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Marine pore-water sulfate profiles indicate in situ
methane flux from underlying gas hydrate

Walter S. Borowski
Charles K. Paull
Department of Geology, University of North Carolina, Chapel Hill, North Carolina 27599-3315
William Ussler Il
NIWA, P.O. Box 14-901, Wellington, New Zealand

ABSTRACT

Marine pore-water sulfate profiles measured in piston cores are used to estimate
methane flux toward the sea floor and to detect anomalous methane gradients within
sediments overlying a major gas hydrate deposit at the Carolina Rise and Blake Ridge (U.S.
Atlantic continental margin). Here, sulfate gradients are linear, implying that sulfate de-
pletion is driven by methane flux from below, rather than by the flux of sedimentary organic
matter from above. Thus, these linear sulfate gradients can be used to quantify and assess
in situ methane flux, which is a function of the methane inventory below.

INTRODUCTION

Microbial sulfate depletion, microbial methane production,
and gas hydrate formation are interrelated diagenetic processes that
occur in deep-sea, continental-margin sediments (Paull et al., 1994).
Gas hydrates are crystalline solids composed of water and low-mo-
lecular-weight gases (e.g., CH,) that form under conditions of low
temperature, high pressure, and adequate gas concentration (Sloan,
1990). Early diagenesis is strongly controlled by microbially medi-
ated reactions that utilize available oxidants to convert sedimentary
organic matter into microbial byproducts (Claypool and Kaplan,
1974) that may ultimately form gas hydrate. Once marine sediment
becomes anoxic, sulfate reduction becomes the dominant microbial
process that causes interstitial sulfate concentration to decrease
with depth below the sediment-water interface (Berner, 1980).
When sulfate is essentially depleted, methane production begins
(Martens and Berner, 1974), resulting in increasing methane con-
centration with depth (Claypool and Kaplan, 1974). Using isotopic
and compositional data, Brooks et al. (1983), Claypool and
Threlkeld (1983), Galimov and Kvenvolden (1983), and Paull et al.
(1995) have shown that the methane in gas hydrate of the Carolina
Rise and Blake Ridge region is microbial in origin, and does not
have a significant thermogenic component.

Detection and Estimation of Gas Hydrate

Currently, the detection of gas hydrate is based on the occur-
rence of bottom simulating reflectors (BSRs) on seismic sections
(Bryan, 1974). Evidence suggests that BSRs correspond to the base
of gas hydrate stability below which gaseous methane may occur
(Bangs et al., 1993; MacKay et al., 1994). BSRs at the Carolina Rise
and Blake Ridge occur at sediment depths of 200—600 m subbottom
and outline an areally extensive (~26000 km?) gas hydrate field
(Dillon and Paull, 1983).

Current global estimates indicate that gas hydrates are the
Earth’s second-largest organic carbon reservoir (Kvenvolden, 1988),
but delimiting hydrate amounts even at particular localities is prob-
lematic (Ginsburg and Soloviev, 1995). In addition, the concentra-
tion and flux of methane in deep-water, continental-margin sedi-
ments are difficult to measure because of degassing during sample
recovery. In this paper, we evaluate the potential of using pore-
water sulfate profiles as a geochemical sensor to locate underlying
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gas hydrate deposits and to estimate by proxy the flux of methane
from below.

Pore-Water Sulfate Depletion Processes

Typical interstitial sulfate profiles from marine sedimentary en-
vironments exhibit curved, convex-up profiles reflecting sulfate con-
sumption (SO,*~ + 2CH,O0 — H,S + 2HCO; ") by sulfate-reducing
microbes (e.g., Berner, 1980; Gieskes, 1981). If steady-state sulfate
profiles do not exhibit this typical convex-up curvature, another pro-
cess must be involved. Microbially mediated, anaerobic methane
oxidation (SO,*~ + CH, — HS™ + HCO;~ + H,0) is also capable
of consuming sulfate, but requires a supply of methane (Reeburgh,
1976; Barnes and Goldberg, 1976). We propose that anaerobic
methane oxidation focused at the base of the sulfate reduction zone
is the principal sulfate-consuming process at the Carolina Rise and
Blake Ridge, indicating that sulfate depletion is driven by methane
flux from below.

METHODS

We collected 38 piston cores (mean length ~12 m) from the
Carolina Rise and Blake Ridge to assemble a comprehensive, geo-
chemical data set for sediments and their pore waters overlying
well-developed methane gas hydrates. Pore waters were squeezed
from 6-cm-thick, whole round sections of core sediment. Ammo-
nium and CO, were analyzed at sea using the methods of Presley
(1971) and Weiss and Craig (1973), respectively. Sulfate was deter-
mined onshore by ion chromatography (Gieskes et al., 1991). Total
solid-phase sulfide (SO, FeS, FeS,) was separated using the method
of Canfield et al. (1986) and analyzed for 3**S by Geochron
Laboratories.

RESULTS AND DISCUSSION
Observed Geochemical Profiles

At the Carolina Rise and Blake Ridge, most sulfate profiles (27
of 38) are linear (Fig. 1) within =95% probability (r test; Young,
1962). In these lithologically similar sediments, linear regressions fit
to data for individual cores indicate sulfate gradients of 2.86 to 0.18
millimeter (mM) m ™. Intercepts range from 10 m to extrapolated
depths of 155 m and define the depth of no sulfate at the base of the
sulfate-reduction zone. Linear gradients in the absence of convex-up
curvature suggest that the dominant sulfate-consuming reaction oc-
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Figure 1. Pore-water sulfate concentrations vs.
depth in five piston cores from Carolina Rise and
Blake Ridge. Concentration is expressed in milli-
molar (mM) units; measurement uncertainties are
less than symbol size, unless error bars are
present. Sulfate concentration gradients show fac-
tor of 16 variation, and five illustrated cores rep-
resent spectrum of differing sulfate gradients. Data
from core 11-8, highlighted with arrow (filled
squares), show highest gradient. Cores with low-
est sulfate gradients (e.g., core 31-24, filled circles)
represent background gradients.

curs at or near the depth of no sulfate, consistent with anaerobic
methane oxidation.

Other data are consistent with focused sulfate consumption via
aerobic methane oxidation near the depth of no sulfate. (1) CO,
profiles are generally linear within the sulfate reduction zone, and
in core 11-8, the = CO, profiles change slope markedly near the
depth of no sulfate (~10 m; Fig. 2), indicating localized ~CO, pro-
duction. The linear CO, profile above the depth of no sulfate is

84 r4
3 I
» g -8
> I
o
212 P
£
2
D 16 T L] T T L] T L) T T T T 16
0 10 20 30 -60-40 -20 0 20 40
Concentration (mM) 5348 Solid Phase Sulfide

Figure 2. Interstitial SO,>~,NH,*, and CO, concentrations and 3%*S of
total solid phase sulfide from core 11-8 (lat 31°27.92’'N; long
75°8.04'W). Concentration is expressed in millimolar (mM) units; mea-
surement uncertainties are less than symbol size, unless error bars are
present. Both sulfate and CO, profiles are linear above depth of no
sulfate (DNS) at ~10.3 m (correlation coefficients, r> = 0.984 and 0.980,
respectively). However, CO, shows marked slope change at ~10 m,
suggesting local HCO,~ production. NH,* profile is linear (r> = 0.995)
in entire core with no slope break at 10 m, suggesting that ammonium
produced by sulfate reduction of sedimentary organic matter is low
compared to upward flux from deeper source. 53*S values of total solid
phase sulfide are distinctly different above and below DNS. This is
consistent with focused consumption of seawater sulfate at base of
sulfate reduction zone.
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consistent with diffusion of dissolved CO, toward the sediment-
water interface. (2) Highly negative 5'°C co, values would imply
that carbon is derived from methane, but we could not measure
3'3C (o, for these cores. However, existing Deep Sea Drilling
Project data from nearby Site 533 show §'3C co, as negative as
—31.4%o at the base of the sulfate reduction zone (Claypool and
Threlkeld, 1983). (3) Ammonium is produced by oxidation of ni-
trogen-containing sedimentary organic matter through sulfate re-
duction (e.g., Gieskes, 1981), but not by anaerobic methane oxida-
tion. Ammonium profiles in Carolina Rise and Blake Ridge cores
are usually linear, and in core 11-8, the profile shows no inflection
at the base of the sulfate-reduction zone (Fig. 2). Thus, the major
source of ammonium is not concentrated near the interface, nor
within the sulfate-reduction zone, but must occur well below the
sulfate-reduction zone. Any ammonium produced by sulfate reduc-
tion of sedimentary organic matter is a minor component and its
signature is overwritten by diffusion of ammonium from below. (4)
3**S values of total solid phase sulfide show little variation (mean
—38.1%0 * 6%o0, N = 5) with depth within the sulfate-reduction
zone, but increase to +23.6%o0 immediately below the sulfate-re-
duction zone. This suggests focused sulfate consumption at the base
of the sulfate-reduction zone as sulfur in seawater sulfate (3**S =
+20.0%0 = 0.1%o0; Rees et al., 1978) is reduced to ultimately reside
in solid-phase sulfide (Goldhaber and Kaplan, 1980).

Role of Organic Carbon in Sulfate Depletion

Sulfate depletion is usually controlled by the quantity and qual-
ity of sedimentary organic matter, supplied by depositional process-
es, which is essentially a function of sedimentation rate (Toth and
Lerman, 1977; Berner, 1978; Canfield, 1991). However, at the Caro-
lina Rise and Blake Ridge, the linearity and factor of 16 variation
of sulfate gradients (Fig. 1) cannot be explained by sulfate reduction
utilizing in situ sedimentary organic matter. Sedimentation rate var-
ies little over the region or downcore (~22 cm/k.y.; Buelow, 1994),
indicating that organic-matter flux has been relatively uniform in
both space and time. Thus, sulfate gradients are not correlated with
sedimentation rate. In addition, variations in sedimentary total or-
ganic carbon (TOC) appear to exert little control on sulfate deple-
tion. TOC varies by only a factor of two (mean TOC = 0.67% =
0.38%, N = 683) in the piston-core sediments, and cores with the
highest TOC values have the lowest sulfate depletion relative to
seawater sulfate concentration.

Importance of Anaerobic Methane Oxidation

We infer that anaerobic methane oxidation is responsible for
the bulk of sulfate depletion observed at the Carolina Rise and
Blake Ridge. Anaerobic methane oxidation links sulfate and meth-
ane consumption at the base of the sulfate reduction zone (approx-
imately the depth of no sulfate) and should result in the 1:1 stoi-
chiometric consumption of methane and sulfate (see reaction
above).

A simple one-dimensional, finite-difference diagenetic model
was used to test the effect of a sulfate sink at the base of the sulfate
reduction zone on sulfate concentration profiles. The model, based
on Berner’s (1980) diagenetic equation for sulfate depletion, as-
sumes steady state, and that compaction, sediment burial, and dif-
fusion are the only mass-transport processes. Focused sulfate con-
sumption at the base of the sulfate reduction zone (representing
sulfate depletion due only to anaerobic methane oxidation) results
in linear model profiles that mimic the linear sulfate gradients ob-
served in piston core sediments.
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Figure 3. Schematic diagram shows how upward methane flux
controls sulfate profiles and depth of no sulfate (DNS). Arrow
size is proportional to upward methane flux. Typical sulfate
profiles display convex-up curvature (A) reflecting sulfate re-
duction of in situ organic sedimentary matter. Linear sulfate
profiles (B and C) result when focused sulfate consumption,
driven by methane flux from below, occurs at DNS at rates
substantially greater than those for sulfate reduction of in situ
sedimentary organic matter. In these cases, sulfate diffuses
into sediments and is consumed by reaction with methane at
base of sulfate reduction zone. Rate of sulfate consumption
and steepness of sulfate gradients are thus controlled by flux
of methane from below.

Sulfate and Methane Flux

Linear sulfate profiles indicate that sulfate consumption is pri-
marily driven by upward-diffusing methane rather than by flux of
organic matter to the sediment. At steady state, sulfate and methane
fluxes should be balanced so that interstitial sulfate concentrations
will be determined by the upward flux of methane from below
(Fig. 3).

The sulfate flux (J) for the largest observed sulfate gradient
(core 11-8; 2.9 mM m™ ') is 1.8 X 10~ mmol cm 2 yr ! calculated
using Fick’s First Law (Berner, 1980):

J=Dob* -

where D,, is the diffusion coefficient of SO,*~ in water (5.8 X 10~¢
cm? s~! at 5°C; Li and Gregory, 1974), and ¢ is porosity (mean
porosity over the upper 10 m is 0.70; Paulus, 1972). This estimate is
based on bottom-water temperatures of 3 to 5 °C (Luyten, 1977), a
geothermal gradient of 40 °C km ™' (Ruppel et al., 1995), and sed-
iment strength data from the piston cores. Assuming that downward
sulfate flux is stoichiometrically balanced by upward methane flux
(i.e-,Jso, = Jcn,) at the depth of no sulfate, the proxy methane flux
for core 11-8 is also 1.8 X 10~ mmol cm ™2 yr~'. Using the mea-
sured sulfate gradients, proxy methane flux varies by at least a factor
of 16 over the Carolina Rise and Blake Ridge.

Methane Gradients

Bottom-simulating reflectors may be produced by gas bubbles
at the base of gas hydrate stability (Bangs et al., 1993; MacKay et al.,
1994), where gas hydrate begins to dissociate so that methane gas,
methane-saturated water, and gas hydrate coexist. Methane con-
centration at the base of gas hydrate stability can be calculated
(Paull et al., 1994) using the methane solubility model of Duan et al.
(1992). Methane gradients calculated from proxy methane fluxes
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can be compared to gradients required by methane saturation at the
base of gas hydrate stability (Paull et al., 1994) to determine if
diffusive equilibrium exists between the base of gas hydrate stability
and the base of the sulfate-reduction zone. For example, the meth-
ane saturation concentration at core site 11-8 at the base of gas
hydrate stability is ~188 mM (hydrostatic conditions; water depth =
3000 m; base of gas hydrate stability = 600 m subbottom; geother-
mal gradient ~40°C km™'; Ruppel et al., 1995) and predicts a
diffusive, steady-state methane gradient of 0.3 mM m~!. The proxy
methane flux (1.8 X 1072 mmol cm 2 yr!) for core 11-8 predicts
a methane gradient of 2 mM m ™' using Fick’s First Law (¢ = 0.60;
Paulus, 1972; D,,“™ = 1.31 X 107> cm? s~ ! at 15 °C; Lerman, 1979).
At core site 11-8, the proxy methane flux is more than a factor of six
larger than that required by diffusive equilibrium with methane at
the base of gas hydrate stability.

Implications

Steeper methane gradients imply significant dissolved methane
concentrations well above the base of gas hydrate stability, closer to
the methane-sulfate boundary. At steady state, steep gradients may
occur because (1) intensified microbial methane production occurs
with depth, or (2) dissolved methane is associated with gas hydrate
below. Linear concentration gradients of sulfate and other dissolved
species imply steady-state processes. The first scenario is unlikely
because the most labile organic matter should be consumed by sul-
fate reducers before methane production begins. In addition, TOC
changes little with depth at these sites (Boyce, 1972; Sheridan et al.,
1983; Buelow, 1994), implying that there is no increased amount of
substrate available for increased methane production. Methane as-
sociated with gas hydrates is the simplest explanation.

CONCLUSION

Linear sulfate profiles in piston cores from Carolina Rise and
Blake Ridge sediments imply that anaerobic methane oxidation is
the dominant sulfate-consuming process. Variations in linear sulfate
gradients are controlled by differences in upward methane flux
(Fig. 3). Methane flux, calculated from sulfate profiles, varies by at
least a factor of 16, which suggests lateral variation in methane
concentrations at depth. We infer that this methane is associated
with underlying gas hydrate deposits, indicating laterally heteroge-
neous hydrate distribution. Wherever sulfate profiles are linear, sul-
fate gradients may be used to estimate the in situ methane flux from
other continental-margin sediments.
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