 18, 18], [−1, 18, 18,−18] (1, 36) U37 ⋊ C2

78 [(1, 19, 19, 19), (−1,−19,−19, 19)] (1, 38) T39 ⋊ C2

78 [(25, 25, 25, 1), (−1,−1,−1, 1)] (25, 26) C3 : K26, TA
81 [(8, 8, 32, 16), (−1,−1, 5,−2)] (32, 24) Not TA, primitive
81 [(10, 10, 20, 20), (1, 1,−7, 2)] (20, 30) TA, primitive
82 [(1, 20, 20, 20), (−1, 20, 20,−20)] (1, 40) U41 ⋊ C2

85 [(2, 2, 16, 32), (2, 2,−1,−2)] (16, 34) K17 : T5, TA
86 [(1, 21, 21, 21), (−1,−21,−21, 21)] (1, 42) T43 ⋊ C2

87 [(28, 28, 28, 1), (−1,−1,−1, 1)] (28, 29) C3 : K29, TA
90 [(1, 22, 22, 22), (−1, 22, 22,−22)] (1, 44) U45 ⋊ C2

91 [(10, 10, 30, 20), (10, 10,−9,−6)] (10/3, 130/3) U21 : D13/3, TA

94 [(1, 23, 23, 23), (−1,−23,−23, 23)] (1, 46) T47 ⋊ C2

96 [(19, 19, 19, 19), (−5,−5, 3, 3)] (19, 38) TA, primitive
96 [(19, 19, 19, 19), (−1,−1,−1, 1)] (76, 19/2) TA, primitive
96 [(19, 19, 19, 19), (−1, 1, 1,−1)] (76, 19/2) Not TA, primitive
96 [(19, 19, 19, 19), (3, 3, 3,−5)] (19, 38) TA, primitive
96 [(31, 31, 31, 1), (−1,−1,−1, 1)] (31, 32) C3 : K32, TA
98 [(1, 24, 24, 24), (−1, 24, 24,−24)] (1, 48) U49 ⋊ C2

99 [(4, 4, 10, 40), (4, 4,−1,−4)] (10, 44) U9 : K11

102 [(1, 25, 25, 25), (−1,−25,−25, 25)] (1, 50) T51 ⋊ C2

105 [(34, 34, 34, 1), (−1,−1,−1, 1)] (34, 35) C3 : K35, TA
106 [(1, 26, 26, 26), (−1, 26, 26,−26)] (1, 52) U53 ⋊ C2

110 [(1, 27, 27, 27), (−1,−27,−27, 27)] (1, 54) T55 ⋊ C2

110 [(2, 2, 21, 42), (2, 2,−1,−2)] (21, 44) U5 : K22, TA
112 [(15, 45, 45, 3), (−1,−3,−3, 3)] (15, 48) T7 : K16, TA
114 [(1, 28, 28, 28), (−1, 28, 28,−28)] (1, 56) U57 ⋊ C2

114 [(37, 37, 37, 1), (−1,−1,−1, 1)] (37, 38) C3 : K38, TA
118 [(1, 29, 29, 29), (−1,−29,−29, 29)] (1, 58) T59 ⋊ C2

120 [(17, 17, 51, 17), (−3,−3, 3, 1)] (51, 34) TA, primitive
120 [(17, 17, 51, 17), (1, 1, 3,−3)] (51, 34) Not TA, primitive
122 [(1, 30, 30, 30), (−1, 30, 30,−30)] (1, 60) U61 ⋊ C2

123 [(40, 40, 40, 1), (−1,−1,−1, 1)] (40, 41) C3 : K41, TA
126 [(1, 31, 31, 31), (−1,−31,−31, 31)] (1, 62) T63 ⋊ C2

130 [(1, 32, 32, 32), (−1, 32, 32,−32)] (1, 64) U65 ⋊ C2

132 [(43, 43, 43, 1), (−1,−1,−1, 1)] (43, 44) C3 : K44, TA
134 [(1, 33, 33, 33), (−1,−33,−33, 33)] (1, 66) T67 ⋊ C2

135 [(2, 2, 26, 52), (2, 2,−1,−2)] (26, 54) U5 : K27, TA
138 [(1, 34, 34, 34), (−1, 34, 34,−34)] (1, 68) U69 ⋊ C2

141 [(46, 46, 46, 1), (−1,−1,−1, 1)] (46, 47) C3 : K47, TA
142 [(1, 35, 35, 35), (−1,−35,−35, 35)] (1, 70) T71 ⋊ C2

142 [(15, 21, 35, 35), (−15,−21,−35, 35)] (1, 70) T71 : C2, TA (see Lemma 14)
143 [(12, 60, 60, 5), (−1,−5,−5, 5)] (12, 65) 11-array, TA
144 [(39, 39, 39, 13), (−9,−9,−9, 13)] (13/3, 208/3) T27 : D16/3, TA

146 [(1, 36, 36, 36), (−1, 36, 36,−36)] (1, 72) U73 ⋊ C2

150 [(49, 49, 49, 1), (−1,−1,−1, 1)] (49, 50) C3 : K50, TA
150 [(1, 37, 37, 37), (−1,−37,−37, 37)] (1, 74) T75 ⋊ C2
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Example 1. One family of noncommutative association schemes of rank 6 identified by Hanaki
and Zieschang [16] in which every member has a nonnormal closed subset {b0, b1} of rank 2 has
linear character values [δ, φ] = [(δ1, δ2, δ3, δ4), (−1,−c,−c, c)], with mφ = (mχ + 1)(δ1 − 1) + 1 and
c ∈ Z. Integralilty of χ requires that mχ divide cmφ − δi for i = 2, 3, 4. The association schemes in
this family are semidirect products of a symmetric normal closed subset U1+δ2+δ3 of rank 3 with a
nonnormal closed subset K1+δ1 of rank 2. The members of one subfamily of these schemes are of the
form U4k+1⋊C2 and have order 8k+2. These appear in the table for every k ≥ 1. Alternating with
these is a family of association schemes that are semidirect products of an anti-symmetric normal
closed subset of rank 3 with the thin scheme C2. These have algebraic structure T4k−1 ⋊ C2, order
8k − 2, and occur for every k ≥ 1.

Example 2. Another family discussed in [16] has members that are the semidirect product of a
symmetric normal closed subset Um of rank 3 with a closed subset Kt of rank 2. We identify these as
Um⋊Kt when no other parameter pattern is in agreement. Members of this family have parameter
sets

[δ, φ] =
[

(δ1, δ1, δ3, δ4),
(

δ1, δ1,
−δ3
mφ

,
−δ4
mφ

)

]

.

We did find some table algebras that have a normal symmetric closed subset U of rank 3 for
which the RBA is a non-split extension of U2u+1 by a table algebra of rank 2. Such table algebras
were observed recently by Yoshikawa [21]. The parameter sets are in the above form with δ1 even.
Since the quotient has rank 2, we identify these in the table by Um : Kt or Um : Dt. The first of
these has the form U5 : K7. It is a table algebra only, since it does not appear in the classification
of association schemes of order 35 and rank 6. In fact, according to Yoshikawa, it is not known if
any of these table algebras are realized by association schemes.

Example 3. Another family of noncommutative rank 6 table algebras identified by Hanaki and
Zieschang in [16] has an anti-symmetric thin closed subset C = C3 of rank 3 and no other nontrivial
closed subsets. The quotient B//C3 is a rank 2 scheme Kn/3. These have parameters [δ, φ] =
[(ℓ, ℓ, ℓ, 1), (−1,−1,−1, 1)] and order 3(ℓ+1), for all ℓ ≡ 1 mod 3. These are not always association
schemes. In particular the table algebra C3 : K11 of order 33 is not realized by a scheme. This was
noted in [16].

Example 4. The articles of Hanaki-Zieschang [16] and Asaba-Hanaki [3] provide character tables
of noncommutative integral table algebras of rank six, the parameters of which, for certain choices
of q and r, correspond to the projective geometry PGr−1(r, q). The corresponding values [δ, φ] for
these table algebras are:

[δ, φ] =
[

(q(qr − 1)

q − 1
,
q2r+1(qr − 1)

q − 1)
,
q(qr − 1)3

(q − 1)3)
,
qr+1(qr − 1)2

(q − 1)2
)

, (−1,−qr−1,−qr−1, qr−1)
]

.

These are identified in the table with the label PG(r, q). If r = 3 these coincide with Coxeter
schemes in [16] generated by a pair of noncommuting scheme reflections in {b1, b2, b3}, which are
indicated in the table with the label CS(bi, bj).

Example 5. The imprimitive rank 6 association schemes introduced by Drabkin and French [14]
that arise from complete p-arrays for Mersenne primes p have linear character values

[δ, φ] =
[

(

p + 1,
p2 − 1

2
,
p2 − 1

2
,
p− 1

2

)

, (−1,−p− 1

2
,−p− 1

2
,
p− 1

2
)
]

.
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As one of the structure constants is λ454 = p−3
4
, we find that there is an integral table algebra

defined by these parameters for every positive odd integer p ≡ 3 mod 4. These have orders p2+2p,
an anti-symmetric normal closed subset of rank 3 and order p, and no other closed subsets, so their
algebraic structure is that of an extension Tp : Kp+2. Three of these occur in the table, with orders
15, 63, and 143.

Some of our examples are imprimitive with a normal noncentral closed subset Km of rank 2 and
order m and no other nontrivial closed subsets. The quotient is an anti-symmetric table algebra of
rank 3. We identify these in our list as being of type Km : Tn/m. We also see some other instances
of table algebras that are nonsplit extensions of an anti-symmetric normal closed subset by a rank
2 quotient. These are identified with Tm : C2, Tm : Kt or Tm : Dt according to quotient type.

Example 6. Our computer search revealed an ever-increasing number of integral RBAs of rank 6
with φ = (0, 0,−1, 0) (up to order). In this case the integral RBA (A,B) is the circle product of
a normal closed subset N = {b0, b3} with a non-commutative rank 5 rational RBA. N is a rank 2
RBA of order m, so we indicate the members of this family by En/m ◦Km in the table. To see this,
note that with these values of φ we must have eφ =

mφ
n
(b0− 1

δ3
b3), and the fact that e2φ = eφ implies

{b0, b3} is a closed subset. It follows that

b23 = δ3b0 + (δ3 − 1)b3, mφ =
nδ3
δ3 + 1

, and χ3 = 2δ3.

Further eφ in the center of A implies b3 is central in A. This means our matrix realization from §3
has

b3 =
(

δ3,−1,

[

δ3 0
0 δ3

]

)

.

Therefore, for i 6= 0, 3, bib3 = b3bi = δ3bi. So the RBA (A,B, δ) is a wreath product (B,N); cf. [11,
Definition 1.2] and [4]. Therefore, the cosets of N in B are N, Nb1, Nb2, Nb4, and Nb∗4, and we
have a quotient RBA

B//N = {b̄0, b̄1, b̄2, b̄4, b̄∗4},
where b̄0 =

1
1+δ3

(b0 + b3), b̄i =
1

1+δ3
bi for i 6= 0, 3. The quotient RBA B//N has structure constants

b̄ib̄j =
1

(1 + δ3)

∑

k 6=3

λijkb̄k,

so it is a noncommutative RBA of rank 5, and B is a table algebra precisely when B//N is a table
algebra. If B is a table algebra, then B ∼= (B//N) ≀N by [23, Lemma 3.1]. Noncommutative rank
5 RBAs were classified in [18].

5 Primitive table algebras

The table in Section 4 contains four examples of primitive integral table algebras: one of order 81,
two of order 96 and one of order 120. We would like to know whether they could be Bose-Mesner
algebras of association schemes. For this purpose we need the following result. Throughout this
section (A,B) is a noncommutative rank 6 table algebra with positive degree map δ and standard
basis B determined by the parameters δi, φi, i = 1, . . . , 4, as explained in Section 3.

Proposition 5. The center of A is a fusion subalgebra of (A,B) iff the set {φi/δi}5i=0 contains at
most three distinct elements.
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Proof. If the center Z(A) is a fusion subalgebra, then there exists a ∗-invariant partition of {1, ..., 5}
into two classes, say I and J , such that the elements b0, bI :=

∑

i∈I bi, bJ :=
∑

j∈J bj form a table
basis of Z(A), as the dimension of Z(A) is 3. On the other hand, the idempotents eδ, eφ, eχ =
b0 − eδ − eφ form another basis of Z(A). Therefore eφ is a linear combination of b0, bI and bJ , and
hence |{φi/δi, | i = 0, ..., 5}| ≤ 3. Assume now that |{φi/δi, | i = 0, ..., 5}| ≤ 3. Pick an element
α ∈ {φi/δi, | i = 0, ..., 5} distinct from 1 and define I := {i ∈ {1, ..., 5} | φi/δi = α}. It follows from
φ4/δ4 = φ5/δ5 that the set I is ∗-invariant. As we have already seen before, I is a proper subset of
{1, ..., 5}. Define J := {1, ..., 5} \ I. Then Z(A) ⊆ Span{b0, bI , bJ}. Comparing the dimensions we
conclude that Z(A) = Span{b0, bI , bJ}.

Proposition 6. Assume that Z(A) is a fusion subalgebra. Let I∪J = {1, 2, ..., 5} be the correspond-
ing partition of the index set. Then for each non-empty proper subset K ⊂ I such that b∗K = bK ,
Span{b0, bK , bI\K , bJ} is a commutative real fusion subalgebra of rank 4, and its multiplicities are
1, mφ, mχ, mχ.

Proof. Since Z(A) = Span{b0, bI , bJ}, the elements bK , bI\K , bJ commutes with each other under
the multiplication of A. Thus, the subalgebra W := 〈b0, bK , bI\K , bJ〉 generated by b0, bK , bI\K , bJ
is a commutative subalgebra of dimension at least 4. But any commutative subalgebra of A has
dimension at most four. Therefore W = Span{b0, bK , bI\K , bJ}. It follows from the assumption that
every basis element of W is real. Thus W is a commutative real fusion subalgebra of A, as desired.
Also W is a table algebra. The restriction of φ to W must remain irreducible, and the restriction
of the nonlinear irreducible character χ of A to W must produce two distinct irreducibles. The
restriction of the standard feasible trace of A to W will be the standard feasible trace of W , and
its irreducible constituents will occur with the multiplicities 1, mφ, mχ, mχ.

All parameter sets of primitive integral table algebras described in Table 1 satisfy the assump-
tions of Proposition 5. Therefore their centers are fusion subalgebras of rank three. If n = 81, then
the center has degrees 1, 20, 60. According to A. Brouwer’s data [12] there exists a unique strongly
regular graph with these parameters. By Proposition 6 there exists a real fusion subalgebra of rank
4 with degrees 1, 20, 20, 40 and multiplicites 1, 20, 30, 30. According to the results of E. van Dam
such a scheme does not exist [13, pg. 90]. For n = 96 there are two parameter sets. As table
algebras, their centers have the same degrees 1, 38, 57. According to A. Brouwer’s data [12] such a
strongly regular graph does not exist. So this parameter set cannot be realized as a Bose-Mesner
algebra of an association scheme. In the last case n = 120, the center has degrees 1, 34, 85. Accord-
ing Brouwer’s table [12] it is not known whether there exists a strongly regular graph with these
parameters. However, when we compute our structure constants we find that λ414 = 7 and δ4 = 51.
We claim that in an association scheme the value of λijiδi should be even when bj is ∗-symmetric.
(The second author believes that this is well-known. As we were unable to find a reference we pro-
vide an argument for this below.) So from our noncommutative rank 6 table algebra classification,
it follows that there is no such association scheme.

Lemma 7. Let si and sj 6= 1X be distinct relations in an association scheme (X,S). Let λijk be
the intersection numbers of (X,S). If sj is symmetric, and the valency δi of si is greater than 1,
then λijiδi must be even.

Proof. Let x ∈ X . Let xsi = {y ∈ X : (x, y) ∈ si} be the si-neighborhood of x. Consider the graph
Γi,j on xsi that is induced by the relation sj . Then Γi,j is a graph on |xsi| = δi > 1 points, and
(y, z) ∈ E(Γi,j) if and only if (x, y), (x, z) ∈ si and (y, z) ∈ sj . Since sj is symmetric, the graph

15



Γi,j is an ordinary undirected graph. Furthermore, Γi,j is regular of valency λiji because for every
y ∈ xsi,

|{z ∈ xsi : (y, z) ∈ sj}| = |{z ∈ xsi : (z, y) ∈ sj}| = λiji.

It is easy to see that the usual adjacency matrix of a k-regular graph on n > 1 points has nk entries
equal to one, and the fact that the graph is symmetric implies that this number must be even.
Applying this to Γi,j we deduce that δiλiji must be even.

The authors also want to mention that A. Munemasa, after hearing a preliminary version of
these results, searched primitive permutation groups of small degrees and found that there is no
primitive noncommutative Schurian scheme of rank 6 with orders less than 1600.

6 Noncommutative rank 6 TAs with mφ = 1

With the notation of Section 3, assume B = {(δi, φi, Bi), i = 0, . . . , 5} is a standard table basis for
a noncommutative rank 6 RBA with mφ = 1. From our formulas (see Corollary 4) we see that this
extra condition mφ = 1 implies n =

∑

i(φ
2
i /δi) and mχ = n/2− 1.

The purpose of this section is to classify all noncommutative rank 6 table algebras that have
mφ = 1. We show that they separate nicely into three families. We show that one of these families is
never realized by an association scheme, and give integrality conditions for the two of these families
that can be realized by association schemes.

Recall that the kernel of φ is ker φ := {bi ∈ B : φ(bi) = δiφ(b0)}. For any table algebra (A,B)
and any irreducible character ξ of A, ker ξ is a closed subset of B (see [22, Theorem 4.2]) and
mξ ≥ ξ(1) (see [24, Theorem 1.1]). The first condition can fail for noncommutative rank 6 RBAs
with negative structure constants. For example, there is a noncommutative rational rank 6 RBA
of order 6 with linear character values [δ, φ] = [(1, 1, 1, 1), (1,−2, 0, 0)] for which ker φ = {b0, b1} is
not a closed subset of B, because

b21 = b0 −
1

2
b1 −

1

4
b2 +

1

4
(b3 + b4 + b5).

The extra arithmetic properties satisfied by integral table algebras will be essential to this classifi-
cation. All the properties of integral table algebras used here can be found in [8] or [23]. We write
o(N) =

∑

bi∈N
δi for the order of a closed subset N of B.

Lemma 8. Let (A,B) be a noncommutative rank 6 table algebra with mφ = 1. Let N be the kernel
of φ. Then the following hold.

(i) If bi ∈ N, i 6= 0, then φi = δi and χi = − 2δi
mχ

.

(ii) If bi 6∈ N, then φi = −δi and χi = 0.

(iii) Let bibj =
∑5

k=0 λijkbk.

If φiφj > 0, then λijk = 0 for any k with φk < 0.

If φiφj < 0, then λijk = 0 for any k with φk > 0.

(iv) The quotient table basis B//N is an abelian group of order 2.
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Proof. (i) follows from τ = δ + φ+mχχ, where τ is the standard feasible trace of (A,B).
(ii) It follows from mφ = 1 that

∑

i(φ
2
i /δi) = n =

∑

i δi. But |φi| ≤ δi for all i. Hence, we must
have that φi = ±δi, 0 ≤ i ≤ 5. Therefore, φi = δi if bi ∈ N, and φi = −δi if bi 6∈ N. Furthermore,
since 0 = τ(bi) = δi + φi +mχχi for any 1 ≤ i ≤ 5, we see that χi = 0 for any bi 6∈ N. So (ii) holds.

(iii) Applying δ and φ to the equation bibj =
∑5

k=0 λijkbk, we get that

δiδj =

5
∑

k=0

λijkδk and φiφj =

5
∑

k=0

λijkφk. (8)

If φiφj > 0, then by subtracting the second equation from the first equation in (8), we see that
∑

φk<0 λijkδk = 0 by (i) and (ii). Since each δk > 0 and λijk ≥ 0, we must have that λijk = 0 for
any k with φk < 0. But if φiφj < 0, then by adding the two equations in (8) together, we see that
λijk = 0 for any k with φk > 0. So (iii) holds.

(iv) For any bi, bj /∈ N, (bi//N)(bj//N) = b0//N by (ii) and (iii). So (iv) holds.

Lemma 9. Let (A,B) be a noncommutative rank 6 table algebra with mφ = 1, and let N = kerφ.
Then o(N) = n/2 and |N| = 3 or 5. If |N| = 5, then B = (B//N) ≀N.

Proof. Since o(B//N) = 2 by Lemma 8(iv), and o(B//N) = o(B)/o(N), it follows that o(N) = n/2.
Now B//N an abelian group of order 2 implies that |N| 6= 1. If |N| = 2, without loss of

generality, we may assume that N = {b0, b2}. Pick up two arbitrary elements bj , bk ∈ B \N. By
Lemma 8(iii), the products bjbk and bkbj are linear combinations of b0 and b2. Now it follows from
λjk0 = λkj0 and

λkj0 + λkj2δ2 = δjδk = λjk0 + λjk2δ2

that bj and bk commute. Thus any two elements of the set B \ N commute. Since B//N is an
abelian group, N is a (strongly) normal closed subset of B. So |N| = 2 yields that N is in the
center Z(A) of A. Hence A is commutative, a contradiction.

In the following we show that |N| 6= 4. For any function f on B, let f |N be the restriction of f
on N. Then (o(N)/o(B))τ |N is the standard feasible trace of N, and

o(N)

o(B)
τ |N =

1

2

(

δ|N + φ|N +mχχ|N
)

= δ|N +
n− 2

4
χ|N.

So every non-principal irreducible character of N is a constituent of χ|N. Since the degree of χ is
2, χ|N is either irreducible or the sum of two (not necessarily distinct) irreducible characters of N.
Thus, N has at most three distinct irreducible characters. So |N| 6= 4.

Therefore, |N| = 3 or 5. If |N| = 5, then |B| = |B//N|+ |N| − 1, and hence B ∼=x (B//N) ≀N
by [23, Lemma 3.1].

In keeping with our convention from Section 3, we will assume φ3/δ3 6= φ4/δ4, so b3 and b4
lie in distinct cosets of N = kerφ. From Lemma 9 we see that noncommutative rank 6 table
algebras with mφ = 1 occur in three families. The first family where |N| = 5 is the wreath product
of B//N = {b̄0, b̄3} with a noncommutative rank 5 table algebra N = {b0, b1, b2, b4, b5}. Since
noncommutative rank 5 RBAs cannot be integral by [18, Theorem 6], and N is a closed subset of
(B//N) ≀N, it is impossible for members of this family to be integral table algebras. In particular,
members of this family are never realized by association schemes.

When |N| = 3, there are two families, both of which we refer to as bipartite, since the map
φ separates both the set B and the “vertices” into two halves. The real bipartite family has
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N = {b0, b2, b3} up to a choice of the ordering of b1 and b2, and the non-real bipartite family has
N = {b0, b4, b5}.

The next results give integrality conditions for the two families of bipartite rank 6 table algebras.

Let ∆ be a 2× 2 real representation affording the character χ, and write ∆(bi) = Bi =

[

ri si
si ui

]

for

i = 0, . . . , 3, B4 =

[

r4 s4
t4 u4

]

, and B5 = B⊤
4 . As B1 is a real symmetric matrix, we can adjust the

basis so that s1 = 0. Note that the matrix entries for the Bi automatically satisfy several additional
identities that arise from the idempotent formulas. Since (1, 0, 02×2) = eδ, (0, 1, 02×2) = eφ, and
(0, 0, I2×2) = eχ, we have

02×2 =
∑

i

Bi, 02×2 =
∑

i

φi
δi
Bi, and

n

mχ

I2×2 =
∑

i

χi
δi
Bi. (9)

In addition, recall that our standard feasible trace gives the identities

n = τ(b0) = 1 +mφ + 2mχ and 0 = τ(bi) = δi +mφφi +mχχi for i = 1, . . . , 5. (10)

The structure constants relative to B can be determined using (1) once the entries of the Bi are
known.

Lemma 10. Suppose B is the standard basis of a real bipartite rank 6 table algebra, for which the
kernel of φ is N = {b0, b2, b3}. Then δi ≥ 2 for 2 ≤ i ≤ 4, δ1 ≥ max{δ3/δ2, δ2/δ3}, and

r1 = −u1 =
√

2δ1δ4
δ2 + δ3

ε1, r2 = u2 = − δ2
δ2 + δ3

,

s2 = −s3 =
√
δ2δ3n√

2(δ2 + δ3)
ε2, r3 = u3 = − δ3

δ2 + δ3
,

r4 = −u4 = −
√

δ1δ4
2(δ2 + δ3)

ε1, s4 = −t4 =
ε3
2

√

δ4n

δ2 + δ3
,

where ε1, ε2, ε3 ∈ {1,−1}.
Proof. It follows from the definition of N that φ1 < 0, φ2 > 0, φ3 > 0, and φ4 < 0. In light of the
idempotent equations (9), Lemma 8 implies that

1 + r2 + r3 = r1 + 2r4 = 0, 1 + u2 + u3 = u1 + 2u4 = 0, s2 + s3 = s4 + t4 = 0.

Furthermore, since mχ = (n− 2)/2 by (10), we have that

1 + δ2 + δ3 = δ1 + 2δ4 = n/2 and mχ = δ2 + δ3.

Note that r1 = −u1 and r4 = −u4 by Lemma 8. So it follows from nδ1 = τ(b21) = δ21 + φ2
1 +

mχtr(B
2
1) = 2δ21 + (δ2 + δ3)(r

2
1 + u21) that

r1 = −u1 =
√

2δ1δ4
δ2 + δ3

ε1, where ε1 = ±1.

Thus, r1 + 2r4 = 0 yields that

r4 = −u4 = −
√

δ1δ4
2(δ2 + δ3)

ε1.
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Since 0 = τ(b1b2) = δ1δ2 + φ1φ2 + mχtr(B1B2) = 2r1mχ(r2 − u2), we see that r2 = u2. Thus,
0 = τ(b2) = δ2 + φ2 +mχtr(B2) = 2δ2 + 2(δ2 + δ3)r2, and hence

r2 = u2 = − δ2
δ2 + δ3

, r3 = u3 = − δ3
δ2 + δ3

.

Now nδ2 = τ(b22) = 2δ22 + (δ2 + δ3)(r
2
2 + u22 + 2s22) and s2 + s3 = 0 imply that

s2 = −s3 =
√
δ2δ3n√

2(δ2 + δ3)
ε2, where ε2 = ±1.

Finally, since t4 = −s4, and nδ4 = τ(b4b
∗
4) = 2δ24 +mχ(r

2
4 + u24 + s24 + t24), we get that

s4 = −t4 =
ε3
2

√

δ4n

δ2 + δ3
, where ε3 = ±1.

Now it is straightforward to check that

b22 = δ2b0 +
δ2(δ

2
2 − δ2 + δ2δ3 − 3δ3)

(δ2 + δ3)2
b2 +

δ2(δ2n− 2δ3)

2(δ2 + δ3)2
b3,

and

b23 = δ3b0 +
δ3(δ3n− 2δ2)

2(δ2 + δ3)2
b2 +

δ3(δ
2
3 − δ3 + δ2δ3 − 3δ2)

(δ2 + δ3)2
b3.

Thus,
δ22 − δ2 + δ2δ3 − 3δ3 ≥ 0 and δ23 − δ3 + δ2δ3 − 3δ2 ≥ 0. (11)

Adding both sides of the two inequalities in (11), we get that δ2 + δ3 ≥ 4. If δ2 < 2, then δ3 > 2,
and the first inequality in (11) yields that

δ22 − δ2 ≥ (3− δ2)δ3 > 6− 2δ2,

a contradiction. So we must have that δ2 ≥ 2. Similarly, we also have δ3 ≥ 2. Furthermore, since

b1b4 =
δ4(δ1δ2 + ε1ε2ε3

√
δ1δ2δ3)

δ2(δ2 + δ3)
b2 +

δ4(δ1δ3 − ε1ε2ε3
√
δ1δ2δ3)

δ3(δ2 + δ3)
b3

and

b1b
∗
4 =

δ4(δ1δ2 − ε1ε2ε3
√
δ1δ2δ3)

δ2(δ2 + δ3)
b2 +

δ4(δ1δ3 + ε1ε2ε3
√
δ1δ2δ3)

δ3(δ2 + δ3)
b3,

we see that δ1 ≥ max{δ3/δ2, δ2/δ3}. It is also straightforward to check that

b4b
∗
4 = δ4b0 +

δ4(δ2δ4 − δ2 + ε1ε2ε3
√
δ1δ2δ3)

δ2(δ2 + δ3)
b2 +

δ4(δ3δ4 − δ3 − ε1ε2ε3
√
δ1δ2δ3)

δ3(δ2 + δ3)
b3.

So either δ2δ4 − δ2 ≥
√
δ1δ2δ3 or δ3δ4 − δ3 ≥

√
δ1δ2δ3. But δ1δ3 ≥ δ2 and δ1δ2 ≥ δ3. Hence, we

always have δ4 ≥ 2, and the lemma holds.
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The other structure constants of the table algebra in the above lemma are given as below:

b21 = δ1b0 +
δ21 − δ1
δ2 + δ3

(b2 + b3),

b1b2 =
δ2(δ1 − 1)

δ2 + δ3
b1 +

δ1δ2 + ε1ε2ε3
√
δ1δ2δ3

δ2 + δ3
b4 +

δ1δ2 − ε1ε2ε3
√
δ1δ2δ3

δ2 + δ3
b∗4,

b1b3 =
δ3(δ1 − 1)

δ2 + δ3
b1 +

δ1δ3 − ε1ε2ε3
√
δ1δ2δ3

δ2 + δ3
b4 +

δ1δ3 + ε1ε2ε3
√
δ1δ2δ3

δ2 + δ3
b∗4,

b2b3 = b3b2 =
δ3(δ2n− 2δ3)

2(δ2 + δ3)2
b2 +

δ2(δ3n− 2δ2)

2(δ2 + δ3)2
b3,

b2b4 =
δ4(δ1δ2 − ε1ε2ε3

√
δ1δ2δ3)

δ1(δ2 + δ3)
b1 +

δ2δ4 − δ2 + ε1ε2ε3
√
δ1δ2δ3

δ2 + δ3
b4 +

δ2δ4
δ2 + δ3

b∗4,

b2b
∗
4 =

δ4(δ1δ2 + ε1ε2ε3
√
δ1δ2δ3)

δ1(δ2 + δ3)
b1 +

δ2δ4
δ2 + δ3

b4 +
δ2δ4 − δ2 − ε1ε2ε3

√
δ1δ2δ3

δ2 + δ3
b∗4,

b3b4 =
δ4(δ1δ3 + ε1ε2ε3

√
δ1δ2δ3)

δ1(δ2 + δ3)
b1 +

δ3δ4 − δ3 − ε1ε2ε3
√
δ1δ2δ3

δ2 + δ3
b4 +

δ3δ4
δ2 + δ3

b∗4,

b3b
∗
4 =

δ4(δ1δ3 − ε1ε2ε3
√
δ1δ2δ3)

δ1(δ2 + δ3)
b1 +

δ3δ4
δ2 + δ3

b4 +
δ3δ4 − δ3 + ε1ε2ε3

√
δ1δ2δ3

δ2 + δ3
b∗4,

b∗4b4 = δ4b0 +
δ4(δ2δ4 − δ2 − ε1ε2ε3

√
δ1δ2δ3)

δ2(δ2 + δ3)
b2 +

δ4(δ3δ4 − δ3 + ε1ε2ε3
√
δ1δ2δ3)

δ3(δ2 + δ3)
b3,

b24 = b25 =
δ24

δ2 + δ3
(b2 + b3).

For a table algebra (A,B), let Aut(B) := {f | f : B → B is an exact isomorphism} be the
automorphism group of B. Let G be a subgroup of Aut(B), and CG the group algebra of G over C,
which is also a table algebra. Then the semi-direct product of (A,B) by (CG,G), (CG⋉A,G⋉B),
is a table algebra defined as follows: CG⋉A := CG×A, G⋉B := G×B, and the multiplication
is defined by

(g, b) · (h, c) := (gh, bhc), for any g, h ∈ G, and b, c ∈ B,

where bh := h(b) is the image of b under h.
We can now give a characterization of real bipartite integral table algebras of rank 6.

Theorem 11. Let (A,B) be a real bipartite rank 6 table algebra with N = {b0, b2, b3}. Then (A,B)
is integral if and only if

δ1 = 1, δ2 = δ3 = δ4, 2 | δ2, and 8 | (n− 2). (12)

Furthermore, if (A,B) is integral, then

B ∼=x Aut(N)⋉N.
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Proof. First assume that (A,B) is integral. Since the structure constants of b24 are integers, we see
that (δ2+δ3) | δ24. Hence, (δ2+δ3) | δ4(δ2+δ3−2δ4). That is, (δ2+δ3) | δ4(δ1−1). Now the structure
constants for b21 integral implies that (δ2 + δ3) | δ1(δ1 − 1). So (δ2 + δ3) | (δ1 + 2δ4)(δ1 − 1). That is,
(δ2+δ3) | (1+δ2+δ3)(δ1−1). Hence, (δ2+δ3) | (δ1−1). But (δ2+δ3) = δ1−1+2δ4 > δ1−1 ≥ 0. So
we must have δ1 = 1. Therefore, b1 is a thin element, δ2+δ3 = 2δ4, and 2 | δ4 (because (δ2+δ3) | δ24).
Furthermore, we also have that b1b3 = b4 or b∗4. So δ3 =

√
δ2δ3, and hence δ2 = δ3. Now it is clear

that 8 | (n− 2), and (12) holds.
On the other hand, assume that (12) holds. Let k := δ2 (= δ3 = δ4). By renumbering b4, b5 if

necessary, without loss of generality, we may assume that ε1ε2ε3 = 1. Then the products of two
elements in B are given as follows:

b21 = b0, b1b2 = b4, b1b3 = b∗4, b1b4 = b2, b1b
∗
4 = b3,

b22 = kb0 +
k − 2

2
b2 +

k

2
b3, b2b3 =

k

2
(b2 + b3), b2b4 =

k

2
(b4 + b∗4), b2b

∗
4 = kb1 +

k

2
b4 +

k − 2

2
b∗4,

b23 = kb0 +
k

2
b2 +

k − 2

2
b3, b3b4 = kb1 +

k − 2

2
b4 +

k

2
b∗4, b3b

∗
4 =

k

2
(b4 + b∗4),

b24 = b25 =
k

2
(b2 + b3), b4b

∗
4 = kb0 +

k

2
b2 +

k − 2

2
b3, b

∗
4b4 = kb0 +

k − 2

2
b2 +

k

2
b3.

So (A,B) is integral, and Aut(N) = {ℓ, σ}, where ℓ is the identity map, and σ interchanges b2 and
b3. Now it is straightforward to check that the map defined by

(ℓ, bi) 7→ bi, i = 0, 2, 3, (σ, b0) 7→ b1, (σ, b2) 7→ b4, (σ, b3) 7→ b∗4

is an exact isomorphism between B and Aut(N)⋉N.

One sees several examples of the real bipartite family in Table 1 that are listed under the heading
U4k+1 ⋊ C2. The above theorem implies these are the only type.

Now we consider integrality conditions for the family of non-real bipartite rank 6 table algebras.

Lemma 12. If N = {b0, b4, b5}, then φi < 0 for i = 1, 2, 3, max{ δ2
δ3
, δ3
δ2
} ≤ δ1 ≤ δ2δ3, and by

renumbering b4 and b5 if necessary, we have

B4 =

[

−1
2

√
n

2
√
2

−
√
n

2
√
2

−1
2

]

.

Furthermore,

r1 = −u1 = ε1

√

δ1(δ2 + δ3)

2δ4
, r2 = −u2 = −ε1

√
δ1δ2

√

2δ4(δ2 + δ3)
,

r3 = −u3 = −ε1
√
δ1δ3

√

2δ4(δ2 + δ3)
, s2 = −s3 =

ε2
2

√

δ2δ3n

δ4(δ2 + δ3)
,

where ε1, ε2 ∈ {1,−1}.

Proof. By Lemma 8 the numbers φ1, φ2, φ3 are all negative. By Lemma 8, the idempotent equations
(9) imply that

r1 + r2 + r3 = 0, u1 + u2 + u3 = 0, r4 = u4 = −1/2, s2 + s3 = 0, s4 + t4 = 0.
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So from (10) we get that

mχ = 2δ4, n = 2 + 4δ4, 1 + 2δ4 = δ1 + δ2 + δ3 = n/2. (13)

Also by Lemma 8, we have b4b
∗
4 = δ4b0+λ444(b4+b

∗
4). Hence, δ

2
4 = δ4+2δ4λ444. So λ444 = (δ4−1)/2,

and

b4b
∗
4 = δ4b0 +

δ4 − 1

2
(b4 + b∗4). (14)

Note that

B4 =

[

−1
2

s4
−s4 −1

2

]

and B4B
⊤
4 =

[

1
4
+ s24 0
0 1

4
+ s24

]

.

So by (14), 1/4 + s24 = δ4 − (δ4 − 1)/2. Thus, s4 = ±
√
2δ4+1
2

= ±
√
n

2
√
2
. By renumbering b4 and b5 if

necessary, we may assume that s4 =
√
n

2
√
2
. So

B4 =

[

−1
2

√
n

2
√
2

−
√
n

2
√
2

−1
2

]

. (15)

Furthermore, b24 =
δ4−1
2
b4 +

δ4+1
2
b∗4.

Note that ri + ui = 0 for 1 ≤ i ≤ 3 by Lemma 8. Since nδ1 = τ(b21) = δ21 + φ2
1 +mχtr(B

2
1) =

2δ21 + 2δ4(r
2
1 + u21), we see that r21 = u21 =

δ1(n−2δ1)
4δ4

= δ1(δ2+δ3)
2δ4

by (13). Hence,

r1 = −u1 = ε1

√

δ1(δ2 + δ3)

2δ4
, where ε1 = ±1.

Now 0 = τ(b1b2) = δ1δ2 + φ1φ2 +mχtr(B1B2) = 2δ1δ2 +2δ4(r1r2 + u1u2) and r2 = −u2. So we have
that

r2 = −u2 = −ε1
√
δ1δ2

√

2δ4(δ2 + δ3)
.

Also it follows from r1 + r2 + r3 = 0 that

r3 = −u3 = −ε1
√
δ1δ3

√

2δ4(δ2 + δ3)
.

Note that nδ2 = τ(b22) = δ22 + φ2
2 +mχtr(B

2
2) = 2δ22 + 2δ4(r

2
2 + u22 + 2s22), and s2 + s3 = 0. So we see

that

s2 = −s3 =
ε2
2

√

δ2δ3n

δ4(δ2 + δ3)
, where ε2 = ±1.

Now it is straightforward to check that

b2i = δib0 +
δ2i − δi
2δ4

(b4 + b∗4), i = 1, 2, 3.

Furthermore,

b1b2 =
δ1δ2 + ε1ε2

√
δ1δ2δ3

2δ4
b4 +

δ1δ2 − ε1ε2
√
δ1δ2δ3

2δ4
b∗4,

b1b3 =
δ1δ3 − ε1ε2

√
δ1δ2δ3

2δ4
b4 +

δ1δ3 + ε1ε2
√
δ1δ2δ3

2δ4
b∗4,
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and

b2b3 =
δ2δ3 + ε1ε2

√
δ1δ2δ3

2δ4
b4 +

δ2δ3 − ε1ε2
√
δ1δ2δ3

2δ4
b∗4.

Since the structure constants are non-negative, it follows that max{ δ2
δ3
, δ3
δ2
} ≤ δ1 ≤ δ2δ3, and (ii)

holds.

The other structure constants of non-real bipartite rank 6 table algebras are given as below:

b1b4 =
δ1 − 1

2
b1 +

δ1δ2 + ε1ε2
√
δ1δ2δ3

2δ2
b2 +

δ1δ3 − ε1ε2
√
δ1δ2δ3

2δ3
b3,

b1b5 =
δ1 − 1

2
b1 +

δ1δ2 − ε1ε2
√
δ1δ2δ3

2δ2
b2 +

δ1δ3 + ε1ε2
√
δ1δ2δ3

2δ3
b3,

b2b4 =
δ1δ2 − ε1ε2

√
δ1δ2δ3

2δ1
b1 +

δ2 − 1

2
b2 +

δ2δ3 + ε1ε2
√
δ1δ2δ3

2δ3
b3,

b2b5 =
δ1δ2 + ε1ε2

√
δ1δ2δ3

2δ1
b1 +

δ2 − 1

2
b2 +

δ2δ3 − ε1ε2
√
δ1δ2δ3

2δ3
b3,

b3b4 =
δ1δ3 + ε1ε2

√
δ1δ2δ3

2δ1
b1 +

δ2δ3 − ε1ε2
√
δ1δ2δ3

2δ2
b2 +

δ3 − 1

2
b3,

b3b5 =
δ1δ3 − ε1ε2

√
δ1δ2δ3

2δ1
b1 +

δ2δ3 + ε1ε2
√
δ1δ2δ3

2δ2
b2 +

δ3 − 1

2
b3.

We can now give our integrality condition for non-real bipartite rank 6 table algebras.

Theorem 13. Let (A,B) be a non-real bipartite rank 6 table algebra with N = {b0, b4, b5}. Then
(A,B) is integral if and only if there are odd positive integers α, γ, k1, and k2 such that

δ1 = αγk1, δ2 = αγk2, δ3 = α2k1k2, gcd(k1, k2) = 1, α2 < 2γ,

and
δ4 divides each of γk1k2, γk1(αγk1 − 1), γk2(αγk2 − 1), k1k2(α

2k1k2 − 1).

Proof. Suppose gcd(δ1, δ2) = d. Write δ1 = dk1 and δ2 = dk2. The formula for the structure
constant λ241 tells us that

δ1δ2 ±
√
δ1δ2δ3

2δ1
=
d2k1k2 ± d

√
k1k2δ3

2dk1
=
dk1k2 ±

√
k1k2δ3

2k1

is a nonnegative integer. Since d, k1, and k2 have to be odd, this implies k1 divides
√
k1k2δ3.

Similarly, the fact that the structure constant λ152 is a nonnegative integer implies that k2 divides√
k1k2δ3. Since gcd(k1, k2) = 1, we have that

√
k1k2δ3 = αk1k2 for some α ∈ Z+, and therefore

δ3 = α2k1k2.
Since λ243 is a nonnegative integer, and

λ243 =
δ2δ3 ±

√
δ1δ2δ3

2δ3
=
dα2k1k

2
2 ± dαk1k2

2α2k1k2
=
dαk2 ± d

2α
,

we have that α divides d. If d = αγ, then we have δ1 = αγk1, δ2 = αγk2, and δ3 = α2k1k2.
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Since we are in the case where 1− δ1 − δ2 − δ3 + 2δ4 = 0, we have that

α(γk1 + γk2 + αk1k2)− 2δ4 = 1.

Therefore, gcd(α, δ4) = 1. Our formulas for λii4, i = 1, 2, 3 imply that δ4 divides δi(δi − 1) for
i = 1, 2, 3. So with the observation that gcd(α, δ4) = 1 we get that δ4 divides γk1(αγk1 − 1),
γk2(αγk2 − 1), and k1k2(α

2k1k2 − 1).
From our formulas for λ124 and λ125, we see that

λ124 − λ125 =

√
δ1δ2δ3
δ4

∈ Z
+,

so δ4 divides
√
δ1δ2δ3 = α2γk1k2. Since gcd(α, δ4) = 1, this shows that δ4 divides γk1k2.

Let β ∈ Z+ be such that βδ4 = γk1k2. Then 2δ4 = δ1 + δ2 + δ3 − 1 implies

2γk1k2 = β(αγk1 + αγk2 + α2k1k2 − 1). (16)

Since αγ(k1 + k2) > 1, the right hand side of (16) is strictly larger than βα2k1k2. Since β ≥ 1, this
implies 2γ > α2.

Conversely, for every choice of positive integers α, γ, k1, and k2 satisfying the given conditions, we
can produce an admissible parameter set for which mφ = 1 and the structure constants computed
using our formulas will be nonnegative integers. By Theorem 3 the set of matrices produced in
Section 3 is an integral table basis for an integral table algebra with the desired properties.

It is not difficult to find three odd positive integers satisfying the conditions in Theorem 13.
The next Lemma covers the case where α = 1.

Lemma 14. Let k1, k2 be odd positive integers for which γ :=
k1k2 + 1

k1 + k2
is also an odd integer. If

(k1 + k2) divides (k2i − 1) for i = 1, 2, then there is an integral table algebra (A,B) satisfying the
conditions in Theorem 13 with δ1 = γk1, δ2 = γk2, δ3 = k1k2, and δ4 = k1k2.

Proof. The choice of γ ensures that 2δ4 + 1 = δ1 + δ2 + δ3 will hold for δ4 = k1k2, so the conditions
in Theorem 13 are satisfied.

Example 7. (i) The conditions in Lemma 14 are satisfied when δ1 = 1, and δ2 = δ3 = δ4 = k
for an odd integer k. There is one such association scheme of order 2 + 4k with mφ = 1 for
every odd integer k. These are listed as T2+4k ⋊ C2 in Table 1.

(ii) The conditions in Lemma 14 are satisfied when k1 ≡ 1 mod 4 and k2 = k1 + 2. Therefore,
for every k ≡ 1 mod 4 there is a noncommutative rank 6 integral table algebra with mφ = 1
and order 4k2 + 8k + 2 that has degrees

δ1 =
1

2
(k2 + k), δ2 =

1

2
(k2 + 3k + 2), δ3 = δ4 = k2 + 2k.

The smallest of these appears in Table 1 with k1 = 5 and k2 = 7; it has order 142.

(iii) The conditions in Lemma 14 are also satisfied when k1 =
(s+1)2

2
−1, and k2 =

(s−1)2

2
−1, where

s is an odd integer greater than 3. For s = 5, 7, or 9, the paire (k1, k2) are (17, 7), (31, 17),
and (31, 49), respectively.

(iv) Additional pairs of coprime odd positive integers (k1, k2) both less than 50 that satisfy the
conditions of Lemma 14 but do not appear in (ii) or (iii) are: (9, 31), (11, 19), (11, 49), (13, 29),
(15, 41), (19, 41), (23, 43), and (29, 41). We have yet to determine if any of these are realized
by association schemes.
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