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ABSTRACT

In this paper, we generate algorithms for factoring polynomials with coefficients

in finite fields. In particular, we develop one deterministic algorithm due to El-

wyn Berlekamp and one probabilistic algorithm due to David Cantor and Hans

Zassenhaus. While some authors present versions of the algorithms that can only

factor polynomials of a certain form, the algorithms we give are able to factor

any polynomial over any finite field. Hence, the algorithms we give are the most

general algorithms available for this factorization problem. After formulating the

algorithms, we look at various ways they can be applied to more specialized in-

quiries. For example, we use the algorithms to develop two tests for irreducibility

and a process for finding the roots of a polynomial over a finite field. We conclude

our work by considering how the Berlekamp and Cantor-Zassenhaus methods can

be combined to develop a more efficient factoring process.
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Introduction

In 1967, Elwyn Berlekamp[1] developed the first efficient method for finding

factorizations of polynomials with coefficients in finite fields. His method is de-

terministic and primarily relies on solving systems of linear equations using row

reduction of matrices. The concept behind his factoring strategy is unbelievably

clever, yet very accessible to students of mathematics at all levels. Over the years,

mathematicians have formulated various algorithms based on Berlekamp’s factor-

ing scheme that have the ability to completely factor polynomials over finite fields.

Actually, a few researchers have been so motivated by the findings of Berlekamp

that they have formulated their own separate strategies for factorization.

Citing Berlekamp as a major influence, in 1981, David Cantor and Hans

Zassenhaus[2] developed a new probabilistic method for factoring. Their method

is deeply rooted in the theory of fields but is ultimately easy to apply in specific

problems. In their original paper, Cantor and Zassenhaus only demonstrated how

to find nontrivial factorizations of polynomials using their method. Hence, they

did not give a full algorithm for finding a polynomial’s complete factorization.

However, as Cantor and Zassenhaus probably suspected, many mathematicians

and computer scientists have since used their findings to formulate various algo-

rithms and comprehensive factoring strategies.

In this paper, our primary objective will be to thoroughly develop two fac-

toring algorithms for polynomials over finite fields. The first will be deterministic

and rely on the method of Berlekamp, while the second will be probabilistic and

rely on the method of Cantor-Zassenahaus. The algorithms we present will be

distinguishable by the fact that they represent the most general factoring algo-

rithms available. What we mean by “general” is that our algorithms will have

the ability to factor any polynomial over any finite field. Some authors present

more specialized algorithms and exclude the generality that we will seek here. For

example, Childs[3] presents a factoring technique based on Berlekamp’s method

that only handles polynomials over fields that have prime order. This technique

excludes polynomials whose coefficients come from finite fields that have order pv,

where p is a prime number and v is a positive integer greater than 1. Further,

Shoup[6] gives an algorithm based on the findings of Berlekamp that can only

factor polynomials which are square-free. Hence, this algorithm cannot directly

handle a polynomial that has repeated factors in its factorization.
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Of course, Childs and Shoup are both aware that general versions of their

algorithms can be formulated. They present such specialized algorithms because

factoring generally runs much better when the input polynomial is square-free

and/or has coefficients that come from fields of prime order. While our algorithms

will be able to handle such specialized cases, generality will be our primary desire.

With that said, over the course of the paper, we will offer various tips in regard

to the best ways to factor polynomials in practice.

In order to generate factoring algorithms, we will require many preliminary

results relating to finite fields and polynomials over fields. In fact, our first chapter

will act as a stand-alone introduction to these concepts. Then, in Chapters 2 and

3, we will use the results from Chapter 1 to develop the algorithms.
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Chapter 1

Preliminaries

Our preliminaries will build the theory that is necessary for developing factor-

ing algorithms in later chapters. We will begin by looking at some basic properties

of finite fields. Then we will consider properties of polynomials whose coefficients

come from fields. Finally, we will end the chapter by using field extensions to

further delve into the structure of finite fields.

Throughout all of our work, it is assumed that the reader has a good knowl-

edge of the standard terms and theorems given in a first-semester course over

group theory. However, with that said, we will explicitly state all results relating

to finite fields and polynomials over fields that are used in the paper. For more

information on any result given in this chapter, refer to Childs[3] and Dummit[4].

1.1 Finite Fields

We begin by formulating the definition of a field in terms of the definition

of a ring.

Definition 1.1: A ring R is a set equipped with the binary operations + and ·
(called addition and multiplication) that satisfies the following axioms:

(1) R is an abelian group under addition.

(2) Multiplication is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R.

(3) Multiplication distributes over addition: for all a, b, c ∈ R,

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.

Note that the additive identity of a ring R will always be denoted by 0, and

the additive inverse of an element a ∈ R will be denoted by −a. Now, we give the

definition of a field.
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Definition 1.2: A field F is a ring that satisfies the following axioms:

(1) F has a nonzero multiplicative identity, i.e., there is an element 1F ∈ F with

1F 6= 0 and 1F · a = a · 1F = a for all a ∈ F .

(2) Every nonzero element a ∈ F has a multiplicative inverse, i.e., there exists an

element c ∈ F with a · c = c · a = 1F . (We will typically denote the element c

by a−1.)

(3) Multiplication is commutative: a · b = b · a for all a, b ∈ F .

We will use F× to denote the set of all nonzero elements of F . The elements

of F× will often be referred to as units. With respect to the first field axiom, we

will generally write 1 in short for 1F , but in cases where it may be unclear whether

1 represents an integer or a field element, we will use the notation 1F . Also, in

regard to the third field axiom, we will typically write ab instead of a · b.
The most commonly studied infinite fields are the complex numbers C, the

real numbers R, and the rational numbers Q. However, we will focus our attention

on fields which have finitely many elements. For every prime number p, the inte-

gers modulo p, usually denoted by Z/pZ, is a field; these are the most commonly

used finite fields. In order to describe the general structure of a finite field, we

require a few more definitions.

Definition 1.3: Let R be a ring. A nonzero element a ∈ R is called a zero divisor

if there exists a nonzero element b ∈ R such that either ab = 0 or ba = 0.

It is not difficult to see that there are no zero divisors in a field. Let a be

a nonzero element of the field F . Suppose there exists a member b ∈ F with

ab = ba = 0. Then b = 1F b = (a−1a)b = a−1(ab) = a−10 = 0. Hence, a is not a

zero divisor.

Next, we define the characteristic of a ring.

Definition 1.4: Let R be a ring with multiplicative identity 1R. The character-

istic of R, denoted char(R), is defined to be the smallest positive integer m such

that m · 1R = 0 if such an m exists, and 0 otherwise.

Infinite fields, such as R and C, have characteristic 0. As we will see in

our first major theorem regarding finite fields, the characteristic of any finite field
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is a prime number. Before giving this theorem, however, we recall the following

standard result from group theory:

If G is a finite abelian group of order n and p is a prime dividing n, then G

contains an element of order p.

Now for the theorem:

Theorem 1.5: Let F be a finite field. Then char(F ) = p for some prime number

p. Moreover, the order of F is pv for some positive integer v.

Proof : Since F is finite, the characteristic of F must be a positive integer.

Assume, by way of contradiction, that char(F ) is not a prime number. By the

definition of a field, 0 6= 1F = 1 · 1F , and so char(F ) 6= 1. Then char(F ) is

composite. Say char(F ) = st, where s and t are positive integers with 0 < s <

char(F ) and 0 < t < char(F ). By the definition of characteristic, s · 1F 6= 0 and

t · 1F 6= 0. Since F has no zero divisors, it follows that (s · 1F )(t · 1F ) 6= 0. But,

this implies

0 = (st) · 1F = (s · 1F )(t · 1F ) 6= 0,

a contradiction. Thus, char(F ) = p for some prime p.

Next, let n be the order of F . Considering F as a group under addition, let

ord(g) denote the order of an element g ∈ F . Since n ≥ 2, there must exist at least

one prime number dividing n. Suppose m is a prime dividing n. Then since F is

a finite abelian group under addition, by the mentioned result from group theory,

there is an element a ∈ F with ord(a) = m. Applying the division algorithm for

integers, we can find integers q and r with p = mq + r and 0 ≤ r < m. Notice

that p · a = p · (1F · a) = (p · 1F ) · a = 0 · a = 0. Now,

0 = p · a

= (mq + r) · a

= (mq) · a+ r · a

= (qm) · a+ r · a

= q(m · a) + r · a

= q · 0 + r · a

= 0 + r · a

= r · a.
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Since r < ord(a), it follows that r = 0. Thus, p = mq, and m divides p. But,

since p is prime and m 6= 1, it must be that m = p. Hence, p is the only prime

divisor of n, which means n = pv for some positive integer v. �

Theorem 1.5 shows us that the order of any finite field is some power of a

prime number. In Section 1.3, we will establish the following related (and remark-

able!) fact:

For every prime number p and positive integer v, up to isomorphism, there

exists a unique finite field of order pv.

Notice that for any element a in a ring R and any integer n, since R is closed

under addition, we have that na ∈ R. Using this observation, we now present a

theorem which will aid us in establishing some important results in later chapters.

Theorem 1.6: Let R be a commutative ring of prime characteristic p. Then for

any elements a, b ∈ R,

(a+ b)p = ap + bp.

Proof : Since R is commutative, we can apply the Binomial Theorem to write

(a+ b)p =

p∑
k=0

(
p

k

)
ap−kbk,

where
(
p
k

)
= p!

k!(p−k)! for each k. Because
(
p
k

)
is an integer, k!(p − k)! divides p!.

Notice that for k ∈ {1, · · · , p−1}, the prime p is a factor of neither k! nor (p−k)!,

and so p and k!(p−k)! are relatively prime integers. Hence, for k ∈ {1, · · · , p−1},
k!(p − k)! divides (p − 1)!, and we can write p! = pjk, where jk = (p−1)!

k!(p−k)! ∈ Z.

Since R has characteristic p, it now follows that

(a+ b)p =

(
p

0

)
ap +

p−1∑
k=1

(pjk)a
p−kbk +

(
p

p

)
bp

= ap +

p−1∑
k=1

0 + bp

= ap + bp. �
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For any integer v, it is important to see that applying Theorem 1.6 repeat-

edly gives that (a + b)p
v

= ap
v

+ bp
v

in R. Theorem 1.6 can always be applied to

finite fields, but we will also require this theorem when dealing with commutative

rings that are not fields and have prime characteristic.

To conclude our introduction to finite fields, let us recall one of the most

famous theorems from number theory. Fermat’s Little Theorem (FLT) says that

if p is a prime number and a is a nonzero element of Z/pZ, then ap−1 = 1 in Z/pZ.

We generalize this result in Theorem 1.7.

Theorem 1.7 (Generalized FLT): Let F be a field of order q. Then aq−1 = 1

for all a ∈ F×.

Proof : Observe that F× is a multiplicative group of order q−1. Then it is a con-

sequence of Lagrange’s Theorem from group theory that aq−1 = 1 for all a ∈ F×. �

Multiplying both sides of the equation in Theorem 1.7 by a gives that aq = a

for all a ∈ F×. In fact, since 0q = 0, we have that aq = a for all a ∈ F . We will

directly cite the Generalized FLT whenever this property of the elements of F is

applied.

In the upcoming section, we begin looking at polynomials over fields.

1.2 Polynomials over Fields

Let F be a field and x an indeterminate. We will use F [x] to denote the set

of all finite sums anx
n + an−1x

n−1 + · · · + a1x + a0, called polynomials, where n

is a nonnegative integer and each ai ∈ F . If an 6= 0, then the polynomial is of

degree n. The polynomial is called monic if an = 1. Notice that F ⊂ F [x]. The

elements of F are called constant polynomials with respect to their membership

in F [x]. We define addition in F [x] to be componentwise:

n∑
i=1

aix
i +

n∑
i=0

bix
i =

n∑
i=1

(ai + bi)x
i,

where some of the ai and bi terms may be 0, so that addition of polynomials

of different degrees is defined. We define multiplication in F [x] by first defining

(axi)(bxj) = abxi+j and then distributing multiplication over addition to get(
n∑
i=0

aix
i

)
·

(
m∑
i=0

bix
i

)
=

n+m∑
k=0

(
k∑
i=0

aibk−i

)
xk.
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For an arbitrary polynomial f(x) ∈ F [x], let deg(f(x)) denote the degree of

f(x). Here are a few straightforward properties of F [x]:

• F [x] is a commutative ring having multiplicative identity 1F and no zero

divisors.

• The characteristic of F [x] is the same as the characteristic of F .

• For nonzero polynomials f(x), g(x) ∈ F [x], deg(f(x)g(x)) = deg(f(x)) +

deg(g(x)).

• The elements of F [x] with multiplicative inverses are precisely the elements

of F×.

We now provide some standard terminology and traditional results for ele-

ments in F [x].

Definition 1.8: Let f(x), g(x) ∈ F [x]. If f(x) = g(x)h(x) for some h(x) ∈ F [x],

then g(x) is said to divide f(x), and we write g(x)|f(x). The polynomial g(x) is

called a factor or divisor of f(x).

Recall from elementary algebra that dividing a polynomial in Q[x] by an-

other (nonzero) polynomial in Q[x] yields a quotient and remainder. This still

holds true over any field.

Theorem 1.9 (Division Algorithm): Let f(x), g(x) ∈ F [x] with g(x) 6= 0.

Then there exist unique polynomials q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x) with r(x) = 0 or deg(r(x)) < deg(g(x)). (∗)

Proof : Let g(x) 6= 0 be fixed. We will prove that for any f(x), there exist

polynomials q(x) and r(x) satisfying (∗). Let deg(f(x)) = m and deg(g(x)) = n.

Then n is fixed, and we must show the necessary polynomials exist for all integers

m.

If m < n, then the choices of q(x) = 0 and r(x) = f(x) satisfy the desired

conditions. For m ≥ n, we proceed by strong induction on m. First, write

f(x) = amx
m+am−1x

m−1+· · ·+a1x+a0 and g(x) = bnx
n+bn−1x

n−1+· · ·+b1x+b0.

Suppose that m = n. Set q(x) = am · b−1m and r(x) = f(x) − q(x)g(x).

Observe that q(x) is well-defined since bm 6= 0 and that the coefficient of the xm

term vanishes in r(x), which means deg(r(x)) = 0 or deg(r(x)) < deg(g(x)). Now

8



clearly we have f(x) = g(x)q(x) + r(x). This takes care of the base case.

For the inductive step, assume polynomials satisfying (∗) exist for all m

with n ≤ m < k, where k is a positive integer. Consider the case of m = k. Set

f0(x) = f(x)−amb−1n xm−ng(x). Notice that the xm term vanishes in f0(x) so that

deg(f0(x)) < k. Then, by the inductive hypothesis, there exist polynomials q0(x)

and r(x) such that

f0(x) = g(x)q0(x) + r(x) with r(x) = 0 or deg(r(x)) < n.

Now, letting q(x) = q0(x) + amb
−1
n xm−n, we get

f(x) = g(x)q(x) + r(x) with r(x) = 0 or deg(r(x)) < n.

So the case of m = k holds. Therefore, by strong induction, there exist

polynomials q(x) and r(x) satisfying (∗) for all m ≥ n.

For uniqueness, suppose the pairs q(x), r(x) and q1(x), r1(x) both satisfy (∗).
Then g(x)q(x) + r(x) = g(x)q1(x) + r1(x), and we get the equation

g(x)(q(x)− q1(x)) = r(x)− r1(x).

If r(x) = r1(x) = 0, then q(x) = q1(x) since g(x) is nonzero. So, assume that

either r(x) 6= 0 or r1(x) 6= 0. This implies that both r(x) and r1(x) have degree

< n. Then r(x)− r1(x) = g(x)(q(x)− q1(x)) clearly has degree < n = deg(g(x)).

Since the degree of the product of two nonzero polynomials is the sum of their

degrees, it must be that q(x)− q1(x) = 0. Thus, q(x) = q1(x) and r(x) = r1(x). �

Let f(x) and g(x) be polynomials over F with g(x) non-constant. We write

the congruence f(x) ≡ h(x) (mod g(x)) for polynomials h(x) ∈ F [x] such that

g(x)|f(x) − h(x). Notice that the Division Algorithm guarantees that there is

a unique polynomial r(x) over F which satisfies f(x) ≡ r(x) (mod g(x)) and

deg(r(x)) < deg(g(x)). The polynomial r(x) is called the least residue of f(x)

mod g(x). Sometimes we will simply write f(x)(mod g(x)) to denote the least

residue.

Since a division algorithm can be established for F [x], it follows that F [x]

has many of the same properties as the integers. This starts to become apparent

when investigating the greatest common divisor of two polynomials.

9



Definition 1.10: The greatest common divisor of polynomials f(x), g(x) ∈ F [x]

with g(x) 6= 0 is the unique monic polynomial d(x) ∈ F [x] satisfying:

(i) d(x)|f(x) and d(x)|g(x), and

(ii) if h(x)|f(x) and h(x)|g(x) for some h(x) ∈ F [x], then h(x)|d(x).

The greatest common divisor of f(x) and g(x) 6= 0 will be denoted by

gcd(f(x), g(x)). Informally speaking, gcd(f(x), g(x)) is the monic polynomial of

largest degree which divides both f(x) and g(x). In the case gcd(f(x), g(x)) = 1,

we say f(x) and g(x) are relatively prime.

Considering the unique polynomials q(x), r(x) ∈ F [x] such that f(x) =

g(x)q(x) + r(x) with r(x) = 0 or deg(r(x)) < deg(g(x)) guaranteed by the Divi-

sion Algorithm, it is easy to see that

• if r(x) = 0, then gcd(f(x), g(x)) = α ·g(x), where α ∈ F is the multiplicative

inverse of the leading coefficient of g(x).

• if r(x) 6= 0, then gcd(f(x), g(x)) = gcd(g(x), r(x)).

This suggests the following iterative algorithm for finding the gcd of f(x) and

g(x), which mirrors the Euclidean Algorithm for integers.

Euclidean Algorithm for Polynomials over F :

(1) Let f0(x) = f(x) and g0(x) = g(x).

(2) Find the unique q(x), r(x) ∈ F [x] such that f0(x) = g0(x)q(x) + r(x) with

r(x) = 0 or deg(r(x)) < deg(g0(x)).

(3) If r(x) = 0, then stop: gcd(f(x), g(x)) = α · g0(x), where α ∈ F is the

multiplicative inverse of the leading coefficient of g0(x).

(4) If r(x) 6= 0, then replace f0(x) by g0(x) and g0(x) by r(x), and go back to (2).

This process does indeed terminate in a finite number of steps, since the degree of

g0(x) decreases each time we cycle through (4). When the algorithm terminates,

notice that we need to multiply the current value for g0(x) by the multiplicative

inverse in F of its leading coefficient in order to meet the requirement that the

gcd be monic.

We apply the Euclidean Algorithm in the upcoming example.
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Example 1.11: Consider the polynomials f(x) = x8+3x7+x6+x5+4x3+3x2+3

and g(x) = x5 + x4 + 3x3 + 4x + 2 in (Z/5Z)[x]. Using polynomial long division,

we find

f(x) = g(x)(x3 + 2x2 + x+ 4) + (4x4 + 2x3 + 2x)

g(x) = (4x4 + 2x3 + 2x)(4x+ 2) + (4x3 + 2x2 + 2)

4x4 + 2x3 + 2x = (4x3 + 2x2 + 2)x+ 0.

Thus, gcd(f(x), g(x)) = 4 · (4x3 + 2x2 + 2) = x3 + 3x2 + 3.

Since a Euclidean Algorithm can be established for F [x], we can formulate

a result that parallels Bézout’s identity for the integers:

Theorem 1.12: Let f(x), g(x) ∈ F [x] with g(x) 6= 0. Then there exist polyno-

mials a(x), b(x) ∈ F [x] such that

gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

Theorem 1.12 can be proven in exactly the same manner as Bézout’s iden-

tity by using the Euclidean Algorithm and backwards substitution. Utilizing this

theorem, we now present a proposition that will be very valuable throughout the

rest of our work.

Proposition 1.13: Let f be a polynomial in F [x]. If g and h are relatively prime

polynomials in F [x], then

gcd(f, gh) = gcd(f, g) · gcd(f, h).

Proof : Let

d0 = gcd(f, gh),

d1 = gcd(f, g),

d2 = gcd(f, h).

By Theorem 1.12, d1 = a1f + b1g and d2 = a2f + b2h for some a1, b1, a2, b2 ∈ F [x].

Multiplying d1 and d2 results in the equality

d1d2 = (a1a2f + a1b2h+ b1a2g)f + (b1b2)gh.

11



Note that d0|f and d0|gh. So d0 divides both terms in the sum on the right hand

side of the above equation, and it follows that d0|d1d2.
Also, since g and h are relatively prime, gcd(g, h) = 1. Hence, applying

Theorem 1.12 again, 1 = a3g + b3h for some a3, b3 ∈ F [x]. Multiplying both sides

of this equation by d0 gives

d0 = a3(d0g) + b3(d0h).

By the definition of greatest common divisor, d1|d0 and d2|d0. Additionally, d1|g
and d2|h. Thus, d1d2|d0g and d1d2|d0h, which implies d1d2|d0. Now since d0 and

d1d2 are both monic polynomials, it must be that d0 = d1d2. �

Theorem 1.12 can also be used to get this significant result:

Theorem 1.14: Let f(x), g(x), h(x) be polynomials in F [x]. If f(x)|g(x)h(x) and

gcd(f(x), g(x)) = 1, then f(x)|h(x).

The strategy of proof for Theorem 1.14 is nearly identical to the strategy

used in the second part of the proof of Proposition 1.13.

Recall that any positive integer can be factored uniquely into a product of

prime numbers. We will see that unique factorization also holds in F [x]. First,

consider the definition:

Definition 1.15: Suppose p(x) is a non-constant polynomial in F [x]. Then p(x)

is called irreducible if whenever p(x) = a(x)b(x) with a(x), b(x) ∈ F [x], either

a(x) ∈ F× or b(x) ∈ F×. Otherwise, p(x) is said to be reducible.

Essentially, a non-constant polynomial in F [x] is irreducible if it cannot be

written as the product of two positive degree polynomials. For instance, the poly-

nomial x+ 1 ∈ (Z/3Z)[x] is irreducible, since x+ 1 = g(x)h(x) surely implies that

either g(x) or h(x) is a unit. On the other hand, x2 + 2 ∈ (Z/3Z)[x] is reducible,

since x2 + 2 = (x+ 1)(x+ 2) over Z/3Z.

Irreducible elements in F [x] carry many of the same properties as prime

numbers. Consider, for example, the upcoming theorem, which extends Euclid’s

Lemma for integers to F [x].

Theorem 1.16: Suppose p(x) is an irreducible element of F [x] and p(x)|g(x)h(x)

for some g(x), h(x) ∈ F [x]. Then either p(x)|g(x) or p(x)|h(x).

12



Proof : Suppose p(x) - g(x). Then, since p(x) is irreducible, gcd(p(x), g(x)) = 1.

By hypothesis, p(x)|g(x)h(x). Thus, by Theorem 1.14, p(x)|h(x). �

Naturally, we get the following corollary.

Corollary 1.17: Suppose p(x) is irreducible and p(x)|g1(x)g2(x) · · · gn(x) over F .

Then p(x)|gi(x) for some i = 1, 2, · · · , n.

Now we are ready to establish unique factorization for F [x].

Theorem 1.18: Every non-constant polynomial in F [x] can be factored into a

product of irreducible polynomials. The factorization is unique up to rearrange-

ment of the irreducibles and multiplication by elements of F×.

Proof : Let S be the set of all non-constant polynomials in F [x] which cannot

be factored into a product of irreducibles. Assume, by way of contradiction,

that S 6= ∅. Let D = {deg(s(x)) : s(x) ∈ S}. Since D is a non-empty set of

positive integers, it follows from the well-ordering principle that D has a least

element, say n. Let p(x) be an element of S with deg(p(x)) = n. Since p(x)

cannot be written as a product of irreducibles, p(x) is clearly not irreducible itself.

Hence, p(x) = g(x)h(x) for some h(x), g(x) ∈ F [x] with 1 ≤ deg(g(x)) < n

and 1 ≤ deg(h(x)) < n. Then g(x), h(x) /∈ S, and so both g(x) and h(x)

can be written as a product of irreducibles. Say g(x) = g1(x)g2(x) · · · gr(x) and

h(x) = h1(x)h2(x) · · ·ht(x), where the gi(x) and hi(x) are irreducibles. Then

p(x) = g1(x)g2(x) · · · gr(x)h1(x)h2(x) · · ·hs(x).

is a product of irreducibles, a contradiction. Therefore, S = ∅.
For uniqueness, suppose

a1(x)a2(x) · · · an(x) = b1(x)b2(x) · · · bm(x), (**)

where the ai(x) and bi(x) are irreducibles. Now, since a1(x)|b1(x)b2(x) · · · bm(x),

by Corollary 1.17, a1(x)|bi(x) for some 1 ≤ i ≤ m. If necessary, we can reindex the

bi(x)’s to get a1(x)|b1(x). Since b1(x) is irreducible, it follows that b1(x) = β1 ·a1(x)

for some β1 ∈ F×. Then dividing both sides of the equation (∗∗) by a1 gives

a2(x)a3(x) · · · an(x) = β1b2(x)b3(x) · · · bm(x).
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Since a2(x)|b2(x)b3(x) · · · bm(x), a2(x)|bi(x) for some 2 ≤ i ≤ m. Reindexing the

bi(x)’s again, if necessary, we may write a2(x)|b2(x). Then a2(x) = β2 · b2(x) for

some β2 ∈ F×. Continuing this process, we get that ai(x) = βi · bi(x), βi ∈ F×,

for each i = 1, 2, · · ·n. In particular, this shows that n ≤ m.

For a contradiction, suppose that n < m and let d = m− n. Now, dividing

both sides of equation (∗∗) by a1(x)a2(x) · · · an(x), we get

1 = (β1 · · · βn) · bn+1(x) · · · bn+d(x).

But, the left hand side of this equation has degree 0, while the right hand side has

positive degree. This is a contradiction. Thus, n = m. �

Let f(x) be a non-constant polynomial in F [x]. Note that for each irreducible

factor g(x) of f(x), g(x) = β · h(x) for some monic irreducible polynomial h(x)

and some β ∈ F×. In view of Theorem 1.18, this suggests that f(x) can be

uniquely factored into the product of a nonzero constant and monic irreducibles.

Collecting repeated monic irreducibles in this factorization, it follows that f(x)

can be written uniquely in the form

f(x) = α · f1(x)k1f2(x)k2 · · · fm(x)km , (#)

where α ∈ F×, the fi(x) are pairwise distinct monic irreducibles, and the ki are

positive integers satisfying ki ≤ kj for i ≤ j. We will call the form (#) the com-

plete factorization of f(x). In particular, if f(x) is monic, then α = 1 in (#).

In Chapters 2 and 3, our primary objective will be to develop algorithms

which can find the complete factorization of an arbitrary polynomial over a finite

field. Before inputting a polynomial into any algorithm, however, we can often

inspect the polynomial’s roots to gain information about its factorization.

Proposition 1.19: Let f(x) ∈ F [x]. Then f(x) has a factor of degree 1 if and

only if f(x) has a root in F , i.e., there exists an α ∈ F such that f(α) = 0.

Proof : Suppose f(x) has a factor of degree 1. Since F is a field, we may assume

the factor is monic and hence is of the form x − α with α ∈ F . Then f(x) =

(x− α)q(x) for some q(x) ∈ F [x], and f(α) = 0 · q(α) = 0.

For the converse, suppose f(α) = 0 for some α ∈ F . By the Division

Algorithm,

f(x) = (x− α)q(x) + r,

14



for some q(x) ∈ F [x] and constant r. Then 0 = f(α) = r, and so (x − α) is a

degree 1 factor of f(x). �

We now use Proposition 1.19 to establish a very useful irreducibility test for

small degree polynomials.

Proposition 1.20: A polynomial of degree 2 or 3 in F [x] is reducible if and only

if it has a root in F .

Proof : A polynomial of degree 2 or 3 is reducible if and only if it has a factor of

degree 1 if and only if it has a root in F . �

This proposition is applied in the upcoming example.

Example 1.21: Consider the polynomial f(x) = x3 + 2x+ 1 ∈ (Z/3Z)[x]. Notice

that

f(0) = 1

f(1) = 1

f(2) = 1.

So f(x) has no root in Z/3Z and hence is irreducible by Proposition 1.20.

We will end our overview of the basic properties of F [x] with a powerful

result known as the Chinese Remainder Theorem. Before giving the theorem,

however, we need this fairly intuitive proposition.

Proposition 1.22: Let f(x), a(x), b(x) ∈ F [x] with a(x) and b(x) relatively

prime. Then a(x)b(x)|f(x) if and only if a(x)|f(x) and b(x)|f(x).

Proof : The first direction of the statement is trivial. For the other direction,

suppose a(x)|f(x) and b(x)|f(x). Then f(x) = a(x)h(x) for some h(x) ∈ F [x],

and b(x)|a(x)h(x). Since gcd(a(x), b(x)) = 1, it now follows from Theorem 1.14

that b(x)|h(x). So, a(x)b(x)|a(x)h(x). That is, a(x)b(x)|f(x). �

Now, we are ready for the theorem.
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Theorem 1.23 (Chinese Remainder Theorem): Let g1(x), g2(x), · · · , gn(x)

be arbitrary polynomials, and m1(x),m2(x), · · · ,mn(x) be non-constant pairwise

relatively prime polynomials in F [x]. Set m(x) = m1(x)m2(x) · · ·mn(x) and let

d = deg(m(x)). Then there exists a unique polynomial r(x) ∈ F [x] with

r(x) ≡ g1(x) (mod m1(x))

r(x) ≡ g2(x) (mod m2(x))

...

r(x) ≡ gn(x) (mod mn(x)),

and deg(r(x)) < d.

Proof : Since mi(x) is relatively prime to mj(x) for all j 6= i, mi(x) is relatively

prime to the product

pi(x) =
∏
j 6=i

mj(x).

Then gcd(mi(x), pi(x)) = 1, and so, by Theorem 1.12, there exist ai(x), bi(x) in

F [x] with

1 = ai(x)mi(x) + bi(x)pi(x).

Observe that bi(x)pi(x) satisfies the congruences

bi(x)pi(x) ≡ 1 (mod mi(x)),

bi(x)pi(x) ≡ 0 (mod mj(x)) for every j 6= i.

Set

f(x) = g1(x)b1(x)p1(x) + g2(x)b2(x)p2(x) + · · ·+ gn(x)bn(x)pn(x).

Then clearly f(x) ≡ gi(x) (mod mi(x)) for each i = 1, 2, · · · , n.

Since m1(x),m2(x), · · · ,mn(x) are pairwise relatively prime, it follows from

Proposition 1.22 that f(x) ≡ h(x) (mod mi(x)) for each i = 1, 2, · · · , n if and

only if f(x) ≡ h(x) (mod m(x)). By the Division Algorithm, there exists a unique

polynomial r(x) with f(x) ≡ r(x) (mod m(x)) and deg(r(x)) < d. Then r(x) is

the unique polynomial of degree less than d satisfying r(x) ≡ gi(x) (mod mi(x))

for each i = 1, 2, · · · , n. �
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The Chinese Remainder Theorem will be applied multiple times in Chapter

2. In particular, the theorem will be very useful in the case that the gi(x)’s in the

statement of theorem are constant polynomials.

1.3 Field Extensions

Here we will delve further into the structure of finite fields by looking at

field extensions. Many of the results in this section can only be proven using

high-powered facts from ring theory. For our purposes, there is little consequence

of stating or investigating such facts. Hence, in order to naturally progress our

work, we will omit quite a few proofs over the course of the section. Most omitted

proofs can be found in Dummit[4], pages 509-545.

Let F be a field and f(x) a polynomial in F [x] of degree n > 0. Consider

the set

(f(x)) = {f(x)g(x) : g(x) ∈ F [x]}.

In ring theory, (f(x)) is called the principal ideal of F [x] generated by f(x). Now,

we equip the (additive) quotient group

F [x]/(f(x)) = {h(x) + (f(x)) : h(x) ∈ F [x]}

with the binary operations

[a(x) + (f(x))] + [b(x) + (f(x))] = [a(x) + b(x)] + (f(x))

and

[a(x) + (f(x))] · [b(x) + (f(x))] = a(x)b(x) + (f(x)).

It is well-known that these operations are well-defined in F [x]/(f(x)), and that,

under these operations, F [x]/(f(x)) is a ring (generally called a quotient ring).

Recall from the properties of quotient groups that h(x) + (f(x)) = g(x) + (f(x))

iff h(x) − g(x) ∈ (f(x)) iff h(x) ≡ g(x) (mod f(x)). By the Division Algo-

rithm, for any h(x) ∈ F [x], there is a unique r(x) with h(x) ≡ r(x) (mod f(x))

and deg(r(x)) < n. Hence, r(x) is the unique polynomial in F [x] satisfying

h(x) + (f(x)) = r(x) + (f(x)) and deg(r(x)) < n. This shows that every ele-

ment of F [x]/(f(x)) is represented by a polynomial in F [x] of degree < n. So,

when referring to the elements of F [x]/(f(x)), we will usually refer to their rep-

resentatives of degree < n in F [x]. Furthermore, we will do computations in
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F [x]/(f(x)) by computing congruences mod f(x). Thus, when we compute the

congruence h(x) ≡ g(x) (mod f(x)), it should be interpreted as the equality

h(x) + (f(x)) = g(x) + (f(x)).

We now present the relationship between quotients rings and irreducible

polynomials.

Proposition 1.24: Let p(x) be an irreducible polynomial over F . Then the quo-

tient ring F [x]/(p(x)) is a field.

We observe that the result of Proposition 1.24 does not hold for reducible

polynomials. To see this, suppose that f(x) is reducible over F . Then f(x) =

a(x)b(x) for some non-constant polynomials a(x) and b(x) of degree < deg(f(x)).

Now, a(x) and b(x) correspond to nonzero elements of F [x]/(f(x)) and satisfy

a(x)b(x) ≡ 0 (mod f(x)). This shows that F [x]/(f(x)) has zero divisors and

hence cannot be a field.

Note that if F and L are fields with F ⊆ L, then we say that F is a subfield

of L. Oftentimes, we only use the term subfield when we find a subset of a given

field which is itself a field. On the other hand, we use the term extension field

when we find a superset of a given field which is itself a field. This is formalized

in the upcoming defintion.

Definition 1.25: If L is a field containing the subfield F , then L is said to be an

extension field (or simply an extension) of F , denoted L : F .

Before proceeding any further, we make a few notes about vector spaces.

When referencing a vector space V over the field F , we may use some of the fol-

lowing terms: basis, dimension, linearly independent, scalar, span, subspace, and

vector. All of these terms, including vector space, have the same meaning as they

do in a first year course in linear algebra. The only difference is that our vectors

come from the arbitrary additive abelian group V rather than coming from Rn

exclusively, and our scalars come from the arbitrary field F rather than coming

from R exclusively. If the reader is unfamiliar with vector spaces and any related

terms, a wealth of information about these concepts is available online and in

standard algebra texts.

We observe that if L : F is some extension of fields, then the multiplication

defined in L makes L into a vector space over F .
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Definition 1.26: The degree of a field extension L : F , denoted [L : F ], is the

dimension of L as a vector space over F . The extension is called finite if [L : F ]

is finite and is called infinite otherwise.

In the next theorem, we give a very important property of extension degrees:

Theorem 1.27: Let F ⊆ K ⊆ L be fields. Then [L : F ] = [L : K][K : F ].

Let F = Z/pZ, with p a prime number, and suppose that L is an extension

of F with [L : F ] = v ∈ Z+. Then since L is a v-dimensional vector space over F ,

there is a subset {l1, l2, · · · , lv} of L that forms a basis for L over F . Hence, each

element l ∈ L can be written uniquely in the form l = a1l1+a2l2+ · · ·+avlv, where

a1, a2, · · · , av ∈ F . Notice that when forming an arbitrary element of L, there are

p choices for each of the ai’s, 1 ≤ i ≤ v. Thus, L has exactly pv elements. This

demonstrates a strategy for finding new finite fields: Starting with Z/pZ, we can

find a finite field of order pv if we can find an extension of Z/pZ that has degree

v.

Naturally, we now ask: is it possible to find extensions of Z/pZ with spec-

ified (finite) degrees? Remarkably, the answer to this question does turn out to

be “yes”. In fact, we often use irreducible polynomials to construct extensions of

a particular degree. To demonstrate how this is done, we start out with a result

that says any irreducible polynomial over a field F has a root in some extension

of F .

Theorem 1.28: Let F be a field and p(x) ∈ F [x] an irreducible polynomial.

Then there is an extension L : F and an element θ ∈ L such that p(θ) = 0.

Proof Idea : Let I = (p(x)) and L = F [x]/I. By Proposition 1.24, L is a field.

Define the map φ : F → L by φ(a) = a+ I. It can be seen that the image of this

map is isomorphic to the field F , i.e., φ(F ) ∼= F . Hence, L contains an isomorphic

copy of F , and so we can think of L as an extension of F . Let θ = x + I, and

suppose p(x) = a0 + a1x+ · · ·+ anx
n ∈ F [x]. Then

p(θ) = (a0 + I) + a1(x+ I) + · · ·+ an(x+ I)n

= (a0 + a1x+ · · ·+ anx
n) + I

= p(x) + I = 0 + I = 0 ∈ L.
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Now, given an irreducible p(x) over F , we know the field L = F/(p(x)) is an

extension of F which contains a root of p(x). The next theorem gives the degree

of the extension L : F as well as a way to explicitly represent L.

Theorem 1.29: Let p(x) be an irreducible polynomial of degree n over the

field F , and let L = F [x]/(p(x)). Let θ = x(mod p(x)) ∈ L. Then the set

{1, θ, θ2, · · · , θn−1} is a basis for L as a vector space over F . Hence, the degree of

the extension L : F is n, and

L = {a0 + a1θ + a2θ
2 + · · ·+ an−1θ

n−1 : a0, a1, a2, · · · , an−1 ∈ F}. (##)

Notice that Theorem 1.29 looks at the specific extension F [x]/(p(x)) of F

and the specific root x(mod p(x)) of p(x) in this extension. It turns out that we

do not have to be so specific; we can get an extension of F identical to (##) by

simply defining an arbitrary root of p(x) in some arbitrary extension of F (note

that Theorem 1.28 guarantees the existence of such a root). Before formally pre-

senting this result, however, we give the following definition.

Definition 1.30: Let L : F be an extension of fields and let α ∈ L. Denote by

F (α) the smallest subfield of L which contains both F and the element α. We call

F (α) the field generated by α over F .

Now, we give the mentioned result.

Theorem 1.31: Let F be a field and p(x) an irreducible polynomial over F . Let

α be a root of p(x) in some extension L of F . Then

F (α) ∼= F [x]/(p(x)).

We apply Theorem 1.31 in the upcoming example.

Example 1.32: Let p(x) = x4 + 2x + 2 ∈ (Z/3Z)[x]. It can be shown that p(x)

has no linear factors or quadratic factors over Z/3Z. So, p(x) must be irreducible.

Now, we let α be an arbitrary root of p(x) in some extension of Z/3Z. Then, it
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follows from Theorem 1.31 that

(Z/3Z)(α) = {a+ bα + cα2 + dα3 : a, b, c ∈ Z/3Z}

is a field with 34 = 81 elements. Furthermore, we can do computations in

(Z/3Z)(α) by using the fact that α is a root of p(x). Hence, we use the fact

that α4 = −2α − 2 = α + 1 over Z/3Z. For instance, we multiply the elements

α + 1 and α3 + 2 as follows:

(α + 1)(α3 + 2) = α4 + α3 + 2α + 2

= (α + 1) + α3 + 2α + 2

= α3.

For a positive integer v, we have established that if there exists an irreducible

polynomial over Z/pZ of degree v, then there exists a corresponding finite field

of order pv, namely (Z/pZ)[x]/(p(x)). However, we have not established that for

every positive integer v, an irreducible polynomial over Z/pZ of degree v actually

exists. So, we have not yet shown there exists a finite field of order pv. To get

this result (as was promised in Section 1.1), we need to look at a specific class

of extension fields called splitting fields. Preceding our look at splitting fields, we

will give a few more results related to roots of polynomials.

Definition 1.33: Let L : F be an extension of fields. The element α ∈ L is said

to be algebraic over F if α is a root of some nonzero polynomial f(x) ∈ F [x], i.e.,

f(α) = 0.

The next proposition gives the relationship between algebraic elements and

irreducible polynomials.

Proposition 1.34: Let L : F be an extension of fields, and let α ∈ L be algebraic

over F . Then there is a unique monic irreducible polynomial mα(x) ∈ F [x] which

has α as a root. Moreover, a polynomial f(x) ∈ F [x] has α as root if and only if

mα(x) divides f(x) in F [x].

Proof : Let g(x) ∈ F [x] be a polynomial of minimal positive degree having α

as root. Multiplying g(x) by a unit in F , we may assume that g(x) is monic.

Now, for a contradiction, suppose that g(x) is reducible. Then g(x) = a(x)b(x)

for some polynomials a(x), b(x) ∈ F [x], both of degree smaller than the degree of
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g(x). Then 0 = g(α) = a(α)b(α) in L. Since L has no zero divisors, it follows

that a(α) = 0 or b(α) = 0, which contradicts the minimality of the degree of g(x).

Thus, g(x) is irreducible.

Next, suppose that f(x) ∈ F [x] has α as a root. By the Division Algorithm,

there are polynomials q(x), r(x) ∈ F [x] such that

f(x) = g(x)q(x) + r(x) with r(x) = 0 or deg(r(x)) < deg(g(x)).

Then 0 = f(α) = g(α)q(α) + r(α) = 0 + r(α) = r(α) in L. Now, if r(x) 6= 0, then

r(x) is a non-constant polynomial of degree less than g(x) having α as root, which

contradicts the minimality of the degree of g(x). Hence, r(x) = 0, and it follows

that g(x) divides f(x) in F [x].

We have established that g(x) divides any polynomial over F which has α as

root. In particular, g(x) would divide any other monic irreducible polynomial over

F having α has a root. So, it immediately follows that mα(x) = g(x) is unique.

�

Definition 1.35 The polynomial mα(x) in Proposition 1.34 is called the minimal

polynomial for α over F .

We now turn our attention to splitting fields.

Definition 1.36: Let F be a field and f(x) a polynomial of degree n > 0 in F [x].

An extension K of F is called a splitting field for f(x) (over F ) if

(i) f(x) factors completely into linear factors (or splits completely) in K[x], i.e.,

f(x) = c(x− a1)(x− a2) · · · (x− an) for some c, a1, a2, · · · , an ∈ K, and

(ii) f(x) does not factor completely into linear factors over any proper subfield

of K containing F .

Here is the major theorem regarding splitting fields.

Theorem 1.37: Let F be a field and f(x) ∈ F [x]. Then f(x) has a splitting field

over F which is unique up to isomorphism.

Often, when we are looking at a polynomial f(x) over its splitting field K,

we are interested in whether f(x) has any duplicate linear factors over K. Intu-

itively, we say that α ∈ K is a multiple root of f(x) if (x− α)2|f(x) in K[x].
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In order to test f(x) for multiple roots, and hence test for duplicate linear

factors, we typically inspect the value of its derivative.

Definition 1.38: The derivative of the polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ K[x]

is defined to be the polynomial

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 2a2x+ a1 ∈ K[x].

Notice that the definition of the derivative of a polynomial over an arbitrary

field is purely algebraic. Hence, the analytic notion of a limit plays no part in

this definition of a derivative. The reason for this is that limits, which are con-

tinuous operations, cannot be taken in certain fields. With that said, the same

differentiation formulas given in a first-year single variable Calculus course still

hold true. For example, we get the following formulas for differentiating a sum

and a product:

• (f + g)′(x) = f ′(x) + g′(x)

• (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

We now show how derivatives can be used to test for multiple roots.

Proposition 1.39: Let f(x) be a polynomial over the field K. If f ′(x) has no

root in K, then f(x) has no multiple root in K.

Proof: Suppose that f(x) has a multiple root at α ∈ K. Then f(x) = (x−α)2h(x)

for some h(x) ∈ K[x]. Now, by the formula for differentiating a product,

f ′(x) = 2(x− α)h(x) + (x− α)2h′(x)

= (x− α)(2h(x) + (x− α)h′(x)).

Thus, α is a root of f ′(x). �

In the next example, we use splitting fields to demonstrate the existence and

uniqueness of a particular finite field.
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Example 1.40: Consider x4 − x ∈ (Z/2Z)[x]. Notice that

x4 − x = x(x− 1)(x2 + x+ 1).

Since x2 + x+ 1 is irreducible over Z/2Z, it follows that Z/2Z is not the splitting

field for x4 − x. Now, let α be an arbitrary root of x2 + x + 1 in some extension

of Z/2Z, and consider the field

(Z/2Z)(α) = {a+ bα : a, b ∈ Z/2Z}.

Notice that

x4 − x = x(x− 1)(x− α)(x− (1 + α)).

Clearly x4 − x does not split completely over any proper subfield of (Z/2Z)(α).

Hence, (Z/2Z)(α) is the splitting field for x4 − x over Z/2Z.

Moreover, we note that (Z/2Z)(α) is a finite field containing 4 elements. Suppose

that F is another finite field of order 4. Then it follows from Theorem 1.5 that

F has characteristic 2 and hence must contain an isomorphic copy of Z/2Z as a

subfield. Furthermore, by the Generalized FLT, each element a ∈ F is a root of the

polynomial x4− x in F[x]. Correspondingly, x4− x has four distinct linear factors

in F[x]. Since x4 − x is also of degree 4, it must be that F is a splitting field for

x4−x over Z/2Z. By Theorem 1.37, splitting fields are unique up to isomorphism,

and so we have that (Z/2Z)(α) ∼= F. This shows that, up to isomorphism, there

exists a unique finite field of order 4.

With the strategy of Example 1.40 in mind, we prove there exists a unique

finite field of any prime power order.

Theorem 1.41: For every prime number p and positive integer v, up to isomor-

phism, there exists a unique finite field of order pv.

Proof: Let q = pv, and consider the polynomial xq−x ∈ (Z/pZ)[x]. Let K be the

splitting field for xq − x over Z/pZ. Since K has Z/pZ as a subfield, K must have

characteristic p. So, the derivative of xq − x over K is qxq−1 − 1 = −1. Since the

derivative of xq−x has no roots, by Proposition 1.38, xq−x has no multiple roots

in K. Because K is also the splitting field for xq − x, it follows that xq − x has

exactly q distinct roots in K. Let A be the set containing these q distinct roots,

i.e., A = {a ∈ K : aq = a}. We note the following properties of A:
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• For any a, b ∈ A, it follows from Theorem 1.6 that (a− b)q = aq− bq = a− b,
and so a − b ∈ A. This shows that A is closed under addition and additive

inverses;

• For any a, b ∈ A with b 6= 0, since multiplication is commutative in the field

K, (ab−1)q = aq(b−1)q = aq(bq)−1 = ab−1, and so ab−1 ∈ A. This establishes

that A is closed under multiplication and multiplicative inverses.

Since A inherits all of the other properties of a field from K, it follows that A is a

subfield of K. Clearly A has characteristic p, and so contains Z/pZ. Furthermore,

xq−x splits completely in A, since A contains all of its roots. Hence, the splitting

field of xq − x over Z/pZ is a subfield of A; that is, K is a subfield of A. Thus,

K = A, and K is a finite field of order q.

For uniqueness, suppose that F is a finite field with q elements. Then, by

Theorem 1.5, F has characteristic p and hence contains Z/pZ. Now, it follows

from the Generalized FLT that aq − a = 0 for all elements a ∈ F. So each of the

q elements of F is a root of xq − x. Correspondingly, xq − x has q distinct linear

factors in F[x]. Since xq−x also has degree q, it must be that F is a splitting field

for xq−x over Z/pZ. Since splitting fields are unique up to isomorphism, we have

that K ∼= F. Thus, up to isomorphism, K is the unique finite field of order q. �

Observe that the proof of Theorem 1.41 shows us that the splitting field for

the polynomial xq − x over Z/pZ is precisely the unique field of order q = pv .

Throughout the remainder of our work, we will denote the unique finite field of

order q = pv by Fq. Specifically, in the case where v = 1, we will use the notation

Fp in place of Z/pZ.

The final results of this section give a few additional properties of Fq.

Proposition 1.42: The multiplicative group of nonzero elements of Fq, denoted

(Fq)×, is cyclic.

Proof: Since (F2)
× contains only one element, it is clearly cyclic. So, we may

assume that q ≥ 3. Set r = q− 1, the order of (Fq)×, and let r = p1
w1p2

w2 · · · pkwk

be its factorization into powers of distinct primes. We will denote the order of an

element a in the multiplicative group (Fq)× by ord(a). Recall from group theory

that if m is a positive integer with am = 1, then ord(a)|m. In particular, since

ar = 1, we have that ord(a)|r.
Now, for each 1 ≤ i ≤ k, the polynomial xr/pi − 1 has at most r/pi roots in

Fq. Then since r/pi < r, there exists an element ai ∈ (Fq)× which is not a root

of xr/pi − 1. Set bi = ai
r/p

wi
i . Then bi

pi
wi

= ai
r = 1, and it follows that ord(bi)
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divides pi
wi . But,

bi
pi

wi−1

= ai
r/pi 6= 1,

which shows that ord(bi) cannot be a proper divisor of pi
wi . So it must that

ord(bi) = pi
wi .

Let b = b1b2 · · · bk ∈ (Fq)×. Assume, by way of contradiction, that ord(b) 6= r.

Then ord(b) is a proper divisor of r and hence must divide r/pi for some 1 ≤ i ≤ k.

Without loss of generality, assume that ord(b) divides r/p1. Then

1 = br/p1 = b1
r/p1b2

r/p1 · · · bkr/p1 .

Notice that for 2 ≤ i ≤ k, ord(bi) divides r/p1, which implies bi
r/p1 = 1. This

forces b1
r/p1 = 1, and it follows that ord(b1) divides r/p1. But, this contradicts

that fact that ord(b1) = p1
w1 . Thus, ord(b) = r = q − 1, and b is a generator for

(Fq)×. This shows that (Fq)× is cyclic. �

We can use Proposition 1.42 to establish an important result related to ir-

reducible polynomials in Fq[x].

Proposition 1.43: For every positive integer n, there exists an irreducible poly-

nomial of degree n over Fq.

Proof: Let α be a generator of the cyclic group (Fqn)×. Then clearly Fqn = Fq(α).

Note that since α is a root of the polynomial xq
n − x ∈ Fq[x], α is algebraic over

Fq. Now, consider the minimal polynomial, mα(x), of α over Fq. By definition,

mα(x) is irreducible. Suppose that deg(mα(x)) = d. Then Fq[x]/(mα(x)) ∼= Fqd .

But, by Theorem 1.31,

Fq[x]/(mα(x)) ∼= Fq(α) = Fqn .

Thus, qd = qn, and d = n. �

In particular, for any prime number p and positive integer v, Proposition

1.43 says that there exists an irreducible polynomial, say f(x), over Fp of degree

v. Then Fp[x]/(f(x)) ∼= Fq, where q = pv. Now, if f(x) is known, then we can use

Theorem 1.29 to do computations in Fp[x]/(f(x)), which is equivalent to doing

computations in the finite field Fq. The hard part is actually finding the irreducible

polynomial f(x). In Chapter 3, we will use results relating to our factoring algo-

rithms to develop a process for finding irreducible polynomials of any given degree
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over any finite field. In particular, the significance of being able to find irreducible

polynomials of any degree over Fp is that we can do computations in any finite

field of our choosing.

Now, in the following chapters, we use the theory that we have built to

generate factoring algorithms for polynomials over Fq.
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Chapter 2

Berlekamp’s Method

In this chapter, we will develop a deterministic algorithm for factoring poly-

nomials over the finite field Fq, where q = pv with p a prime number and v a posi-

tive integer. The general factoring method we will present is due to Berlekamp[1]

and will provide us with a way to completely factor any polynomial over Fq. Before

generating the main algorithm, however, we offer an optional pre-processing stage

called Square-Free Factorization (SFF). As mentioned in our introduction, factor-

ing algorithms generally run much better when the input polynomial is square-free.

This is so much the case that some authors actually formulate condensed algo-

rithms that are restricted to square-free inputs. While no algorithm in this paper

has such a restriction, we often recommend that SFF be employed as the initial

factoring step.

We note that all algorithms we present will only accept input polynomials

which are monic. We do not lose any generality with this restriction. For example,

if f(x) =
∑n

i=0 aix
i is a polynomial over Fq of degree n with an 6= 1, we start by

factoring the monic polynomial a−1n f(x). Then multiplying the factorization of

a−1n f(x) by an will give the factorization of f(x).

2.1 Square-Free Factorization

Loosely speaking, a polynomial f(x) ∈ Fq[x] is square-free if it has no re-

peated non-constant factors. We give the formal definition:

Definition 2.1: A polynomial f(x) ∈ Fq[x] is square-free if g(x)2 - f(x) for each

non-constant polynomial g(x) ∈ Fq[x].

The conventional way to determine whether f(x) is square-free is to inspect

the value of its derivative, f ′(x). The major relationship between f(x) and f ′(x)

is given in the upcoming theorem.

28



Theorem 2.2: If f(x) is a polynomial over Fq with gcd(f(x), f ′(x)) = 1, then

f(x) is square-free.

Proof : Suppose f(x) is not square-free. Then there is a non-constant polynomial

g(x) ∈ Fq[x] such that g(x)2 divides f(x). So, f(x) = g(x)2h(x) for some h(x) ∈
Fq[x], and applying the formula for differentiating a product, we have

f ′(x) = 2g(x)g′(x) · h(x) + g(x)2 · h′(x).

Clearly g(x) is a common divisor of f(x) and f ′(x). Thus, gcd(f(x), f ′(x)) 6= 1. �

If f(x) is a polynomial over Fq that is not square-free, then, by Theorem

2.2, gcd(f(x), f ′(x)) 6= 1. But, is it necessarily the case that gcd(f(x), f ′(x)) is a

nontrivial factor of f(x)? The answer here is ”no”; it may very well be the case

that gcd(f(x), f ′(x)) = f(x).

Consider, for example, the polynomial f(x) = x14 + 3x7 + 2 over F7. Then

f ′(x) = 14x13 + 21x6 = 0, and hence gcd(f(x), f ′(x)) = f(x). Notice here that

each exponent on x in f(x) is a multiple of 7, which is the characteristic of F7.

This observation is generalized in the following Theorem.

Theorem 2.3: Let f(x) ∈ Fq[x] be a polynomial of degree n > 0 such that

gcd(f(x), f ′(x)) = f(x). Then there exists a polynomial g(x) ∈ Fq[x] with

f(x) = g(xp). Furthermore, if g(x) =
∑
j

bjx
j, then f(x) =

(∑
j

bp
v−1

j xj

)p

so

that f(x)
1
p =

∑
j

bp
v−1

j xj.

Proof : Since deg(f ′(x)) < deg(f(x)) and gcd(f(x), f ′(x)) = f(x), it must be that

f ′(x) = 0. Suppose f(x) has summation representation f(x) =
∑n

i=0 aix
i, where

some of the ai values may be zero. Then f ′(x) =
∑n

i=1 iaix
i−1, and hence iai = 0

in Fq for all i. Since Fq has characteristic p, it now follows that each i ∈ {1, · · · , n}
with ai 6= 0 is some multiple p. Because f(x) has degree n, observe, in particular,

that n is some multiple of p. Let g(x) =
∑n/p

j=0 bjx
j, where bj = apj for each j.

Then clearly f(x) = g(xp). Moreover, applying Theorem 1.6 and the Generalized

FLT,  n/p∑
j=0

bp
v−1

j xj

p

=

n/p∑
j=0

bp
v

j x
jp

=

n/p∑
j=0

bqj(x
p)j
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=

n/p∑
j=0

bj(x
p)j

= g(xp)

= f(x). �

We will now turn our attention to finding the square-free factorization of a

non-constant monic polynomial f(x) ∈ Fq[x]. To begin, note that since we can

combine irreducibles that are raised to the same power in the complete factor-

ization of f(x), there exist unique pairs (gi(x), si), 1 ≤ i ≤ r, with the following

properties:

• f(x) =
r∏
i=1

gi(x)si

• each gi(x) is a square-free, non-constant polynomial over Fq

• the gi(x) are pairwise relatively prime

• si < sj for i < j.

Observe that each gi(x) is the product of all distinct irreducible factors h(x) of

f(x) with h(x)si |f(x) and h(x)si+1 - f(x).

The goal of SFF is to identify the pairs (gi(x), si). To accomplish this goal,

we need to consider two scenarios.

Scenario 1: In this scenario, we suppose gcd(f(x), f ′(x)) 6= f(x). First, notice

that

f ′(x) =
r∑
i=1

[(sigi(x)si−1g′i(x)) ·
∏

1≤j≤r
j 6=i

gj(x)sj ].

Now, for each i with si 6≡ 0 (mod p), gcd(gi(x)si , f ′(x)) = gi(x)si−1. On the other

hand, for each i with si ≡ 0 (mod p), gcd(gi(x)si , f ′(x)) = gi(x)si . Since the gi(x)si

are pairwise relatively prime, we can apply Proposition 1.13 inductively to get

gcd(f(x), f ′(x)) =
r∏
i=1

gcd(gi(x)si , f ′(x))

=
∏

1≤i≤r
si≡0(p)

gi(x)si ·
∏

1≤i≤r
si 6≡0(p)

gi(x)si−1 .
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Next, set

d(x) =
f(x)

gcd(f(x), f ′(x))
=

∏
1≤i≤r
si 6≡0(p)

gi(x).

Observe that since gcd(f(x), f ′(x)) 6= f(x), we have that d(x) 6= 1. We can now

begin a process for identifying the pairs (gi(x), si) for i with si 6≡ 0 (mod p). Let

f1(x) = gcd(f(x), f ′(x))

h1(x) = gcd(f1(x), d(x))

m1(x) = d(x)/h1(x).

If s1 = 1, then clearly m1(x) = g1(x), and we get the pair (g1(x), 1). Otherwise

m1(x) = 1. Regardless, we go on to compute

f2(x) = f1(x)/h1(x)

h2(x) = gcd(f2(x), h1(x))

m2(x) = h1(x)/h2(x).

If 2 ∈ {si : 1 ≤ i ≤ r, si 6≡ 0(mod p)}, then m2(x) = gi(x) with i = 1 or i = 2

(depending on whether s1 = 1 or s1 6= 1), and we get the pair (gi(x), 2). Otherwise

m2(x) = 1. Regardless, we go on to compute

f3(x) = f2(x)/h2(x)

h3(x) = gcd(f3(x), h2(x))

m3(x) = h2(x)/h3(x),

and m3(x) either gives the pair (gi(x), 3) for some i ∈ {1, 2, 3} or m3(x) = 1.

Continuing on, in general, for the kth step we get

fk(x) = fk−1(x)/hk−1(x)

hk(x) = gcd(fk(x), hk−1(x))

mk(x) = hk−1(x)/hk(x),

where 1 < k ≤ sr. If k ∈ {si : 1 ≤ i ≤ r, si 6≡ 0(mod p)}, then mk(x) = gi(x) for

some i ∈ {1, · · · , k} , and we get the pair (gi(x), k). Otherwise mk(x) = 1.

The process terminates when we reach a k value for which hk(x) = 1. By

the end of the process, we will have necessarily collected the pairs (gi(x), si) for

all i values with si 6≡ 0 (mod p).
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Suppose k0 is the largest number in {si : 1 ≤ i ≤ r, si 6≡ 0 (mod p)}. Then

in step k0, we get hk0(x) = 1, and the process terminates. Our remaining task is

to find the pairs (gi(x), si) for i values with si ≡ 0 (mod p). To accomplish this,

we need to find the SFF of the polynomial

fk0(x) =
gcd(f(x), f ′(x))∏
1≤i≤r
si 6≡0(p)

gi(x)si−1
.

If {i : si ≡ 0 (mod p)} = ∅, then fk0(x) = 1, and there is nothing left to do.

However, if {i : si ≡ 0 (mod p)} 6= ∅, then we must handle the polynomial

fk0(x) =
∏

1≤i≤r
si≡0(p)

gi(x)si ,

whose derivative is 0 over Fq. How we go about the SFF of such a polynomial is

described in the upcoming scenario.

Scenario 2: Here we suppose that gcd(f(x), f ′(x)) = f(x), which occurs precisely

when f ′(x) = 0. By Theorem 2.3, f(x) is a pth power. So, we can compute

z1(x) = (f(x))
1
p , the pth root of f(x). However, it is possible that z1(x) has a

derivative of 0 and hence is another pth power. In such a situation, we would need

to compute z2(x) = z1(x)
1
p . So, we continue computing pth roots until we get

a polynomial whose derivative is nonzero. Say it takes w pth root computations

to get a polynomial with a nonzero derivative. Then we need to consider two

subcases for zw(x):

(1) If gcd(zw(x), z′w(x)) = 1, then zw(x) is square-free, and zw(x)p
w

will give us

the SFF of f(x).

(2) If gcd(zw(x), z′w(x)) 6= 1, then we enter zw(x) into the process described in

scenario 1 to begin finding the SFF of zw(x). Once the SFF of zw(x) is found,

we raise zw(x) to the pw power in order to obtain the SFF of f(x).

Next we offer an iterative algorithm, developed by Shoup[6], that condenses

the general strategy we have developed for SFF. Note that the algorithm takes as

input a non-constant monic polynomial f ∈ Fq[x].
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SFF Algorithm over Fq:
k ← 1

repeat

j ← 1, d← f/gcd(f, f ′)

repeat

f ← f/d, h← gcd(f, d), m← d/h

if m 6= 1, then

output (m, jk)

end if

d← h, j ← j + 1

until d = 1

if f 6= 1, then

f ← f
1
p , s← ps

end if

until f = 1

The SFF algorithm is equivalent to the process we developed earlier for SFF

and hence outputs the desired pairs (gi(x), si). In the upcoming example, we find

the SFF of a specific polynomial over F5.

Example 2.4: Consider f(x) = x13 +3x10 +3x8 +2x6 +x5 +2x3 +2x+3 ∈ F5[x].

First, we compute

f ′(x) = 3x12 + 4x7 + 2x5 + x2 + 2.

Using the Euclidean Algorithm, we find

gcd(f(x), f ′(x)) = x8 + 4x7 + x5 + x3 + 4x2 + 1.

Since gcd(f(x), f ′(x)) 6= f(x), we enter the process described in Scenario 1. Set

d(x) =
f(x)

gcd(f(x), f ′(x))
= x5 + x4 + x3 + 3x2 + 2x+ 3.

For the first step, we have

f1(x) = gcd(f(x), f ′(x))

h1(x) = gcd(f1(x), d(x)) = x3 + 4x2 + 1

m1(x) = d(x)/h1(x) = x2 + 2x+ 3.
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Thus, we get the pair (x2 + 2x+ 3, 1). Now, for the next step, we have

f2(x) = f1(x)/h1(x) = x5 + 1

h2(x) = gcd(f2(x), h1(x)) = 1

m2(x) = h1(x)/h2(x) = x3 + 4x2 + 1.

This gives the pair (x3 + 4x2 + 1, 2). Since h2(x) = 1, the process terminates,

and we are left with the task of finding the SFF of f2(x) = x5 + 1. For this, we

enter Scenario 2. Applying Theorem 2.3, we see that f2(x) = (x + 1)5, and so

(f2(x))
1
5 = x + 1. Now since x + 1 is square-free, f2(x) = (x + 1)5 is the SFF of

f2(x). With respect to f(x), this gives us the pair (x+ 1, 5). Thus,

f(x) = (x2 + 2x+ 3)(x3 + 4x2 + 1)2(x+ 1)5

is the SFF of f(x).

Note that this is not the complete factorization of f(x) into irreducibles. In

order to find the complete factorization, we need to write the square-free factors

x2+2x+3, x3+4x2+1, and x+1 as products of irreducibles. Clearly x+1 is itself

irreducible. Since x2 + 2x + 3 has no roots in F5, it is also irreducible. However,

x3 +4x2 +1 has a root at 2, and it turns out that x3 +4x2 +1 = (x+3)(x2 +x+2)

is the complete factorization of this polynomial. Hence,

f(x) = (x2 + 2x+ 3)(x+ 3)2(x2 + x+ 2)2(x+ 1)5

is the complete factorization of f(x) over F5.

In Example 2.4, SFF alone nearly yielded a complete factorization of the

given polynomial. This will not always be the case. When a polynomial has many

distinct irreducible factors raised to the same power in its complete factorization,

we will surely require the algorithm in the upcoming section to separate these

irreducibles. With that said, however, for non-square-free high degree polynomials

with few distinct irreducible factors, like the one in Example 2.4, SFF is a very

powerful factoring tool.

To conclude this section, we look at polynomials which are known to be

powers of a single irreducible. While our SFF process can find the complete

factorization of such polynomials, it requires more work than is actually needed;

we will provide a simpler factoring strategy. Suppose it is known that f(x) is the

power of a single irreducible. Then f(x) = g(x)s for some irreducible g(x) and

some positive integer s. In seeking to identify g(x) and s, we consider two cases:
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(i) Suppose f ′(x) 6= 0. Then g(x) =
f(x)

gcd(f(x), f ′(x))
, and s =

deg(f(x))

deg(g(x))
.

(ii) Suppose f ′(x) = 0. Then f(x) is a pth power, and s = kpw for some positive

integers k and w with k 6≡ 0 (mod p). Now, we take pth roots until we

obtain a polynomial, say h(x), which has a nonzero derivative. The number

of pth roots taken gives the value of w. Since f(x) = h(x)p
w
, it follows that

h(x) = g(x)k. So we use the strategy described in case (i) above on h(x) to

determine g(x) and k.

In Example 2.5, we utilize this method.

Example 2.5: Given that f(x) = x42+2x35+2x28+3x21+2x14+2x7+1 ∈ F7[x] can

be expressed as the power of a single irreducible, we find the complete factorization

of f(x). It is easily seen that f ′(x) = 0. So we calculate the 7th root

h(x) = f(x)
1
7 = x6 + 2x5 + 2x4 + 3x3 + 2x2 + 2x+ 1.

Now

h′(x) = 6x5 + 3x4 + x3 + 2x2 + 4x+ 2 6= 1.

Then we compute

gcd(h(x), h′(x)) = x4 + 6x3 + 4x2 + 6x+ 1

and

d(x) =
h(x)

gcd(h(x), h′(x))
= x2 + 3x+ 1.

Notice that (deg(h(x)))/(deg(d(x))) = 3. So h(x) = (x2 + 3x + 1)3, and we get

f(x) = (x2 + 3x+ 1)3·7 = (x2 + 3x+ 1)21, which is the desired factorization.

The reader may be wondering: Under what circumstances might we know

a polynomial is the power of a single irreducible before finding its factorization?

Well, in the upcoming section, our General Factoring Algorithm will output poly-

nomials of just this form. We will require the method of Example 2.5 in conjunc-

tion with our General Factoring Algorithm to have a complete factoring process

over Fq.

35



2.2 The General Factoring Algorithm

We will now use the method of Berlekamp[1] to develop our first large-scale

factoring algorithm. This method of factoring is deterministic, and the algorithm

presented here will have the ability to decompose any polynomial over Fq into pair-

wise relatively prime factors so that each factor can be expressed as the power of

a single irreducible. After applying the algorithm to a polynomial, we will require

the method of factoring powers of irreducibles that was presented in the previous

section to find the complete factorization of the polynomial. This will be the only

technique in our factoring process that is independent of the algorithm itself.

Berlekamp’s method relies on polynomial long division and solving systems

of equations using matrices. In particular, the efficiency of the algorithm rests

on the efficiency of gcd computations using the Euclidean Algorithm and the effi-

ciency of finding the reduced row echelon form of matrices with entries in Fq.
Throughout this section, let f(x) ∈ Fq[x] be a non-constant monic polyno-

mial of degree n with complete factorization f(x) = f1(x)k1f2(x)k2 · · · fm(x)km ,

where k1, k2, ..., km are positive integers and f1(x), f2(x), ..., fm(x) are distinct

monic irreducibles.

Our goal is to generate an algorithm for determining the factors fi(x)ki . To

accomplish this, we need to investigate polynomials g(x) ∈ Fq[x] of degree < n

with the property that f(x) divides g(x)q−g(x). The following proposition begins

to lay the framework for how such polynomials can be used as factoring tools.

Proposition 2.6: Let g(x) = b0 + b1x+ b2x
2 + · · ·+ bdx

d ∈ Fq[x] be a polynomial

of degree d < n. Let R(h(x)) denote the unique remainder of h(x) after division

by f(x). The following are equivalent.

(a) f(x) divides the product
∏

s∈Fq
(g(x)− s).

(b) R(g(xq)) = g(x).

(c) For each i = 1, 2, ...,m, there is a unique si ∈ Fq with g(x) ≡ si (mod fi(x)ki).

Proof : Applying Theorem 1.6 and the Generalized FLT, notice

g(x)q = (b0 + b1x+ b2x
2 + · · ·+ bdx

d)q

= bq0 + bq1x
q + bq2x

2q + · · ·+ bqdx
dq

= b0 + b1x
q + b2x

2q + · · ·+ bdx
dq

= g(xq).
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Now, by the definition of R(g(xq)) = R(g(x)q), we have that

g(x)q = f(x)q(x) +R(g(xq))

for some q(x) ∈ Fq[x]. Notice that f(x) divides

g(x)q − g(x) = f(x)q(x)− (R(g(xq))− g(x))

if and only if f(x) divides R(g(xq))− g(x). By the Division Algorithm,

R(g(xq)) < n = deg(f(x)). Since we also have deg(g(x)) < n, it follows that

deg[R(g(xq))− g(x)] < n.

Thus, f(x) divides R(g(xq))− g(x) iff R(g(xq))− g(x) = 0.

Recall that the polynomial uq − u has a root at each s ∈ Fq. So, uq − u

factors as

uq − u =
∏
s∈Fq

(u− s).

Setting u = g(x) gives

g(x)q − g(x) =
∏
s∈Fq

(g(x)− s).

Thus, f(x) divides
∏

s∈Fq
(g(x)− s) iff R(g(x)q) = g(x). This shows that (a) and

(b) are equivalent.

Suppose that f(x) divides
∏

s∈Fq
(g(x) − s). Then for each i = 1, 2, · · · ,m,

both fi(x)ki and fi(x) divide
∏

s∈Fq
(g(x)− s). Since fi(x) is irreducible, it follows

from Corollary 1.17 that fi(x)|g(x)− si for some si ∈ Fq. Now, if fi(x)ki does not

divide g(x)−si, then it must be that fi(x) also divides g(x)−si0 for some si0 ∈ Fq
with si0 6= si. However, this cannot be the case, since g(x) − si and g(x) − si0

are relatively prime. So, fi(x)ki |g(x) − si, and hence g(x) ≡ si (mod fi(x)ki).

Furthermore, this si is unique due to the observation that g(x)− si and g(x)− si0
are relatively prime for si 6= si0 .

Next, suppose that for each i = 1, 2, · · · ,m, there is an si ∈ Fq such

that g(x) ≡ si (mod fi(x)ki). Then clearly for each i = 1, 2, · · · ,m, fi(x)ki di-

vides
∏

s∈Fq
(g(x)− s). Since f1(x)k1 , f2(x)k2 , · · · , fm(x)km are relatively prime, it

now follows from Proposition 1.22 that f1(x)k1f2(x)k2 · · · fm(x)km = f(x) divides∏
s∈Fq

(g(x)− s).
Thus, (a) and (c) are equivalent. �
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In the upcoming theorem, Proposition 2.6 will be used to show that the set

V = {g(x) ∈ Fq[x] : deg(g(x)) < n and g(x)q ≡ g(x) (mod f(x))} is a vector

space over Fq whose dimension is equivalent to the number of distinct irreducible

factors in the complete factorization of f(x).

Theorem 2.7: The set V is a vector space over Fq of dimension m.

Proof : To show V is a vector space over Fq, it needs only to be shown that V

is a subspace of Fq[x]. Hence, we must show that V is non-empty, closed under

addition, and satisfies tV ⊆ V for each t ∈ Fq. Notice that 0q ≡ 0 (mod f(x)). So

0 ∈ V , and V 6= ∅. Let g(x), h(x) ∈ V and t ∈ Fq. Then g(x)q ≡ g(x) (mod f(x))

and h(x)q ≡ h(x) (mod f(x)). Now, applying Theorem 1.6 and the Generalized

FLT, we get

[(g + h)(x)]q = [g(x) + h(x)]q

= g(x)q + h(x)q

≡ g(x) + h(x) (mod f(x))

≡ (g + h)(x) (mod f(x))

and

[(tg)(x)]p = [tg(x)]q

= tq · g(x)q

= tg(x)q

≡ tg(x) (mod f(x))

≡ (tg)(x) (mod f(x)).

Thus, (g + h)(x), (tg)(x) ∈ V . This shows that V is a subspace of Fq[x].

Let S = {(s1, s2, · · · , sm) : si ∈ Fq}. Now, construct a one-to-one correspondence

between V and S as follows.

Let g(x) ∈ V . Then f(x) divides g(x)q − g(x) =
∏

s∈Fq
(g(x) − s). By

Proposition 2.6, for each i = 1, 2, · · · ,m, there exists a unique si ∈ Fq with

g(x) ≡ si (mod fi(x)ki). To g(x) correspond the unique m-tuple (s1, s2, · · · , sm).

Next, establish the inverse map.

Let (s1, s2, · · · , sm) ∈ S. Since f1(x)k1 , f2(x)k2 , · · · , fm(x)km are pairwise

relatively prime, by the Chinese Remainder Theorem (Theorem 1.23), there is a

unique polynomial g(x) ∈ Fq[x] of degree < n with g(x) ≡ si (mod fi(x)ki) for
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each i = 1, 2, · · · ,m. Now, by Proposition 2.6, f(x) divides
∏

s∈Fq
(g(x) − s) =

g(x)q − g(x). To (s1, s2, · · · , sm) ∈ S correspond the unique element g(x) ∈ V .

Thus, there is a one-to-one correspondence between V and S. Since S is a

vector space over Fq of dimension m, S has qm elements. Due to the one-to-one

correspondence between V and S, it follows that V also has qm elements.

Suppose now that V has dimension w over Fq. Then V must have qw ele-

ments. So qw = qm, and hence w = m. �

In the following corollary to Theorem 2.7, we establish that f(x) is the power

of a single irreducible if and only if V = Fq.

Corollary 2.8: f(x) is the power of a single irreducible polynomial over Fq[x] iff

the vector space V over Fq has dimension 1 iff V = Fq.

Proof : By Theorem 2.7, m = 1 in the factorization of f(x) if and only if the

dimension of V is 1 over Fq.
Now, for the second part of the statement, suppose that V has dimension 1

over Fq. Since aq ≡ a (mod f(x)) for each a ∈ Fq, any basis for V must contain a

unit in Fq. But, the dimension of V over Fq is 1. So any basis for V contains only

a unit in Fq, and hence V = Fq.
For the converse, it is trivial to see that V = Fq only if V has dimension 1

over Fq. �

The vector space V gives us information about the number of irreducible

factors of f(x). Now, the next theorem gives us a method by which we can actu-

ally use a non-constant element of V to obtain a nontrivial factorization of f(x)

(in the case that f(x) is divisible by two or more irreducibles).

Theorem 2.9: Let g(x) ∈ Fq[x] be a polynomial with 1 ≤ deg(g(x)) < n such

that f(x) divides g(x)q − g(x). Then f(x) =
∏

s∈Fq
gcd(f(x), g(x) − s) is a non-

trivial factorization of f(x) in Fq[x].

Proof : Since f(x) divides g(x)q−g(x), notice that gcd(f(x), g(x)q−g(x)) = f(x).

Now, because g(x)− s and g(x)− j are relatively prime for s 6= j, it follows from

Proposition 1.13 that

f(x) = gcd(f(x), g(x)q − g(x))

= gcd(f(x),
∏
s∈Fq

(g(x)− s)) =
∏
s∈Fq

gcd(f(x), g(x)− s). (∗)
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Since 1 ≤ deg(g(x)− s) < n, we clearly have that gcd(f(x), g(x)− s) 6= f(x)

for each s ∈ Fq. Hence, the factorization (∗) only involves polynomials of degree

< n = deg(f(x)), and so must be a nontrivial factorization of f(x) .�

Notice that we can utilize Theorem 2.9 to factor f(x) only if we can find

a non-constant polynomial in V . To demonstrate a strategy for doing this, let

g(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1 ∈ Fq[x]. Recall from Proposition 2.6 that

f(x) divides g(x)q − g(x) =
∏

s∈Fq
(g(x)− s) iff

0 = R(g(xq))− g(x),

where R(g(xq)) is the unique remainder of g(xq) after division by f(x). Now, we

explicitly find R(g(xq)). Note that g(xq) = b0 + b1x
q + b2x

2q + · · · + bn−1x
(n−1)q.

Dividing xjq by f(x) for each j = 1, 2, · · · , n − 1, it follows from the Division

Algorithm that there are polynomials qj(x), rj(x) ∈ Fq[x] with

xjq = f(x)qj(x) + rj(x) and deg(rj(x)) < n.

Thus,

g(xq) = b0 + b1[f(x)q1(x) + r1(x)] + · · ·+ bn−1[f(x)qn−1(x) + rn−1(x)]

= [b1q1(x) + · · ·+ bn−1qn−1(x)]f(x) + [b0 + b1r1(x) + · · ·+ bn−1rn−1(x)].

Since deg[(b0 + b1r1(x) + · · · bdrd(x))] < n, it also is a consequence of the Division

Algorithm that R(g(xq)) = b0 + b1r1(x) + · · · bn−1rn−1(x). Thus, f(x) divides

g(x)q − g(x) iff

0 = [b0 + b1r1(x) + · · ·+ bn−1rn−1(x)]− [b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1]. (∗∗)

Collecting the coefficients of 1, x, x2, · · · , xn−1 in this equation and setting them

equal to 0 produces a homogenous system of n equations in the n unknowns

b0, b1, · · · , bn−1. Finding values for the coefficients that satisfy the system will

produce a polynomial g(x) with degree < n such that f(x) divides g(x)q − g(x).

This process will be applied in the following example to factor a polynomial

over F3.

Example 2.10: Let f(x) = x5 + 2x2 + 2x + 2 ∈ F3[x]. We desire to find a non-

constant polynomial of the form g(x) = b0+b1x+b2x
2+b3x

3+b4x
4 such that f(x)

divides g(x)3 − g(x). To accomplish this, we first find the remainder polynomials
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rj(x) by computing xj·3(mod f(x)) for j = 1, 2, 3, 4:

x1·3 = x3 ≡ x3 (mod f(x)),

x2·3 = x6

= f(x) · x+ (x3 + x2 + x)

≡ x3 + x2 + x (mod f(x)),

x3·3 = x9

= x6 · x3

≡ (x3 + x2 + x)x3 (mod f(x))

≡ x6 + x5 + x4 (mod f(x))

≡ (x3 + x2 + x) + (x2 + x+ 1) + x4 (mod f(x))

≡ x4 + x3 + 2x2 + 2x+ 1 (mod f(x)),

x4·3 = x12

= x6x6

= (x3 + x2 + x)(x3 + x2 + x) (mod f(x))

= x6 + 2x5 + 2x3 + x2 (mod f(x))

≡ (x3 + x2 + x) + (2x2 + 2x+ 2) + 2x3 + x2 (mod f(x))

≡ x2 + 2 (mod f(x)).

Thus, r1(x) = x3, r2(x) = x3 + x2 + x, r3(x) = x4 + x3 + 2x2 + 2x + 1, and

r4(x) = x2 + 2. Now, referring to (∗∗), f(x) divides g(x)3 − g(x) iff

0 = b0 + b1x
3 + b2(x

3 + x2 + x) + b3(x
4 + x3 + 2x2 + 2x+ 1) + b4(x

2 + 2)

− [b0 + b1x+ b2x
2 + b3x

3 + b4x
4].

Next we collect the coefficients of 1, x, x2, x3, and x4 to get a homogenous system

of equations:

b0 − b0 = 0

(2b1 + b2 + 2b3)x = 0⇒ 2b1 + b2 + 2b3 = 0

(2b3 + b4)x
2 = 0⇒ 2b3 + b4 = 0

(b1 + b2)x
3 = 0⇒ b1 + b2 = 0

(b3 + 2b4)x
4 = 0⇒ b3 + 2b4 = 0.

41



These reduce to b1 = 2b2 = b3 = b4, b0 free. Select b1 = b3 = b4 = 1, b2 = 2, and

b0 = 0 to form the polynomial g(x) = x4 + x3 + 2x2 + x. Then f(x) necessarily

divides g(x)3 − g(x). Applying the Euclidean Algorithm, it can be found that

gcd(f(x), g(x)) = 1

gcd(f(x), g(x)− 1) = x2 + 1

gcd(f(x), g(x)− 2) = x3 + 2x+ 2.

And applying Theorem 2.9, we get the nontrivial factorization

f(x) = (x2 + 1)(x3 + 2x+ 2).

In fact, since x2 + 1 and x3 + 2x + 2 have no roots in F3, we can conclude that

this is the complete factorization of f(x) into irreducibles.

Example 2.10 suggests the following corollary to Theorem 2.9.

Corollary 2.11: Let h(x) ∈ Fq[x] be a reducible polynomial of degree 5 with no

factors of degree 1. If g(x) is a polynomial of degree ≥ 1 and < 5 such that h(x)

divides g(x)q − g(x), then
∏

s∈Fq
gcd(h(x), g(x)− s) is the complete factorization

of h(x).

Proof : Since h(x) is a reducible polynomial over Fq of degree 5 and has no factors

of degree 1, h(x) must be the product of an irreducible quadratic polynomial and

an irreducible cubic polynomial. By Theorem 2.8,
∏

s∈Fq
gcd(h(x), g(x) − s) is a

nontrivial factorization of h(x), which implies that at least two terms of this prod-

uct must be non-constant. But, h(x) is the product of precisely two irreducibles.

Thus, h(x) =
∏

s∈Fq
gcd(h(x), g(x)− s) is the complete factorization of h(x).�

Corollary 2.11 is a special case where Theorem 2.9 gives the complete factor-

ization of a polynomial. However, for the general polynomial f(x) = f1(x)k1f2(x)k2

· · · fm(x)km , the nontrivial factorization f(x) =
∏

s∈Fq
gcd(f(x), g(x)−s) is usually

not the complete factorization of f(x). In particular,
∏

s∈Fq
gcd(f(x), g(x)− s) is

not the complete factorization of f(x) when there is an s0 ∈ Fq such that g(x)−s0
is divisible by fi(x)kifj(x)kj for some i 6= j. This situation occurs regularly.

For example, consider the product h(x) = x(x + 1)2(x2 + x + 1) ∈ F2[x]. If

g(x) is a non-constant polynomial of degree < 5 such that h(x)|g(x)2− g(x), then

Theorem 2.9 gives that x(x+1)2(x2+x+1) = gcd(h(x), g(x)) ·gcd(h(x), g(x)−1).
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Now, one of the two gcd’s on the right hand side of this equation must be divisible

by two of the three factors x, (x+ 1)2, and x2 + x+ 1.

So, in order to develop a process by which we can separate the factors

f1(x)k1 , f2(x)k2 , · · · , fm(x)km , we must account for the strong likelihood that the

factorization
∏

s∈Fq
gcd(f(x), g(x) − s) has terms which are divisible by multiple

distinct irreducibles. With this in mind, we present the following formulation of

Berlekamp’s algorithm.

General Factoring Algorithm:

Assume m > 1. Let {g0(x), g1(x), · · · , gm−1(x)} be a basis for the vector space V

with g0(x) = 1. (We are allowed to let g0(x) = 1, since aq ≡ a (mod f(x)) for

each a ∈ Fq.) Note that g1(x), · · · , gm−1(x) are non-constant. Now, complete the

following steps:

Step 1) Compute gcd(f(x), g1(x) − s) for each s ∈ Fq[x]. Let A1 be the set

containing each of these factors which has degree ≥ 1. If |A1| = m, then stop and

output A1. Otherwise, continue to Step 2.

Step 2) Compute gcd(h(x), g2(x)− s) for each h(x) ∈ A1 and s ∈ Fq. Let A2 be

the set containing each of these factors which has degree ≥ 1. If |A2| = m, then

stop and output A2. Otherwise, continue to Step 3.
...

Step m-2) Compute gcd(h(x), gm−2(x) − s) for each h(x) ∈ Am−3 and s ∈ Fq.
Let Am−2 be the set containing each of these factors which has degree ≥ 1. If

|Am−2| = m, then stop and output Am−2. Otherwise, continue to Step m-1.

Step m-1) Compute gcd(h(x), gm−1(x) − s) for each h(x) ∈ Am−2 and s ∈ Fq.
Let Am−1 be the set containing each of these factors which has degree ≥ 1. Output

Am−1.

Theorem 2.12: Suppose the General Factoring Algorithm stops on the jth step.

Then the output Aj contains precisely the elements f1(x)k1 , f2(x)k2 , · · · , fm(x)km .

Proof : Suppose j < m − 1. Then, by construction, Aj contains m relatively

prime polynomials of degree ≥ 1. Applying Proposition 1.13 and Theorem 2.9, it

follows that f(x) must be the product of these m polynomials. Since the factor-

ization of f(x) into powers of distinct irreducibles is unique, it must be that the

m polynomials in Aj are precisely f1(x)k1 , f2(x)k2 , · · · , fm(x)km .

Now, suppose j = m − 1. Since the elements of Aj are relatively prime

and have a product which equals f(x), |Aj| ≤ m. Assume, by way of contra-

diction, that |Aj| < m. Then there exists an h(x) ∈ Aj which is divisible by at

least two of the powers of irreducibles that are factors of f(x). Without loss of
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generality, say both f1(x)k1 and f2(x)k2 divide h(x). Then f1(x)k1 and f2(x)k2

must both divide exactly one gcd in each step of the algorithm. Thus, for each

i = 0, 1, 2, · · · ,m − 1, there exists an si ∈ Fq such that gi(x) ≡ si (mod f1(x)k1)

and gi(x) ≡ si (mod f2(x)k2). Now, by the Chinese Remainder Theorem (Theorem

1.23), there exists a g(x) ∈ V (not necessarily unique) with g(x) ≡ 0 (mod f1(x)k1)

and g(x) ≡ 1 (mod f2(x)k2). Since {g0(x), g1(x), · · · , gm−1(x)} forms a basis for

V , there exist c0, c1, · · · , cm−1 ∈ Fq with g(x) =
m−1∑
i=0

cigi(x). Let s =
m−1∑
i=0

cisi ∈ Fq.

Then

s =
m−1∑
i=0

cisi

≡
m−1∑
i=0

cigi(x) (mod f1(x)k1)

≡ g(x) (mod f1(x)k1)

≡ 0 (mod f1(x)k1).

This implies s = 0. But,

s =
m−1∑
i=0

cisi

≡
m∑
i=1

cigi(x) (mod f2(x)k2)

≡ g(x) (mod f2(x)k2)

≡ 1 (mod f2(x)k2),

which implies s = 1, a contradiction. Thus, |Aj| = m, and Aj contains precisely

the elements f1(x)k1 , f2(x)k2 , · · · , fm(x)km . �

The final thing we need to do before applying the General Factoring Algo-

rithm is describe a process for determining a basis for V . Recall that determining

such a basis is necessary to begin the algorithm. Consider again the equation

R(g(xq))− g(x) = [b0 + b1r1(x) + · · ·+ bn−1rn−1(x)]

− [b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1]

for a polynomial g(x) = b0 + b1x+ b2x
2 + · · ·+ bn−1x

n−1 ∈ Fq[x]. Set r0(x) = 1.
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For each j = 0, 1, 2, · · · , n− 1, let rj(x) = r0,j + r1,jx+ · · ·+ rn−1,jx
n−1. Form the

matrices

B =


b0

b1
...

bn−1

, Q =


r0,0 r0,1 · · · r0,n−1

r1,0 r1,1 · · · r1,n−1
...

...
. . .

...

rn−1,0 rn−1,1 · · · rn−1,n−1

, and

I =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

.

Then g(x) ∈ V iff R(g(xq))− g(x) = 0 iff (Q− I)B = 0. Let

V ′ = {B : B is an n× 1 column matrix with entries in Fq and (Q− I)B = 0}.

Clearly V ′ is a vector space over Fq, called the null space of the matrix Q − I,

with dimension equivalent to that of V , which was shown in Theorem 2.7 to be

m. Since Q− I is an n×n matrix over the field Fq, we get the following standard

relationship between the rank of Q− I and the dimension of V ′ over Fq:

n = rank(Q− I) + dim(V ′)

= rank(Q− I) +m,

which implies

m = n− rank(Q− I).

So, the number of distinct irreducible factors of f(x) can be found by computing

the difference between the degree of f(x) and the number of linearly independent

rows in the matrix Q− I.

Let A be the reduced row echelon form of Q − I. The rank of Q − I

can be identified by counting the number of non-zero rows in A. Furthermore,

a basis for V ′ is most efficiently found by finding a basis for the vector space

{B : B is an n × 1 column matrix with entries in Fq and AB = 0} over Fq. We

note that finding such a basis comes down to finding the free variables in a ho-

mogenous system of equations.
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Finally, if

Bi =


b0,i

b1,i
...

bn−1,i


is an element in a basis for V ′, then gi(x) = b0,i + b1,ix+ · · ·+ bn−1,ix

n−1 is in the

corresponding basis for V .

Notice that only one step of the General Factoring Algorithm would have

been required to find the complete factorization of the polynomial in Example

2.10. The next example gives a situation in which we require more than one step

of the algorithm.

Example 2.13: Let f(x) = x9 + 2x8 +x7 +x4 + 2x3 + 2x2 + 2x+ 1 ∈ F3[x]. Using

polynomial long division to reduce modulo f(x), it is found that

x1·3 = x3

x2·3 = x6

x3·3 = x9 ≡ x8 + 2x7 + 2x4 + x3 + x2 + x+ 2 (mod f(x))

x4·3 = x12 ≡ 2x8 + 2x5 + 2x3 + x2 + 2x+ 1 (mod f(x))

x5·3 = x15 ≡ x5 + 2x3 + x (mod f(x))

x6·3 = x18 ≡ x8 + 2x6 + x4 (mod f(x))

x7·3 = x21 ≡ x8 + 2x7 + 2x6 + x3 + 2x2 + x+ 1 (mod f(x))

x8·3 = x24 ≡ x8 + 2x7 + x4 + x+ 2 (modf(x)).

So form the remainder polynomials:

r0(x) = 1

r1(x) = x3

r2(x) = x6

r3(x) = 2 + x+ x2 + x3 + 2x4 + 2x7 + x8

r4(x) = 1 + 2x+ x2 + 2x3 + 2x5 + 2x8

r5(x) = x+ 2x3 + x5

r6(x) = x4 + 2x6 + x8

r7(x) = 1 + x+ 2x2 + x3 + 2x6 + 2x7 + x8

r8(x) = 2 + x+ x4 + 2x7 + x8.
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Now the coefficient of xj in ri(x) represents the j + 1, i+ 1 entry in the following

matrix Q:

Q =



1 0 0 2 1 0 0 1 2

0 0 0 1 2 1 0 1 1

0 0 0 1 1 0 0 2 0

0 1 0 1 2 2 0 1 0

0 0 0 2 0 0 1 0 1

0 0 0 0 2 1 0 0 0

0 0 1 0 0 0 2 2 0

0 0 0 2 0 0 0 2 2

0 0 0 1 2 0 1 1 1


. FormQ−I =



0 0 0 2 1 0 0 1 2

0 2 0 1 2 1 0 1 1

0 0 2 1 1 0 0 2 0

0 1 0 0 2 2 0 1 0

0 0 0 2 2 0 1 0 1

0 0 0 0 2 0 0 0 0

0 0 1 0 0 0 1 2 0

0 0 0 2 0 0 0 1 2

0 0 0 1 2 0 1 1 0


.

Elementary row operations over F3 give that the reduced row echelon form of

the matrix Q− I is

A =



0 1 0 0 0 2 0 1 0

0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 2 1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 2 2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


.

Notice that A has rank 5. Thus, the dimension of both V and V ′ is 9 − 5 = 4.

This tells us that there are exactly four powers of distinct irreducibles in the

factorization of f(x). Now, set

0

0

0

0

0

0

0

0

0


= A



b0

b1

b2

b3

b4

b5

b6

b7

b8


=



b1 + 2b5 + b7

b2 + b8

b3 + 2b7 + b8

b4

b6 + 2b7 + 2b8

0

0

0

0


.
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This implies

b1 = b5 + 2b7

b2 = 2b8

b3 = b7 + 2b8

b4 = 0

b6 = b7 + b8.

Thus,



b0

b1

b2

b3

b4

b5

b6

b7

b8


=



b0

b5 + 2b7

2b8

b7 + 2b8

0

b5

b7 + b8

b7

b8


= b0



1

0

0

0

0

0

0

0

0


+ b5



0

1

0

0

0

1

0

0

0


+ b7



0

2

0

1

0

0

1

1

0


+ b8



0

0

2

2

0

0

1

0

1



.

It follows that



1

0

0

0

0

0

0

0

0


,



0

1

0

0

0

1

0

0

0


,



0

2

0

1

0

0

1

1

0


, and



0

0

2

2

0

0

1

0

1



form a basis for V ′. Correspondingly, we have that g0(x) = 1, g1(x) = x + x5,

g2(x) = 2x+ x3 + x6 + x7, and g3(x) = 2x2 + 2x3 + x6 + x8 form a basis for V .
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Next, we use the Euclidean Algorithm to obtain the necessary gcd’s for the

first step of the General Factoring Algorithm. These gcd’s are:

gcd (f(x), g1(x)) = x2 + x+ 2,

gcd (f(x), g1(x)− 1) = x5 + x+ 2,

gcd (f(x), g1(x)− 2) = x2 + x+ 1.

Only three of the four needed factors were found in the Step 1, so we proceed to

Step 2. The necessary gcd’s for this step are:

gcd (x2 + x+ 2, g2(x)) = 1,

gcd (x2 + x+ 2, g2(x)− 1) = 1,

gcd (x2 + x+ 2, g2(x)− 2) = x2 + x+ 2;

gcd (x5 + x+ 2, g2(x)) = x5 + x+ 2,

gcd (x5 + x+ 2, g2(x)− 1) = 1,

gcd (x5 + x+ 2, g2(x)− 2) = 1;

gcd (x2 + x+ 1, g2(x)) = 1,

gcd (x2 + x+ 1, g2(x)− 1) = 1,

gcd (x2 + x+ 1, g2(x)− 2) = x2 + x+ 1.

Step 2 only produced three factors as well, so we proceed to compute the necessary

gcd’s for the third step (which is the final possible step).

gcd (x2 + x+ 2, g3(x)) = x2 + x+ 2,

gcd (x2 + x+ 2, g3(x)− 1) = 1,

gcd (x2 + x+ 2, g3(x)− 2) = 1;

gcd (x5 + x+ 2, g3(x)) = 1,

gcd (x5 + x+ 2, g3(x)− 1) = x3 + x2 + 2,

gcd (x5 + x+ 2, g3(x)− 2) = x2 + 2x+ 1;

gcd (x2 + x+ 1, g3(x)) = x2 + x+ 1,

gcd (x2 + x+ 1, g3(x)− 1) = 1,

gcd (x2 + x+ 1, g3(x)− 2) = 1.
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Now, by Theorem 2.12, x2 +x+ 2, x3 +x2 + 2, x2 + 2x+ 1, and x2 +x+ 1 are

pairwise relatively prime and multiply to give f(x). Further, each of these four

factors can be written as the power of a single irreducible. Using the method given

in Section 2.1 for factoring such polynomials, we find: x2 + x+ 2 and x3 + x2 + 2

are both irreducible, x2 + 2x+ 1 = (x+ 1)2, and x2 + x+ 1 = (x+ 2)2. Thus,

f(x) = (x2 + x+ 2)(x3 + x2 + 2)(x+ 1)2(x+ 2)2

is the complete factorization of f(x).

After this lengthy example, we must pose the question: Is the General Fac-

toring Algorithm alone our best factoring tool thus far? The answer is clearly no!

Practically speaking, it is strongly recommended that any polynomial undergo

SFF in the first step of the factoring process. Then, if necessary, the separate

square-free parts of the polynomial can be reduced using the algorithm of this

section. There are many reasons for this recommendation. First, notice that

implementing SFF allows us to avoid inserting polynomials into the General Fac-

toring Algorithm which are divisible by high powers of irreducibles. Also, the

algorithm works very nicely with square-free polynomials - it has the ability to

directly separate all of the irreducibles of such polynomials.

Consider how implementing SFF speeds up the factoring process for the

polynomial in Example 2.13. SFF gives

f(x) = x9 + 2x8 + x7 + x4 + 2x3 + 2x2 + 2x+ 1

= (x5 + 2x4 + x2 + 2x+ 1)(x2 + 2)2

over F3. Using Corollary 2.11, we find x5+2x4+x2+2x+1 = (x2+x+2)(x3+x2+2).

Searching for roots of x2 + 2 in F3, we also see that x2 + 2 = (x+ 1)(x+ 2). Thus,

f(x) = (x2 + x+ 2)(x3 + x2 + 2)(x+ 1)2(x+ 2)2.

The process of factorization described here is a much quicker process than the

application of the General Factoring Algorithm in Example 2.13.

Even though applying SFF is the recommended first step in factoring, the

formulation of Berelekamp’s algorithm in this section is of great theoretical inter-

est. It has the ability to separate any polynomial over Fq into powers of distinct

irreducibles. This is stronger than formulations of the algorithm which only accept

square-free polynomials.
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Chapter 3

The Cantor-Zassenhaus Method

The next factoring scheme we will develop is due to Cantor and Zassenhaus[2]

and has two stages:

1. Distinct Degree Factorization (DDF): The input polynomial is decom-

posed into factors so that each factor can be expressed as the product of

distinct irreducibles that all have the same degree (and this degree is found).

2. Equal Degree Factorization (EDF): Each of the “equal degree” factors

produced in the DDF stage is completely factored.

The algorithm we give for DDF is deterministic, while the algorithm we give for

EDF is probabilistic. Combined, the two algorithms will provide us with another

method by which we can completely factor an arbitrary polynomial over Fq, where

q = pv with p a prime number and v a positive integer.

3.1 Distinct Degree Factorization

To begin this section, let f(x) be a monic polynomial over Fq of degree ≥ 1.

Formally, in order to find a distinct degree factorization of f(x), we need a list of

pairs

(g1(x), n1), (g2(x), n2), · · · , (gk(x), nk)

such that f(x) = g1(x)g2(x) · · · gk(x) and each gi(x) is the product of
deg[gi(x)]

ni
distinct irreducibles that all have degree ni. Notice, in particular, that the degrees

ni are not necessarily pairwise distinct. In fact, if f(x) is not square-free, then it

will be the case that ni = nj for some i 6= j.

To develop an algorithm for DDF, we start with the following proposition.

51



Proposition 3.1: Let r be a positive integer and h(x) a monic irreducible poly-

nomial over Fq of degree n. Then h(x) divides xq
r − x in Fq[x] if and only if n|r.

Proof : Suppose h(x) divides xq
r − x in Fq[x]. Note that Fqr is the splitting field

for xq
r − x, and each of the qr distinct elements of Fqr is a root of xq

r − x. So,

we have that xq
r − x =

∏
a∈Fqr

(x− a). Now, since h(x) divides
∏

a∈Fqr
(x− a) in

Fqr [x] and is of degree ≥ 1, there must exist an a′ ∈ Fqr such that a′ is a root of

h(x). Consider Fq(a′), the smallest subfield of Fqr containing Fq and the element

a′. Since h(x) is irreducible over Fq, it follows from Theorems 1.29 and 1.31 that

Fq(a′) ∼= Fq[x]/(h(x)) ∼= Fqn . This shows that Fq(a′) is a field extension of Fq, and

[Fqr(a′) : Fq] = [Fqn : Fq] = n. Thus, by Theorem 1.27,

r = [Fqr : Fq]

= [Fqr : Fq(a′)] · [Fq(a′) : Fq]

= [Fqr : Fq(a′)] · n,

and n|r.
Now, suppose that n|r. Let θ = x (mod h(x)) ∈ Fq[x]/(h(x)) ∼= Fqn . Note

that θ is a root of xq
n − x. So, it follows from Proposition 1.34 that xq

n − x is

divisible by the minimal polynomial for θ over Fq, which is h(x). Since n|r, r = nj

for some j ∈ Z, and hence

qr − 1 = qnj−1 = (qn − 1)(qn(j−1) + qn(j−2) + · · ·+ 1).

So qn − 1|qr − 1 in Z, and an identical argument shows that xq
n−1 − 1|xqr−1 − 1

in Fq[x]. Thus, xq
n − x = x(xq

n−1 − 1) divides xq
r − x = x(xq

r−1 − 1). Since

h(x)|xqn − x, it now follows that h(x)|xqr − x in Fq[x]. �

From this proposition follows a very important theorem, which we will use

to generate our DDF algorithm.

Theorem 3.2: For n ≥ 1, let hn denote the product of all distinct monic irre-

ducibles in Fq[x] of degree n. Then for all positive integers r,

xq
r − x =

∏
n|r

hn,

where the product is over all positive divisors of r.
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Proof : By Proposition 3.1, every monic irreducible polynomial over Fq of degree

n with n|r divides xq
r−x. So

∏
n|r hn|xq

r−x. Furthermore, each monic irreducible

polynomial in Fq[x] that divides xq
r − x must have degree n such that n|r. So,

xq
r − x is the product of monic irreducibles whose degree divides r, and all such

polynomials appear at least once in this product. Now, we compute the derivative

d

dx
(xq

r − x) = qrxq
r−1 − 1

= 0− 1 ∈ Fq[x]

= −1.

So gcd(xq
r − x, d

dx
(xq

r − 1)) = 1, which shows that no irreducible polynomial ap-

pears more than once in the complete factorization of xq
r − x. This means the

complete factorization of xq
r − x consists of one copy of each of the disinct monic

irreducibles over Fq whose degree divides r. Hence, xq
r − x =

∏
n|r hn. �

Utilizing Theorem 3.2, we can now develop a process for finding a distinct

degree factorization of f(x). First, note that xq − x is the product of all distinct

linear monic polynomials over Fq. So we can compute g(x) = gcd(xq − x, f(x)) =

gcd(xq − x(mod f(x)), f(x)) to get the product of all distinct linear factors of

f(x). We then remove the factor g(x) from f(x) to obtain a new f(x). But, if the

original polynomial was not square-free, f(x) may still have some linear factors,

and so we have to repeat the step with xq−x until we get a gcd of 1 and hence f(x)

has no more linear factors. Once all linear factors have been removed, we com-

pute gcd(xq
2 − x, f(x)), which is the product of all distinct quadratic irreducible

factors of f(x). Note that even though xq
2 − x is the product of all distinct linear

and quadratic monic irreducibles over Fq, since we removed all linear factors from

f(x) beforehand, we know gcd(xq
2 − x, f(x)) will only give us the product of the

distinct quadratic irreducibles that divide f(x). Like before, it may be necessary

to repeat the step with xq
2−x multiple times to remove all quadratic factors from

f(x). In general, the strategy of our DDF algorithm will be this:

Starting with k = 1, once all factors of degree less than k have been removed

from f(x), we compute gcd(xq
k − x, f(x)) to get the product of all distinct degree

k monic irreducible factors of f(x). Following this, we may need to compute mul-

tiple gcd’s with xq
k − x in order to remove all factors of degree k from f(x). This

process will be completed until no more factors can be removed from f(x), which

will occur when our redefined value for f(x) is 1. We now give the algorithm.
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DDF Algorithm over Fq:
The input is a monic polynomial f ∈ Fq[x].

r ← 1

while f 6= 1 do

h← xq
r − x (mod f)

g ← gcd(h, f)

while g 6= 1 do

output (g, r)

f ← f/g

g ← gcd(h, f)

end while

r ← r + 1

end while

The polynomials g in the outputs (g, r) in the DDF algorithm clearly multi-

ply to give the input polynomial f . Further, each pair (g, r) represents a polyno-

mial g which is the product of deg(g)/r distinct irreducibles of degree r.

Notice that the the degrees of the polynomials xq
r − x blow up very quickly.

So, repeatedly computing xq
r − x(mod f) = xq

r
(modf) − x(modf) is one of the

more difficult aspects of applying the algorithm. In view of this, we present a

fairly intuitive binary exponentiation algorithm for computing xM(modf).

Binary Exponentiation Algorithm for Computing xM(modf):

Let M = bn · 2n + bn−1 · 2n−1 + · · ·+ b1 · 2 + b0 be the binary representation for M

(where bj = 0 or 1).

g ← x

j ← n− 1

while j ≥ 0 do

g ← g2 (mod f)

if bj = 1, then

g ← g · x (mod f)

end if

j ← j − 1

end while

output g

We are now ready to apply the DDF algorithm.
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Example 3.3: We find the DDF of the polynomial

f(x) = x11 + 2x6 + 2x4 + 2x3 + x2 + 1

over F3.

First, we use the Euclidean Algorithm to compute that

gcd(x3
1 − x, f(x)) = x2 + 2.

This gives the pair (x2 + 2, 1). Now, compute

f(x)/(x2 + 2) = x9 + x7 + x5 + 2x4 + x3 + x2 + 2.

We must test this new polynomial for linear factors:

gcd(x3 − x, x9 + x7 + x5 + 2x4 + x3 + x2 + 2) = x+ 2.

This gives the pair (x+ 2, 1), and we get that

(x9 + x7 + x5 + 2x4 + x3 + x2 + 2)/(x+ 2) = x8 + x7 + 2x6 + 2x5 + 2x3 + x+ 1.

Testing again for linear factors:

gcd(x3 − x, x8 + x7 + 2x6 + 2x5 + 2x3 + x+ 1) = 1.

This shows that we have removed all of the linear factors from f(x). Polynomial

long division easily gives that

x3
2 − x = x9 − x

≡ 2x7 + 2x5 + x4 + 2x3 + 2x2 + 2x+ 1 (mod x8 + x7 + 2x6 + 2x5 + 2x3 + x+ 1),

and we use this congruence to compute the product of the distinct quadratic

factors of f(x):

gcd(2x7 + 2x5 + x4 + 2x3 + 2x2 + 2x+ 1, x8 + x7 + 2x6 + 2x5 + 2x3 + x+ 1)

= x2 + 1.

This gives the pair (x2 + 1, 2). Now, compute

(x8 + x7 + 2x6 + 2x5 + 2x3 + x+ 1)/(x2 + 1) = x6 + x5 + x4 + x3 + 2x2 + x+ 1.
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Before testing again for quadratic factors, notice that

x3
2 − x = x9 − x

≡ 2x7 + 2x5 + x4 + 2x3 + 2x2 + 2x+ 1 (mod x6 + x5 + x4 + x3 + 2x2 + x+ 1)

≡ 2x5 + x4 + x2 + 2x (mod x6 + x5 + x4 + x3 + 2x2 + x+ 1).

Now,

gcd(2x5 + x4 + x2 + 2x, x6 + x5 + x4 + x3 + 2x2 + x+ 1) = 1.

Hence, all of the quadratic factors have been removed from f(x). Next, we let

p(x) = x6 + x5 + x4 + x3 + 2x2 + x+ 1

and use binary exponentiation to compute x3
3
(mod p(x)).

Notice that 33 = 27 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

Step 1: Since 23 has a coefficient of 1, compute g = x2, and then g = x2 · x = x3.

Step 2: Since 22 has a coefficient of 0, compute

g = (x3)2 = x6 ≡ 2x5 + 2x4 + 2x3 + x2 + 2x+ 2 (mod p(x)).

Step 3: Since 21 has a coefficient of 1, compute

g = (2x5 + 2x4 + 2x3 + x2 + 2x+ 2)2 ≡ x5 + x4 + x3 + x2 + 2x+ 1 (mod p(x)), and

then g = (x5 + x4 + x3 + x2 + 2x+ 1) · x ≡ 2 (mod p(x)).

Step 4: Since 20 has a coefficient of 1, compute g = 22 = 1 ∈ F3, and then

g = 1 · x = x.

Thus, x3
3 ≡ x (mod p(x)), and so x3

3 − x ≡ 0 (mod p(x)).

Clearly, gcd(0, p(x)) = p(x), which gives the pair (p(x), 3). Now, p(x)/p(x) = 1,

and the algorithm terminates.

In summary, f(x) = (x2 + 2)(x + 2)(x2 + 1)(x6 + x5 + x4 + x3 + 2x2 + x + 1),

and these four factors are products of distinct irreducibles of degrees 1, 1, 2, and

3, respectively. In particular, the middle two factors are themselves irreducible.

56



Observe that in Example 3.3, the input polynomial was not square-free since

it had x + 2 as a repeated linear factor. This repeated linear factor forced us

to compute an extra gcd when applying the DDF algorithm, giving us a total

of three gcd computations before all linear factors were removed from the input

polynomial.

For the general polynomial f(x), suppose g(x)k is a factor of f(x), where

g(x) is an irreducible polynomial over Fq of degree r, and k is the largest power

on any irreducible factor of f(x) with degree r. In order to remove all irreducible

factors of degree r from f(x) using the algorithm, we would have to compute

exactly k + 1 gcd’s with xq
r − x. The first k of these gcd computations would

actually remove all the factors of degree r, and the final gcd computation (of 1)

would verify that there are no factors of degree r left. It is quite obvious that as

k grows large, this process becomes extremely time consuming. The tediousness

here is most likely why Cantor and Zassenhaus formulate a DDF method which

only accepts square-free polynomials. As a general rule, we also suggest that a

polynomial undergo SFF before being separated with our algorithm. When it is

known up front that the input polynomial is square free, it is never necessary to

compute gcd’s in the second while loop of the algorithm. Hence, in such a case,

we need only compute one gcd in each new degree iteration of the DDF process.

In the next section, we delve into the second stage of the Cantor-Zassenhaus

factoring scheme, Equal Degree Factorization.

3.2 Equal Degree Factorization

Recall again that the an output (g, r) in the DDF algorithm represents a

polynomial g which can be written as the product of distinct monic irreducibles

that all have the same (known) degree, namely r. So, if we can develop an algo-

rithm that separates the irreducible factors of such an “equal degree” polynomial,

we will have generated a complete factoring process over Fq.
Throughout this stage, let f(x) ∈ Fq[x] be a monic polynomial of degree n

that is the product of s > 1 distinct monic irreducibles fi(x), 1 ≤ i ≤ s, with

deg(fi(x)) = d for each i. Notice, in particular, that n = sd. Working under the

assumption that d is known, our goal for the section is to use the fact that each

irreducible factor of f(x) has degree d to develop a method for factoring f(x) .

Note that a factor p(x) of f(x) with 0 < deg(p(x)) < n will be referred to as

a proper factor of f(x). In seeking a strategy for finding proper factors of f(x),

we start with the following intuitive proposition (which is not dependent on the

fact that the irreducible factors of f(x) all have the same degree).
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Proposition 3.4: Let g(x) be a non-constant polynomial over Fq with deg(g(x)) <

n. If g(x) ≡ 0 (mod fi0(x)) for some i0 ∈ {1, · · · , s}, then gcd(f(x), g(x)) is a

proper factor of f(x).

Proof : Since g(x) is non-constant and deg(g(x)) < n, g(x) 6≡ 0 (mod f(x)).

Hence, gcd(f(x), g(x)) 6= f(x). Also, since g(x) ≡ 0 (mod fi0(x)), fi0(x) is a com-

mon factor of g(x) and f(x). So, gcd(f(x), g(x)) is some multiple of fi0(x), which

means gcd(f(x), g(x)) 6= 1. Thus, gcd(f(x), g(x)) is a proper factor of f(x). �

If we can find a polynomial g(x) that satisfies the conditions of Proposition

3.4, we will obtain a nontrivial factorization of f(x). We first restrict ourselves

to the case that p > 2, so that q = pv is odd. With this restriction in place, set

c = qd−1
2

. Notice that the definition of c brings into play the fact that all irre-

ducible factors of f(x) have degree d. Now the next theorem will provide us with a

way to efficiently generate polynomials that satisfy the hypotheses of Proposition

3.4.

Theorem 3.5: Let h(x) ∈ Fq[x] be a polynomial with gcd(f(x), h(x)) = 1. Let

g(x) = h(x)c − 1(mod f(x)). If h(x)c 6≡ ±1 (mod f(x)), then gcd(f(x), g(x)) is a

proper factor of f(x).

Proof : Since gcd(f(x), h(x)) = 1, h(x) 6≡ 0 (mod fi(x)) for each i ∈ {1, · · · , s}.
Now, for each i, Fq[x]/(fi(x)) is a field with qd elements, and so by the Generalized

FLT,

(h(x)c)2 = h(x)q
d−1 ≡ 1 (mod fi(x)),

which gives

(h(x)c − 1)(h(x)c + 1) ≡ 0 (mod fi(x)).

Because Fq[x]/(fi(x)) has no zero divisors, it follows that h(x)c ≡ 1 (mod fi(x))

or h(x)c ≡ −1 (mod fi(x)).

Observe that since h(x)c 6≡ ±1 (mod f(x)), h(x)c is clearly non-constant over

Fq. In turn, g(x) is also non-constant. Furthermore, since h(x)c 6≡ −1 (mod f(x)),

there exists an i0 ∈ {1, · · · , s} with h(x)c 6≡ −1 (mod fi0(x)). Then it must be

that h(x)c ≡ 1 (mod fi0(x)), which means g(x) ≡ 0 (mod fi0(x)). Hence, by

Proposition 3.4, gcd(f(x), g(x)) is a proper factor of f(x). �
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In hopes of utilizing Theorem 3.5 to factor f(x), we randomly select a poly-

nomial h(x) from the qn− q non-constant polynomials in Fq[x] of degree < n. We

now will calculate the probability that h(x) cannot be used with the tools that

we have to find a proper factor of f(x). Notice that if gcd(f(x), h(x)) 6= 1, then

we automatically get a proper factor of f(x). Furthermore, if gcd(f(x), h(x)) = 1

with h(x)c 6≡ ±1 (mod f(x)), then we can use Theorem 3.5 to get a proper fac-

tor. It follows that h(x) cannot be used to get a proper factor of f(x) only if

h(x)c ≡ ±1 (mod f(x)). Now, by the results of Cantor and Zassenhaus[2], for each

i ∈ {1, · · · , s}, there are c polynomials pi(x), of degree < d, such that pi(x)c ≡
1 (mod fi(x)), and c such that pi(x)c ≡ −1 (mod fi(x)). This means there are 2cs

polynomials p(x) of degree < n in Fq[x] satisfying p(x)c ≡ ±1 (mod f(x)), q − 1

of which are constant. Since h(x) was chosen to be non-constant, it follows that

the probability that h(x)c ≡ ±1 (mod f(x)) is

2cs − (q − 1)

qn − q
=

2
(
qd−1
2

)s
− (q − 1)

qn − q

=
1

2s−1
· (qd − 1)s − 2s−1(q − 1)

qn − q

<
1

2s−1
· q

ds − 2(q − 1)

qn − q

=
1

2s−1
· q

n − 2(q − 1)

qn − q

<
1

2s−1

≤ 1

2
.

Correspondingly, the probability that we can use h(x) to obtain a proper

factor of f(x) is > 1− 1
2s−1 . Notice that as the number of factors, s, of f(x) grows

large, the probability that h(x) can be used to get a non-trivial factorization of

f(x) approaches 1.

Suppose now that we can use h(x) along with Theorem 3.5 to get the proper

factor gcd(f(x), h(x)c − 1) of f(x). Then we observe that gcd(f(x), h(x)c − 1)

and f(x)/ gcd(f(x), h(x)c − 1) are polynomials with irreducible factors that all

have equal degree, namely d. So we can apply Theorem 3.5 again in conjunction

with randomly selected polynomials to find proper factors of gcd(f(x), h(x)c − 1)

and f(x)/ gcd(f(x), h(x)c − 1), and hence come one step closer to finding all the

irreducible factors of f(x). Continuing this process iteratively suggests a full al-

gorithm for EDF. In view of the fact that proceeding at random gives us a high

probability of further separating the input polynomial f(x) at each stage, the up-

coming EDF algorithm is a highly efficient factoring tool.
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EDF Algorithm over Fq with q odd:

A← {f}
while |A| < s do

for each p ∈ A with deg(p) > d do

choose h ∈ Fq[x] with 0 < deg(h) < deg(p) at random

g ← gcd(p, h)

if g = 1, then

g ← hc − 1 (mod p)

end if

if gcd(p, g) 6= 1 and gcd(p, g) 6= p

A← (A− {p}) ∪ {gcd(p, g), p/gcd(p, g)}
end if

end while

output A

Notice that the algorithm runs until |A| = s. Hence, the algorithm runs

until all s of the equal degree irreducible factors of f have been obtained. We

apply EDF in the upcoming example.

Example 3.6: Given that f(x) = x6+4x3+3x2+2x+1 ∈ F5[x] can be written as

the product of distinct irreducible polynomials of degree 2, we find the complete

factorization of f(x).

In this scenario, the number of irreducible factors of f(x) is s = 6/2 = 3.

Since each of these factors has degree d = 2, set c = 52−1
2

= 12. Note that there is

a > 3
4

probability that a randomly chosen non-constant polynomial over F5 with

degree < 6 will yield a non-trivial factorization of f(x). We randomly choose

x3 + 2 ∈ F5[x]. The Euclidean Algorithm can be applied to find that

gcd(f(x), x3 + 2) = 1.

Next, using binary exponentiation, we compute

(x3 + 2)12 − 1 ≡ 3x5 + 4x3 + 3x2 + 4 (mod f(x)).

And we find that

gcd(f(x), 3x5 + 4x3 + 3x2 + 4) = x4 + 4x3 + 4x2 + 2x+ 3.
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Now,

f(x)/(x4 + 4x3 + 4x2 + 2x+ 3) = x2 + x+ 2,

and so

f(x) = (x4 + 4x3 + 4x2 + 2x+ 3)(x2 + x+ 2).

Continuing with the algorithm, we factor the polynomial p(x) = x4 + 4x3 + 4x2 +

2x + 3. Note that there is a > 1
2

chance that a randomly chosen non-constant

polynomial over F5 with degree < 4 will yield a non-trivial factorization of p(x).

We randomly select x+ 2 ∈ F5[x] and find that

gcd(p(x), x+ 2) = 1.

Then we compute the following congruence:

(x+ 2)12 − 1 ≡ 3 (mod p(x)).

(How is the congruence to 3 in the last line consistent with our previous results?

Well, we know that for a polynomial h(x) that is nonzero mod p(x), h(x)12 is

congruent to a constant mod p(x) if and only if h(x)12 ≡ ±1 (mod p(x)) if and

only if h(x)− 1 ≡ 0 (mod p(x)) or h(x)− 1 ≡ −2 (mod p(x)). Now −2 = 3 ∈ F5.)

So it follows that

gcd(p(x), 3) = 1,

and we must randomly choose another polynomial. We choose x3 + 2x2 + 4 ∈ F5,

and compute

gcd(p(x), x3 + 2x2 + 4) = 1.

Now,

(x3 + 2x2 + 4)12 − 1 ≡ x3 + 2x2 + 3x+ 1 (mod p(x))

and

gcd(p(x), x3 + 2x2 + 3x+ 1) = x2 + 3.

61



Dividing we get

p(x)/(x2 + 3) = x2 + 4x+ 1.

Thus,

f(x) = (x2 + 3)(x2 + 4x+ 1)(x2 + x+ 2)

is the complete factorization of f(x) over F5.

Next we describe Cantor and Zassenhaus’ original strategy for factoring the

polynomial f(x) defined at the beginning of this section in the case that p = 2,

and hence q = pv is even.

First we treat the subcase that q ≡ 1 (mod 3). We will demonstrate a

strategy for finding a proper factor of f(x). Recall from Proposition 1.42 that

(Fq)× is a cyclic group under multiplication with q − 1 elements. Now, since 3

divides q−1, it is a consequence of the fact that (Fq)× is cyclic that there exists an

element ρ ∈ (Fq)× of (multiplicative) order 3. Note that to proceed, the element

ρ must be known. Observe also that for each i ∈ {1, · · · , s}, ρ is an element of

order 3 in the cyclic group (Fq[x]/(fi(x)))×. So, {1, ρ, ρ2} is the unique subgroup of

(Fq[x]/(fi(x)))× of order 3 and hence contains all elements p(x)(mod fi(x)) ∈ Fq[x]

satisfying p(x)3 ≡ 1 (mod fi(x)).

Set c = qd−1
3

and suppose h(x) is a non-constant polynomial over Fq satisfying

gcd(f(x), h(x)) = 1 and h(x)c 6∈ {1, ρ, ρ2} (mod f(x)). Since gcd(f(x), h(x)) = 1,

h(x) 6≡ 0 (mod fi(x)) for each i, and so

(h(x)c)3 = h(x)q
d−1 ≡ 1 (mod fi(x)).

Thus, h(x)c ∈ {1, ρ, ρ2} (mod fi(x)) for each i.

Let g1(x) = h(x)c − 1(mod f(x)) and g2(x) = h(x)c − ρ(mod f(x)). Since

h(x)c 6∈ {1, ρ, ρ2} (mod f(x)), clearly h(x)c is non-constant over Fq. Then g1 and

g2 are also non-constant. Moreover, since h(x)c 6≡ ρ2 (mod f(x)), there exists an

i0 ∈ {1, · · · , s} with either h(x)c ≡ 1 (mod fi0(x)) or h(x)c ≡ ρ (mod fi0(x)).

Correspondingly, either g1(x) ≡ 0 (mod fi0(x)) or g2(x) ≡ 0 (mod fi0(x)). Hence,

by Proposition 3.4, either gcd(f(x), g1(x)) or gcd(f(x), g2(x)) is a proper factor of

f(x).

We now give an upper bound for the probability that a polynomial h(x)

randomly chosen from the qn− q non-constant polynomials of degree < n in Fq[x]

cannot be used in conjunction with the strategy given above to yield a proper

factor of f(x). To accomplish this, we need only calculate the probability that
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h(x)c ∈ {1, ρ, ρ2} (mod f(x)). By the results of Cantor and Zassenhaus[2], for

each j = 0, 1, 2, there exist c polynomials pi(x), of degree < d, which satisfy

pi(x)c ≡ pj (mod fi(x)), 1 ≤ i ≤ s. This means there are 3cs polynomials p(x)

over Fq of degree < n satisfying p(x)c ∈ {1, ρ, ρ2} (mod f(x)), q − 1 of which are

constant. Since h(x) was chosen to be non-constant, there is a

3cs − (q − 1)

qn − q
=

3( q
d−1
3

)s − (q − 1)

qn − q

<
1

3s−1

≤ 1

3

probability that h(x) ∈ {1, ρ, ρ2} (mod f(x)). Hence, there is > 1 − 1
3s−1 chance

that the randomly selected polynomial h(x) can be used to find a proper factor of

f(x).

Consider the other subcase that q ≡ 2 (mod 3). Since 3 does not divide q−1

in this case, there exists no element of order 3 in (Fq)×. Notice that if there were

an element θ ∈ Fq with θ2 + θ+ 1 = 0, then θ3− 1 = (θ− 1)(θ2 + θ+ 1) = 0 would

contradict the fact that (Fq)× has no element of order 3. Thus, the polynomial

x2 +x+ 1 has no root in Fq and is therefore irreducible over Fq. Let ρ be a root of

x2 +x+ 1 in some extension of Fq. We now factor f(x) in the quadratic extension

field

Fq(ρ) = {a+ bρ : a, b ∈ Fq} ∼= Fq2 .

It is possible that some of the equal degree factors of f(x) which are irreducible

over Fq are not irreducible over Fq(ρ). So, we should perform DDF as the first

step in factoring f(x) over Fq(ρ). Then, since q2 ≡ 22 (mod 3) ≡ 1 (mod 3), we

can use the EDF process described earlier to find all of the irreducible factors of

f(x) over Fq(ρ) ∼= Fq2 , where ρ is our known element of order 3. After obtaining

the irreducible factors of f(x) in Fq(ρ)[x], we can combine factors with coefficients

lying outside of Fq to obtain a non-trivial factorization of f(x) over Fq.
We observe that Cantor and Zassenhaus’ original strategy for factoring f(x)

when p = 2 is very difficult to apply in practice, especially in the case where

q ≡ 2 (mod 3). So, we will develop an alternate factoring approach for the case

of p = 2, which draws from the work of Shoup[6]. We start with the following

proposition.
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Proposition 3.7: Let q = 2v and a ∈ Fq. Then

v−1∑
j=0

a2
j

= 0 or
v−1∑
j=0

a2
j

= 1.

Proof: By Theorem 1.6 and the Generalized FLT,

v−1∑
j=0

a2
j

= a+
v−1∑
j=1

a2
j

= a2
v

+
v−1∑
j=1

a2
j

=
v∑
j=1

a2
j

=
v∑
j=1

a2·2
j−1

=

(
v∑
j=1

a2
j−1

)2

=

(
v−1∑
j=0

a2
j

)2

.

Hence,

v−1∑
j=0

a2
j

(
v−1∑
j=0

a2
j − 1

)
= 0,

and so it must be that

v−1∑
j=0

a2
j

= 0 or
v−1∑
j=0

a2
j

= 1. �

Now, we get a theorem which will give us a new strategy for finding a proper

factor of f(x).
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Theorem 3.8: Let q = 2v and h(x) a polynomial over Fq. Set

g(x) =
vd−1∑
j=0

h(x)2
j

(mod f(x)).

If
vd−1∑
j=0

h(x)2
j
/∈ {0, 1} (mod f(x)), then gcd(f(x), g(x)) is a proper factor of f(x).

Proof: For each i ∈ {1, 2, · · · , s}, note that Fq[x]/(fi(x)) is an isomorphic copy

of the finite field containing qd = 2vd elements. Thus, by Proposition 3.7,

vd−1∑
j=0

h(x)2
j ≡ 0 (mod fi(x)) or

vd−1∑
j=0

h(x)2
j ≡ 1 (mod fi(x)).

Since
∑vd−1

j=0 h(x)2
j
/∈ {0, 1}(mod f(x)), clearly

∑vd−1
j=0 h(x)2

j
is non-constant over

Fq. Hence, g(x) is non-constant. Now, since
∑vd−1

j=0 h(x)2
j 6≡ 1 (mod f(x)),

there must exist an i0 ∈ {1, · · · , s} with
∑vd−1

j=0 h(x)2
j ≡ 0 (mod fi0(x)). So,

g(x) ≡ 0 (mod fi0(x)), and it follows from Proposition 3.4 that gcd(f(x), g(x)) is

a proper factor of f(x). �

For a polynomial h(x) randomly chosen from the qn − q non-constant poly-

nomials in Fq[x] of degree < n, q = 2v, Theorem 3.8 cannot be used to get

a proper factor of f(x) only if
∑vd−1

j=0 h(x)2
j ∈ {0, 1} (mod f(x)), which oc-

curs precisely when gcd(f(x),
∑vd−1

j=0 h(x)2
j
) ∈ {1, f(x)}. Using the results of

Shoup, we have that for each i ∈ {1, · · · , s}, there are qd/2 polynomials pi(x),

of degree < d, such that
∑vd−1

j=0 pi(x)2
j ≡ 0 (mod fi(x)), and qd/2 such that∑vd−1

j=0 pi(x)2
j ≡ 1 (mod fi(x)). This means there are 2(qd/2)s polynomials p(x)

of degree < n in Fq[x] with
∑vd−1

j=0 pi(x)2
j ∈ {0, 1} (mod f(x)), q of which are

constant. Since h(x) was chosen to be non-constant, it follows that there is a

2
(
qd

2

)s
− q

qn − q
<

1

2s−1

chance that
∑vd−1

j=0 h(x)2
j ∈ {0, 1} (mod f(x)). So, there is > 1− 1

2s−1 chance that

gcd(f(x), g(x)) is a proper factor of f(x), where g(x) =
∑vd−1

j=0 h(x)2
j

(mod f(x)).

Using the strategy of finding a proper factor of f(x) given in Theorem 3.8

with randomly chosen polynomials, we now present an EDF algorithm for the case

of p = 2. Apart from the definition of the polynomial g, this algorithm is identical

to the EDF algorithm for the case that q is odd.
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EDF Algorithm over Fq with q = 2v:

A← {f}
while |A| < s do

for each p ∈ A with deg(p) > d do

choose h ∈ Fq[x] with 0 < deg(h) < deg(p) at random

g ←
∑vd−1

j=0 h2
j

(mod p)

if gcd(p, g) 6= 1 and gcd(p, g) 6= p

A← (A− {p}) ∪ {gcd(p, g), p/gcd(p, g)}
end if

end while

output A

We apply this algorithm over F2 in the upcoming example.

Example 3.9: Given that f(x) = x8 + x7 + x5 + x4 + x3 + x + 1 ∈ F2[x] can

be written as the product of distinct irreducibles of degree d = 4, we find the

complete factorization of f(x).

Note that the number of irreducible factors of f(x) is s = 8/4 = 2. So,

there is a > 1
2

probability that a randomly chosen non-constant polynomial over

F2 of degree < 8 will yield a proper factor of f(x) using the EDF algorithm. We

randomly choose x3 + x2 + 1 ∈ F2[x]. Now, we compute

1·4−1∑
j=0

(x3 + x2 + 1)2
j

=
3∑
j=0

(x3 + x2 + 1)2
j

≡ x7 + x5 + x3 + x2 (mod f(x)).

Observe that since
∑3

j=0(x
3 + x2 + 1)2

j
/∈ {0, 1} (mod f(x)), we are guaranteed

to get a proper factor of f(x) by applying Theorem 3.8. So, we compute

gcd(f(x), x7 + x5 + x3 + x2) = x4 + x3 + 1,

and then

f(x)/(x4 + x3 + 1) = x4 + x+ 1.

Thus,

f(x) = (x4 + x3 + 1)(x4 + x+ 1)

is the complete factorization of f(x) over F2.
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This concludes our discussion of equal degree factorization. In the final

section of Chapter 3, we will look at a few useful applications of the Cantor-

Zassenhaus factoring method.

3.3 Applications of the Cantor-Zassenhaus Method

Our work so far in Chapter 3 has provided us with quite a few tools for

gaining information about the factorization of a polynomial over Fq. When used

together, we have established that these tools result in a complete factoring pro-

cess. However, we can also use our tools to answer more specialized questions

about polynomials. Specifically, in this section we will develop a root finding pro-

cess over Fq, two tests for irreducibility, and a method by which we can generate

irreducible polynomials of any given degree. We will then conclude the section by

giving an interesting application of the Cantor-Zassenahus method to Berlekamp’s

method of factoring.

Let f(x) be a non-constant monic polynomial over Fq. Recall from Section

3.1 that xq − x is the product of all distinct monic polynomials of degree 1 in

Fq[x]. Then gcd(f(x), xq − x) gives us the product of all distinct linear factors of

f(x). Notice that we can use our EDF algorithm to factor gcd(f(x), xq − x) and,

in turn, separate all these linear factors. This suggests the following process for

finding all of the roots of f(x).

Steps for Root Finding:

(1) Let h(x) = xq−x(mod f(x)), and find gcd(f(x), h(x)). If gcd(f(x), h(x)) = 1,

conclude that f(x) has no roots. Otherwise, proceed to (2).

(2) Use the EDF algorithm to factor gcd(f(x), h(x)).

(3) Find the roots associated with the linear factors identified in (2). This will

give all the roots of f(x) in Fq.

Example 3.10: Let f(x) = x12+3x11+4x10+5x8+x6+3x5+6x4+6x3+10 ∈ F13[x].

We desire to find all of the roots of f(x) in F13. Let

h(x) = x13 − x(mod f(x))

= 5x11 + 12x10 + 8x9 + 2x8 + 12x7 + 3x5 + 12x4 + 5x3 + 2x+ 4.
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Now, we compute

gcd(f(x), h(x)) = x4 + 3x3 + 4x2 + 5.

Finally, we use the EDF algorithm to find that

x4 + 3x3 + 4x2 + 5 = (x+ 2)(x+ 7)(x+ 8)(x+ 12)

= (x− 11)(x− 6)(x− 5)(x− 1).

Hence, 1, 5, 6, and 11 are all the roots of f(x) in F13.

Next we turn our attention to generating tests for irreducibility. For a posi-

tive integer r, recall that xq
r−x is the product of all the distinct monic irreducibles

in Fq[x] of degree d, where d runs through all of the positive divisors of r. We will

use polynomials of the form xq
r−x to develop a couple of methods for determining

whether the arbitrary polynomial f(x) is irreducible.

Note that if f(x) is reducible, then it is not hard to see that f(x) must have

an irreducible factor of degree ≤ deg(f(x))/2. With this observation in mind, we

give the following proposition.

Proposition 3.11 (General Irreducibility Test): Let f(x) ∈ Fq[x] be a monic

polynomial of degree n > 1. Then f(x) is irreducible over Fq if and only if

gcd(f(x), xq
r − x) = 1 for all integers r with n

4
< r ≤ n

2
.

Proof : First, suppose that f(x) is irreducible over Fq, and let r be a positive

integer with n
4
< r ≤ n

2
. Note that the degree of any monic irreducible factor of

xq
r − x must divide r. Then since n - r, the irreducible f(x) is not a factor of

xq
r − x. So it must be that gcd(f(x), xq

r − x) = 1.

We now prove the other direction of the statement by proving its contraposi-

tive. Suppose that f(x) is reducible. We seek to show there exists an integer r with
n
4
< r ≤ n

2
such that gcd(f(x), xq

r−x) 6= 1. Since f(x) is reducible, f(x) must have

an irreducible factor, say g(x), of degree k ≤ n
2
. Clearly g(x)| gcd(f(x), xq

k − x),

and so gcd(f(x), xq
k −x) 6= 1. Hence, if the positive integer k satisfies n

4
< k ≤ n

2
,

then we are done. So, assume that k ≤ n
4
. Let j =

[
n
4k

]
, where

[
n
4k

]
is the largest

integer ≤ n
4k

, and let s = (j + 1)k. Then

s >
n

4k
· k =

n

4
,
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and

s ≤
( n

4k
+ 1
)
k

=
n

4
+ k

≤ n

4
+
n

4

=
n

2
.

Now, since k divides the integer s and g(x) is an irreducible of degree k, it

follows that g(x) is a factor of xq
s − x. Hence, g(x)| gcd(f(x), xq

s − x), and

gcd(f(x), xq
s − x) 6= 1. �

We now use Proposition 3.11 to develop an algorithm for irreducibility test-

ing.

General Irreducibility Test Algorithm:

The input is a monic polynomial f over Fq of degree n > 1.

for r =
[
n
4

]
+ 1,

[
n
4

]
+ 2, · · · ,

[
n
2

]
do

h← xq
r − x (mod f(x))

g ← gcd(f, h)

if g 6= 1

then output “reducible” and STOP

end if

end for

output “irreducible”

The basic idea of this algorithm is that starting with r =
[
n
4

]
+1, we compute

xq
r
(mod f(x)) using binary exponentiation and then take the corresponding gcd.

If we reach the end of the for loop, then by Proposition 3.11, we know that f(x)

is irreducible. This algorithm is applied in Example 3.12.

Example 3.12: Consider the polynomial f(x) = x7+2x6+x3+x2+x+2 over F3.

We seek to discover whether or not f(x) is irreducible. To start the irreducibility

test, notice that the only integers r satisfying 7
4
< r ≤ 7

2
are r = 2 and r = 3.

First, we use binary exponentiation and the Euclidean Algorithm to find that

x3
2 − x ≡ x6 + 2x5 + x4 + 2x2 + 2x+ 1 (mod f(x)), and

gcd(f(x), x6 + 2x5 + x4 + 2x2 + 2x+ 1) = 1.

69



Next, we compute

x3
3 − x ≡ x6 + 2x4 + 2x2 + x+ 2 (mod f(x)), and

gcd(f(x), x6 + 2x4 + 2x2 + x+ 2) = 1.

Thus, by the General Irreducibility Test, f(x) is irreducible over F3.

When n is large, we observe that the General Irreducibility Test requires a

great deal of gcd computations before concluding that a polynomial is irreducible.

We will now formulate an alternate irreducibility test, due to Rabin[5], that does

not require nearly as many gcd computations for large degree inputs.

Proposition 3.13 (Rabin’s Irreducibility Test): Let n > 1 be an integer

and w1, w2, · · · , wk be all the distinct prime divisors n. Denote ni = n/wi for

1 ≤ i ≤ k. A monic polynomial f(x) ∈ Fq[x] of degree n is irreducible in Fq[x] if

and only if gcd(f(x), xq
ni − x) = 1 for each 1 ≤ i ≤ k, and f(x) divides xq

n − x.

Proof : First, suppose f(x) is irreducible over Fq. For each ni, the degree of each

irreducible factor of xq
ni−x divides ni. Since n - ni, clearly f(x) not an irreducible

factor of xq
ni − x. Hence, gcd(f(x), xq

ni − x) = 1 for each i. Furthermore, since

each irreducible in Fq[x] of degree n divides xq
n − x, it follows that f(x) divides

xq
n − x.

Next we prove the contrapositive of the other direction of the statement.

Suppose that f(x) is reducible over Fq and f(x) divides xq
n − x. Since f(x)

is reducible, f(x) has an irreducible factor in Fq[x], say g(x), of degree d < n.

Now, since g(x) divides xq
n − x it follows that d|n. Suppose n = wα1

1 w
α2
2 · · ·w

αk
k

is the prime factorization of the integer n, where α1, α2, · · · , αk are positive in-

tegers. Then since d|n, we can write d = wβ11 w
β2
2 · · ·w

βk
k for some nonnegative

integers β1, β2, · · · , βk. Furthermore, since d < n, it must be that βi < αi for some

1 ≤ i ≤ k. Then clearly d|ni. Hence, g(x) is a factor of xq
ni − x, and it follows

that gcd(f(x), xq
ni − x) 6= 1. �

Using Proposition 3.13, on the next page we present an alternate algorithm

for irreducibility testing.
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Rabin’s Irreducibility Test Algorithm:

Let w1, w2, · · · , wk be all the distinct prime divisors of an integer n > 1 ordered

so that w1 > w2 > · · · > wk. The input is a monic polynomial f ∈ Fq[x] of degree

n.

for j = 1, 2, · · · , k do

nj ← n/wj

end for

for i = 1, 2, · · · , k do

h← xq
ni − x (mod f)

g ← gcd(f, h)

if g 6= 1

then output “reducible” and STOP

end if

end for

g ← xq
n − x (mod f)

if g 6= 0

then output “reducible” and STOP

end if

output “irreducible”

Note that the prime divisors w1, w2, · · · , wk of n are ordered so that w1 >

w2 > · · · > wk to give n1 < n2 < · · · < nk. In the case that the input f is

reducible, this ensures that we do not reduce xq
ni −x mod f for any unnecessarily

large values of ni.

Now, let’s look at an example.

Example 3.14: Let f(x) = x10 + x9 + x7 + x5 + x4 + x2 + 1 ∈ F2[x]. To apply

Rabin’s Irreducibility Test, first notice that the only prime divisors of 10 are 5

and 2. So, we let n1 = 10/5 = 2 and n2 = 10/2 = 5 in the algorithm. First, we

compute

x2
2 − x ≡ x4 − x (mod f(x)), and

gcd(f(x), x4 − x) = 1.

Next we compute

x2
5 − x ≡ x7 + x6 + x4 (mod f(x)), and

gcd(f(x), x7 + x6 + x4) = 1.
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So, all of the necessary gcd’s are 1. Now, using binary exponentiation at great

length, it can be found that x2
10 ≡ x (mod f(x)). Hence,

x2
10 − x ≡ 0 (mod f(x)),

which means that f(x) divides x2
10−x. Thus, by Rabin’s Irreducibility Test, f(x)

is irreducible over F2.

A major disadvantage of Rabin’s Test is that we must always compute

xq
n − x (mod f(x)), where n is the degree of f(x). This computation can be

quite tedious, even in cases where n is not relatively large. Recall that when using

the General Irreducibility Test, the highest value for r for which xq
r−x (mod f(x))

must be computed is r = n
2
. So, in cases where n is not very large, the General

Irreducibility Test is preferable from a computational standpoint. For example,

the computations required by the General Irreducibility Test to show the degree

10 polynomial of Example 3.14 is irreducible are much less tiresome than the com-

putations required by Rabin’s Test.

Now that we have established irreducibility tests, we can potentially generate

irreducible polynomials of a given degree by using trail and error. For example, if

we want an irreducible of degree 7, we can begin randomly selecting degree 7 poly-

nomials in Fq[x] and hope that we eventually find one that is deemed irreducible

by an irreducibility test. With a little luck, this process may work sometimes,

but, in general, it is not even close to being an efficient method for generating

irreducibles. We seek to develop a better method.

We begin by setting

h1(x) = xq − x.

Then h1(x) is the product of all monic degree 1 polynomials over Fq. We can ac-

tually separate all the monic linear polynomials by applying EDF to h1(x). Notice

that since xq
2 − x is the product of all monic degree 1 and degree 2 irreducibles,

dividing xq
2 −x by h1(x) gives the product of only the degree 2 irreducibles. Now

we let

h2(x) =
xq

2 − x
h1(x)

.

Applying EDF to h2(x) will separate all degree 2 irreducibles. Further, since

xq
3 − x is the product of all monic degree 1 and degree 3 irreducibles over Fq,

dividing xq
3 − x by h1(x) gives the product of just the degree 3 irreducibles. So,
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we let

h3(x) =
xq

3 − x
h1(x)

.

We then can apply EDF to h3(x) to generate all the distinct degree 3 irreducibles.

Next, since xq
4−x is the product of all degree 1, degree 2, and degree 4 irreducibles,

dividing xq
4−x by h1(x)h2(x) gives the product of all degree 4 irreducibles. Then

we let

h4(x) =
xq

4 − x
h1(x)h2(x)

,

and we can apply EDF to h4(x) to separate all the distinct degree 4 irreducibles.

Continuing this process recursively, for a positive integer k, we have

hk(x) =
xq

k − x∏
d|k
d<k

hd(x)
,

where hk(x) is the product of all disinct monic irreducibles of degree k over Fq.
These irreducibles can be separated by applying EDF to hk(x).

We have now developed a process for generating all irreducibles in Fq[x] of

any given degree. This process is applied in Example 3.15.

Example 3.15: We will find all monic irreducible polynomials of degree ≤ 5 in

F2[x]. Applying EDF in each step of our process, we find

h1(x) = x2 − x

= x(x− 1),

h2(x) =
x4 − x
h1(x)

= x2 + x+ 1,

h3(x) =
x8 − x
h1(x)

= (x3 + x+ 1)(x3 + x2 + 1),
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h4(x) =
x16 − x

h1(x)h2(x)

= (x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1),

h5(x) =
x32 − x
h1(x)

= (x5 + x2 + 1)(x5 + x3 + 1)(x5 + x3 + x2 + x+ 1)(x5 + x4 + x2 + x+ 1)

· (x5 + x4 + x3 + x+ 1)(x5 + x4 + x3 + x2 + 1).

The factors in these five products give all monic irreducible polynomials of degree

≤ 5 over F2.

Recall that being able to find irreducibles allows us to explicitly construct

finite fields. For example, if we can find an irreducible g(x) of degree v over Fp,
then we can let α be an arbitrary root of g(x) and construct the finite field

Fp(θ) = {a0 + a1α + a2α
2 + · · ·+ av−1α

v−1 : a0, a1, a2, · · · , av−1 ∈ Fp}
∼= Fpv

= Fq.

We can then use the fact that α is a root of g(x) to perform operations in Fp(θ).
Computationally speaking, when v > 1, the field Fq is useless to us unless we can

find irreducibles that yield concrete representations of it. Hence, the fact that we

have developed a way to generate irreducibles is of great importance - it basically

means we can do computations in any finite field of our choosing.

We will conclude the chapter by applying the strategies of Cantor and Zassen-

haus to Berlekamp’s technique for factoring. Specifically, for the case that q is odd,

we will generate a probabilistic method for finding a proper factor of an arbitrary

polynomial over Fq. Note that the work we do here will closely resemble our work

in Section 3.2 over EDF.

Suppose q is odd and let f(x) ∈ Fq[x] be a non-constant monic polynomial

of degree n with complete factorization f(x) = f1(x)k1f2(x)k2 · · · fm(x)km , where

m ≥ 2. Recall from Chapter 2 that we sought to factor f(x) by finding polynomials

in the vector space

V = {g(x) ∈ Fq[x] : deg(g(x)) < n and g(x)q ≡ g(x) (mod f(x))}

over Fq. It follows from Theorem 2.7 that V has qm elements, where m is the
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number of distinct irreducibles which divide f(x). We now choose a random

polynomial g(x) from the qm − 1 nonzero polynomials contained in V (remember

that selecting a random element from V amounts to randomly selecting coefficients

that solve a homogenous system of equations). We seek to use g(x) in some way to

get a proper factor of f(x). Notice that if gcd(f(x), g(x)) 6= 1, then gcd(f(x), g(x))

gives us a proper factor of f(x). So, we assume that gcd(f(x), g(x)) = 1.

By Proposition 2.6, for i = 1, 2, · · · ,m, we have that g(x) ≡ gi (mod fi(x)ki)

for some gi ∈ Fq. Set c = q−1
2

. Since gcd(f(x), g(x)) = 1, it follows that g(x) 6≡
0 (mod fi(x)ki) for each i, which implies gi 6= 0. Thus, by the Generalized FLT,

(g(x)c)2 = g(x)q−1

≡ gq−1i (mod fi(x)ki)

≡ 1 (mod fi(x)ki),

and so g(x)c ≡ 1 (mod fi(x)ki) or g(x)c ≡ −1 (mod fi(x)ki) for each i.

For the time being, we additionally assume that g(x)c 6≡ ±1 (mod f(x))

(note that this automatically guarantees g(x) is non-constant in Fq[x]). In partic-

ular, since g(x)c 6≡ −1 (mod f(x)), we have that g(x)c 6≡ −1 (mod fi0(x)ki0 ) for

some 1 ≤ i0 ≤ m. Then g(x)c ≡ 1 (mod fi0(x)ki0 ), and so fi0(x)ki0 is a common

factor of f(x) and g(x)c− 1. Since we also have that g(x)c− 1 6≡ 0 (mod f(x)), it

follows that gcd(f(x), g(x)c − 1) is a proper factor of f(x).

Removing all of our assumptions, we now calculate the probability that for a

random, nonzero element g(x) ∈ V , neither gcd(f(x), g(x)) nor gcd(f(x), g(x)c−1)

is a proper factor of f(x). Considering our previous results, we need only calculate

the probability that g(x)c ≡ ±1 (mod f(x)). Recall from the proof of Theorem

2.7 that there is a one-to-one correspondence between V and the set

S = {(s1, s2, · · · , sm) : si ∈ Fq}.

The nature of this correspondence is that s(x) ∈ V iff there exists a unique m-

tuple (s1, s2, · · · , sm) ∈ S with s(x) ≡ si (mod fi(x)ki) for each i and deg(s(x)) <

n. Now, as noted by Cantor and Zassenhaus[2], it can be shown that there

are cm m-tuples (s1, s2, · · · , sm) such that sci = 1 for each i, and cm such that

sci = −1 for each i. Correspondingly, there are 2cm polynomials s(x) ∈ V with

s(x) ≡ ±1 (mod f(x)). Thus, the probability that neither gcd(f(x), g(x)) nor

gcd(f(x), g(x)c − 1) is a proper factor of f(x) is
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2cm

qm − 1
=

1

2m−1
· (q − 1)m

qm − 1

<
1

2m−1
.

So, there is a > 1− 1
2m−1 chance that either gcd(f(x), g(x)) or gcd(f(x), g(x)c−1)

is a proper factor of f(x). As m, the number of distinct irreducible factors of f(x),

grows large, the probability of getting a proper factor of f(x) using this method

approaches 1.

Recall that for a non-constant element g(x) ∈ V , Theorem 2.9 guarantees

that at least one element of the set

{gcd(f(x), g(x)− s) : s ∈ Fq}

is a proper factor of f(x). Notice that if q is large, we may have to compute

gcd(f(x), g(x) − s) for many values of s before finding a proper factor. How-

ever, with our new results, we know that there is a high probability that either

gcd(f(x), g(x)) or gcd(f(x), g(x)c − 1) will be a proper factor of f(x). So, our

new probabilistic factorization technique using the elements of V only requires

two gcd computations, no matter the size of q. Since there are not as many gcd

computations required by this probabilistic technique, we recommend using it to

get a nontrivial factorization of f(x).

By meshing together the Cantor-Zassenhaus and Berlekamp methods for

factoring, we got a considerable result. Hopefully, even more progess in factor-

ing polynomials over Fq can be made by looking at these methods together. For

example, it would be an interesting endeavor to attempt to generate a complete

factoring algorithm that utilizes the probabilistic method we just formulated for

finding a proper factor of the arbitrary polynomial f(x) ∈ Fq[x]. Furthermore,

it might be productive to explore how DDF can be used in conjunction with

Berlekamp’s method to formulate a better deterministic algorithm for factoring.

As always, the search for new ideas goes on.
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