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ABSTRACT 

An important aspect of conservation biology is understanding how land-use 

changes impact biodiversity. Ridge-top wetlands are unique habitat for pond-breeding 

amphibians and the Daniel Boone National Forest (DBNF) contains natural forested 

ridge-top wetlands in close proximity to constructed wetlands intermixed across the same 

landscape. Genetic data can be used to address current population status, probability of 

persistence, and population connectivity. The objective of this study was to determine the 

amount and distribution of population genetic diversity of wood frogs in natural ridge-top 

wetlands and what factors influence this. Genetic data were analyzed for nine 

microsatellite DNA loci from twenty-five wood frog egg clutches at each of five 

randomly selected natural wetlands. Overall, genetic variation was measured by 

calculating observed heterozygosity (0.250–0.960), expected heterozygosity (0.270–

0.913), and mean allelic richness (8.83–11.95). The results from program STRUCTURE 

gave support for 3 genetic clusters, and overall FST was 0.054 ± 0.022 SE among 

populations. Three populations exhibited signs of a recent population bottleneck event 

within populations. Pairwise FST and DST values were correlated, with DST indicating 

slightly higher population divergence. Isolation by distance was significant (P = 0.0354; 

R2 = 0.445), indicating that geographic distance between the wetlands was an important 

factor explaining genetic differentiation. Future work should focus on expanding the 

sampling to a larger scale and sampling both natural and constructed wetlands between 

the sites to understand more fully how the genetic variation is partitioned across the 

landscape. For example, wood frogs have been observed breeding in both constructed and 

natural wetlands, which may demonstrate source/sink dynamics, and predation on wood 
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frog eggs in constructed wetlands may decrease overall wood frog genetic diversity over 

time.    
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CHAPTER 1 

 

I. INTRODUCTION 

An important aspect of conservation biology is understanding how land-use 

changes impact biodiversity (Schwenk and Donovan 2011; Richardson 2012). Patch size 

affects population size and distribution, and the degree of population connectivity among 

fragmented suitable habitats across the landscape is driven by types of land use between 

patches (Ricketts 2001; Cushman 2006; Cushman et al. 2006).  Additionally, connectivity 

and response to changes in the landscape will vary among species because of their 

different life histories and abilities to disperse across various land-use types (Gibbs 1998; 

Graeter et al. 2008; Richardson 2012). Types of biodiversity include ecosystem diversity, 

functional diversity, species diversity, and genetic diversity.  

One type of biodiversity, genetic diversity, aids in sustaining viable populations 

and, therefore, regional species diversity (Wake and Vredenburg 2008), and studies 

focusing on the distribution of genetic diversity provide estimates of effective migration 

and gene flow (Julian et al. 2003). Genetic diversity can be defined as a measure of 

genetic variability within a population, such as the number of alleles per locus (Hughes et 

al. 2008; Scherer et al. 2012). Impacts to genetic diversity include habitat fragmentation, 

genetic drift, and population age and size (Scherer et al. 2012).  

Wetland systems are important for maintaining regional biodiversity and provide 

key habitat for pond-breeding amphibians (Curado et al. 2011; Brown and Richter 2012). 

The terrestrial upland habitat surrounding wetlands is equally important for amphibian 

biodiversity through protection of water resources and habitat for life-history functions, 

including feeding, overwintering, and juvenile dispersal (Guerry and Hunter 2002; 
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Semlitsch and Bodie 2003; Cushman 2006). One type of wetland, forested ridge-top 

wetlands, is found across the eastern part of the state and is a primary amphibian breeding 

habitat (Brown and Richter 2012). Ridge-top wetlands are unique because of their 

geographic isolation from other natural wetlands and streams, occurrence on flat terrain, 

and ephemeral hydrology, and they contribute to vital ecological and landscape services 

such as provide habitat for diverse flora and fauna and filter sediments from surface water 

(Brown and Richter 2012; Kirkman et al. 2012). Ephemeral ridge-top wetlands in eastern 

Kentucky support an amphibian community of twelve species including some specialists 

of ephemeral wetlands: marbled salamanders (Ambystoma opacum), four-toed 

salamanders (Hemidactylium scutatum), wood frogs (Lithobates sylvaticus), and eastern 

spadefoots (Scaphiopus holbrookii) (Denton and Richter 2013; Drayer 2011).  

Wetland loss and other habitat destruction and fragmentation have contributed to 

the recent decline in biodiversity, especially of amphibians because of their need for a 

moist environment and small body size (Gibbs 1998; Hayes et al. 2010; Buck et al. 2011; 

Curado et al. 2011).  In the United States, most natural wetlands have been lost or 

degraded; Kentucky has lost more than 80% of its historic wetlands (Dahl 2000; Brown 

and Richter 2012). Because anthropogenic modifications occur over shorter time frames 

than natural processes, they can lead to rapid population subdivision and reduced 

connectivity (Crosby et al. 2009; Scherer et al. 2012). Therefore, when wetlands or the 

surrounding habitat become degraded and fragmented, genetic diversity can be severely 

reduced (Andersen et al. 2004; Cushman et al. 2006; Greenwald et al. 2008; Richter et al. 

2009; Rivera-Ortíz et al. 2014).  
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Genetic data can be used to address current population status (i.e. health, 

viability) and probability of persistence (Cosentino et al. 2011). Additionally, genetic 

data are useful in identifying population connectivity as it relates to landscape 

heterogeneity or geographic distance (Cushman 2006). Landscape features can influence 

population structure by facilitating or limiting individual dispersal (Crosby et al. 2009). 

Thus, suitable habitat, such as wetland density, can influence genetic patterns and 

connectivity across a landscape (Scribner et al. 2001). Highly variable genetic markers 

are required to detect fine-scale dispersal patterns, dynamics of metapopulations, 

interspecific interactions, and distribution of genetic variation (Newman and Squire 2001; 

Jehle and Arntzen 2002). One example of such markers is microsatellite DNA, which is 

short repeats of nucleotide sequences in non-coding regions of eukaryote DNA that differ 

among individuals in the number of repeats (Jehle and Arntzen 2002).  

In the Daniel Boone National Forest (DBNF) wetland system, the number and 

distribution of natural wetlands provides an ideal situation to address how genetic 

diversity is distributed across the landscape and what factors influence this. The DBNF 

contains natural forested ridge-top wetlands, which have temporary hydrology, and 

constructed wetlands, most of which have permanent hydrology, that are intermixed 

across the same landscape (Brown and Richter 2012). Wood frogs (Lithobates sylvaticus) 

are good representative species of the natural wetland community because they breed in 

temporary wetlands, have low to no reproductive success in constructed wetlands, and are 

widely distributed throughout the DBNF and eastern North America (Berven 1990; 

Newman and Squire 2001; Drayer 2011; Kross 2014). Therefore, my study focused on 

wood frog populations in natural wetlands.   
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The objective of this study was to determine the amount and distribution of 

population genetic diversity of wood frogs in natural ridge-top wetlands and what factors 

influence this.  I predicted there would be a direct relationship between genetic diversity 

and the number of clutches deposited per wetland and the number of natural and 

constructed wetlands in close proximity to each sampled population. I also predicted that 

there would be evidence of fine scale genetic structure and that isolation by distance 

would best explain genetic structure of L. sylvaticus.   
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CHAPTER 2 

 

II. MATERIALS AND METHODS 

Study Species 

Wood frogs are widely distributed throughout eastern North America from the 

southern Appalachians to the Arctic Circle, and reach as far west as Colorado (Redmer 

and Trauth 2005). Females mate with only one male, and males mate with multiple 

females if there is an opportunity (Berven 1981; Howard and Kluge 1985). Wood frogs 

typically breed in temporary pools in early spring with an egg-laying period of around 

one week and an average clutch size of 600 to 1,000 eggs, which hatch after four days to 

four weeks (Harding 1997; Berven 1988). Wood frogs have a larval period between 73 

and 113 days, and sexual maturity is reached one to two years following metamorphosis 

(Berven 1990; Newman and Squire 2001).  

Larvae develop in ponds and then metamorphose and disperse into the uplands 

(Redmer and Trauth 2005). Post-metamorphic wood frogs disperse in late spring and 

summer from the ponds and return to breed the next spring (Berven and Grudzien 1990). 

Juveniles are able to disperse as far as 2.5 km in a generation with a mean dispersal of 1.2 

km (Berven and Grudzien 1990). Once they are sexually mature, some individuals return 

to their natal ponds, and others disperse to other breeding sites (Berven and Grudzien 

1990; Squire and Newman 2002). Most adults return to breed in the same pond where 

they first bred, which suggests they have well-developed homing abilities (Berven 1982; 

Berven and Grudzien 1990).  

Previous studies of wood frog dispersal found ponds within a fine-scale radius 

(1,000 m) did not exhibit genetic differentiation (Berven and Grudzien 1990; Newman 
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and Squire 2001). Individuals can disperse over 200 m from a breeding pond, but may 

have restricted dispersal due to human land use such as roads, fields, or agriculture 

(Windmiller 1996; Homan et al. 2004). Regosin et al. (2005) found adult wood frogs tend 

to move toward breeding ponds during the fall and remain close to the ponds through the 

winter until they breed in the late winter to early spring.  

Possible predators of larval L. sylvaticus include N. viridescens, insects, and 

spotted salamanders (A. maculatum) (Berven 1982). Adult wood frogs feed on 

invertebrates while larval diet includes algae, diatoms, decaying plant matter, and eggs 

and larvae of other amphibians (Harding 1997). Post-metamorphic wood frogs have an 

equal likelihood of mortality during the rest of their life span following a Type II 

survivorship curve (Berven 1990). Lithobates sylvaticus have an average life span of four 

to five years (Redmer and Trauth 2005).   

 

Site Selection and Wetland Sampling 

Many natural forested ridge-top wetlands exist in the DBNF, and five were 

randomly selected for the study within the Cumberland Plateau in Jackson County, 

Kentucky from 2011 to 2013 (Figure 11). Natural wetlands were randomly selected from 

areas where the wetland was at least 1 km from a constructed wetland. From each 

wetland, one egg from each of twenty-five L. sylvaticus egg clutches were collected and 

stored in 95% ethanol. Eggs were collected instead of larvae to decrease the risk of 

sampling closely related individuals.  

 

                                                           
1 All Figures are located in Appendix B.  
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Genetic Data Collection 

   DNA was extracted from each tissue sample using QIAGEN DNEasy tissue 

protocol. Twelve loci (C11, C23, D25, D32, D40, C41, C52, C63, D70, D77, C83, and 

D88) were used for L. sylvaticus following the protocol of Julian and King (2003). DNA 

was amplified using polymerase chain reaction (PCR), and 3 loci were pooled per sample 

for genotyping using an ABI 3730 DNA Analyzer (Life Technologies, Carlsbad, CA).  

Allele lengths were scored using GeneMapper v. 3.0 (Applied Biosystems, Inc., Foster 

City, CA).  

 Three-primer PCR protocol was used to fluorescently label PCR products with 

FAM, HEX, and NED dyes. Total volume was 50ul with 10ul of DNA. An initial 

denaturation step of 2 min at 94°C was used followed by 38 cycles of 94°C for 45 s, 53°C 

for 45 s, and 72° for 1.5 min, which was followed by a final polymerization step of 72° 

for 2 min.  

 

Genetic Analyses 

Tests for departure from Hardy-Weinberg equilibrium (HWE) at each locus per 

population, linkage disequilibrium (LD) between all pairs of loci within each population, 

and calculation of allelic richness using rarefaction was performed using FSTAT v 2.9.3 

(Goudet 1995). Null allele frequency was estimated with Micro-Checker v 2.2.3 (Van 

Oosterhout et al. 2004), and loci with >15% null allele frequency for the majority of the 

populations were removed (Richardson 2012). The loci with a null allele frequency of 

15% or higher in only one or two wetlands were retained in analyses because when 

removed, they did not change the results of analyses. Observed heterozygosity (HO), 
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expected heterozygosity (HE), number of alleles, and Wright’s inbreeding coefficient 

(FIS) were calculated using GenAlEx 6.5b5 (Peakall and Smouse 2006).  Additionally, 

FST for pairwise comparisons were calculated in GenAlEx. The significance of DST (Nei 

1973) and overall Weir and Cockerham’s (1984) estimator (θ) of Wright’s FST was 

calculated in FSTAT v 2.93.  DST detects genetic structure on a more historic landscape 

scale than does FST (Landguth et al. 2010). FST and other fixation indices are used to 

identify and quantify the degree of genetic differentiation among and within populations 

and assess the way genetic variation is distributed in natural populations. This is similar 

to an analysis of molecular variation (AMOVA), which uses a matrix of genetic distance 

among individuals that is subdivided by population samples (Bird et al. 2011).  

Genetic isolation by distance (i.e., relationship between Euclidean distance and 

genetic distance) was tested using a Mantel test with 10,000 permutations in FSTAT v 

2.9.3 (Mantle 1967; Goudet 1995). Euclidean distance was measured without 

consideration of surrounding habitat or geographic barriers. Additionally, regression 

analyses were performed in SPSS v 16.0 22 (IBM Corporation, Armonk, NY) to 

determine if wood frog clutch size or number of wetlands in a 1,000-m buffer explained 

the variance in genetic diversity measured by allelic richness, observed heterozygosity, 

and expected heterozygosity. Prior to analyses, data transformations were performed 

taking the square root of the allelic richness and the arcsin square root of the observed 

heterozygosity and expected heterozygosity. 

 Evidence of a recent bottleneck was tested by looking for significant 

heterozygosity deficiency using the software BOTTLENECK based on 5,000 replications 

using all three models of mutation (infinite alleles model, stepwise mutation model, and 
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the two-phase mutation model) (Cornuet and Luikart 1996; Luikart and Cornuet 1998). 

The TPM was used with 95% single-step mutations and a variance among multiple steps 

of 12% (Piry et al. 1999). Significance was assessed using the Wilcoxon’s test. Allelic 

frequency distributions were also assessed using the mode-shift indicator described by 

Luikart et al. (1998). The presence of an L-shaped frequency indicates a healthy 

population with a high proportion of low-frequency alleles present.  

A Bayesian clustering approach in STRUCTURE v. 2.3.4 was used to determine 

the number of distinct genetic groups (K) and to assign individuals to groups using an 

admixture model (Pritchard et al. 2000). The program STRUCTURE uses genotypic data 

and a model-based clustering approach to infer population structure. Models assume there 

are K populations characterized by a set of allele frequencies at each locus and 

individuals are assigned to populations (Pritchard et al. 2000). STRUCTURE analysis 

was carried out with a burn-in of 200,000 Markov chain Monte Carlo (MCMC) iterations 

followed by 500,000 iterations. For each value of K, five replications were performed and 

the value of K that best fit the data was determined by averaging the five replicates. Two 

separate analyses were performed with consideration of prior location and without prior 

location. Delta K, the average log likelihood of data, and the value of K were estimated in 

STRUCTURE HARVESTER (Evanno 2005; Earl and vonHolt 2011) and assignment of 

individuals to genetic clusters were visualized using plots in STRUCTURE. 
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CHAPTER 3 

 

III. RESULTS 

Microsatellite Diversity and HWE 

An average of one hundred and ten wood frogs from five localities were 

genotyped at 12 polymorphic microsatellite loci (Table 12). Micro-Checker estimated null 

allele frequency at >15% for the majority of the populations at three loci (C11, C23, and 

D40); thus the three loci were removed from further analyses. For the remaining nine 

loci, a total of 181 alleles were observed with an average of 20.1 alleles per locus (range 

6–32) (Table 1). After rarefaction, allelic richness was highest at the RF wetland site and 

lowest at SG (Table 2). Observed heterozygosity (HO) and expected heterozygosity (HE) 

among loci was variable: 0.250–0.960 and 0.270–0.913, respectively (Table 2) (Figure 

2). Five loci were out of Hardy-Weinberg equilibrium in three of the five populations 

(Table 2). Deviations from Hardy-Weinberg expectations could be explained by 

insufficient sample size, substructuring such as a Wahlund effect, inbreeding, or presence 

of null alleles.  No evidence of linkage disequilibrium was observed across all pairs of 

loci.  

Evidence was found from a Wilcoxon’s test in BOTTLENECK through the 

S.M.M. model to suggest there was a recent bottleneck event in D30 (P = 0.002), LP (P = 

0.014), and RF (P = 0.006) (Table 3) because of a heterozygote deficiency.  The mode 

                                                           
2 All Tables are located in Appendix A. 
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shift test indicated low-frequency alleles were present in all populations, indicated by an 

L-shaped frequency (Figure 3).  

 

Population Differentiation 

 Estimates of overall FST indicated significant levels of genetic differentiation 

among populations (FST = 0.054 ± 0.022; 95% CI = 0.017–0.096). Pairwise FST ranged 

from 0.020 to 0.053 (Table 3). Pairwise FST and DST values showed a similar pattern, 

with DST indicating slightly higher population divergence, ranging from -0.004 to 0.126 

(Table 4). The Mantel test for IBD showed there was a significant positive relationship 

between pairwise FST and geographical distance (P = 0.035). Percent of the variance of 

FST explained by geographic distance was 44% (Figures 4).  

There was no significant relationship between number of clutches deposited in 

each wetland and genetic variability measured by allelic richness (F = 0.006, df = 4, P = 

0.945), expected heterozygosity (F = 0.058, df = 4, P = 0.825), and observed 

heterozygosity (F = 0.77, df = 4, P = 0.799) (Table 5). Additionally, there was no 

significant difference between the number of wetlands within a 1,000-m buffer and 

genetic diversity measured by allelic richness (F = 0.308, df = 4, P = 0.618), expected 

heterozygosity (F = 0.395, df = 4, P = 0.574), and observed heterozygosity (F = 0.460, df 

= 4, P = 0.546) (Table 5). Wetland size was not used in statistical models because it was 

correlated to number of clutches size (Pearson r = 0.713).  

Under the admixture model, STRUCTURE determined the mean log probability 

of the data was greatest for K = 3, with three distinct groups of L. sylvaticus (Table 6). 

Both models, with sampling location included as a prior and without, gave similar results 
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and values did not change greatly when sampling location was included as a prior (Table 

6; Figure 5).  When results were visualized using STRUCTURE HARVESTER, more 

migrants were indicated based on the model without prior sampling location (Figure 5).   
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CHAPTER 4 

 

IV. DISCUSSION 

The results of my study indicated that genetic diversity measured by allelic 

richness, observed heterozygosity, and expected heterozygosity is similar to other wood 

frog populations. However, there was evidence of a recent bottleneck event in three of the 

five populations. There is weak genetic structure among L. sylvaticus populations and 

three distinct genetic groups, suggesting habitat fragmentation or landscape features are 

affecting the patterns of genetic variation.  

 

Population Genetic Diversity 

Overall, populations had similar genetic variation; however, the SG population 

had a slightly lower mean allelic richness value (8.83) and RF had a slightly higher value 

(11.95) than the other three populations (Table 2). Genetic diversity was similar to that of 

other studies. The mean allelic richness (8.83–11.95) is slightly higher compared to 

Peterman et al. (2013), who found a range of allelic richness from 4.25–5.5, and Crosby 

et al. (2009), who found a range of 5.88–10.98. However, mean observed heterozygosity 

(0.581–0.719) and expected heterozygosity (0.736–0.780) is similar to Crosby et al. 

(2009): observed heterozygosity (0.661–0.798) and expected heterozygosity (0.633–

0.800) and Peterman et al. (2013): observed heterozygosity (0.66 ± 0.10).  

The DBNF contains natural forested ridge-top wetlands and constructed wetlands 

intermixed across the same landscape because the initial purpose of constructing 

wetlands was to provide permanent water sources for game wildlife in an ecosystem in 

which natural wetlands dry during the summer (Brown and Richter 2012). Genetic 
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diversity is still relatively high despite the number of constructed wetlands in close 

proximity to natural wetlands. This may mean there is little adverse effect on genetic 

diversity in wood frogs that breed in natural wetlands that are in close proximity to 

constructed wetlands that contain predators such as eastern newts (Notophthalmus 

viridescens) that predate on the eggs laid there (Kross 2014). However, because the 

constructed wetlands have been introduced in the relatively recent past (most of them 

within a 30-year period), the effect on wood frog genetic diversity may be too recent to 

detect.  

There was evidence of a recent bottleneck event in three of the five populations. 

When the constructed wetlands were placed in close proximity to natural wetlands, 

individuals might have begun breeding in the constructed wetlands, which would act to 

subdivide the historically larger population. The natural wetlands may be acting as 

population sources, and extinction and recolonization dynamics may play an important 

role in the system. Habitat loss and fragmentation can cause a decrease in allelic richness 

and cause population bottlenecks (Rivera-Ortíz et al. 2014). For example, Scherer et al. 

(2012) found evidence of a recent bottleneck event in wood frog populations, which was 

explained by recent disturbances and fragmentation. However, other similar studies found 

no evidence of bottleneck events when they were predicted based on land-use change 

(Zellmer and Knowles 2009; Peterman et al. 2013). More sampling from wetlands in the 

area and analysis of historic land use is needed to fully understand why bottleneck events 

occurred. 

 Clutch size and number of wetlands within a 1,000-m buffer were not shown to 

explain the variation seen in genetic diversity. This is different than what was expected 



15 
 

because D30 and LP wetlands with the highest clutch size and most breeding pairs were 

predicted to have more genetic diversity than the other wetlands measured by allelic 

richness, observed heterozygosity, and expected heterozygosity. The number of wetlands 

within a 1,000-m buffer was used as a factor to explain genetic variation because 

increased wetland density was predicted to have a positive effect on genetic diversity, but 

no patterns were found.  

 

Genetic Differentiation 

The overall FST value (0.054) with a geographic scale of < 13 km (3.8–12.2 km 

between sites) can be compared to other similar studies of L. sylvaticus genetic structure. 

Some studies found little evidence of genetic structure in wood frog populations with 

distances between them of 50 m–20 km (Newman and Squire 2001; Squire and Newman 

2002; and Julian and King 2003). Richardson (2012) found the overall FST value 0.016, 

which is lower than my study. This is most likely because sampling was concentrated 

along one ridge with a high density of wetlands compared to the less continuous 

landscape in the DBNF. Population differentiation, measured by pairwise FST values, in 

my study (0.020–0.053) were similar to that of other studies which suggests relatively 

high connectivity and little genetic structure (Gabrielsen et al. 2013). Zellmer and 

Knowles (2009) found a similar pairwise FST range of -0.008–0.087 with a larger scale 

range of around < 1–25 km. Peterman et al. (2013) had a pairwise FST range of 0.0001–

0.071 and a scale range of 0.961–22.971 km. Genetic differentiation might be low in my 

study because the sites are distributed across a forested landscape and have many natural 
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wetlands located in close proximity, making a higher density of populations and more 

likely to share genes, have less genetic differentiation, and higher connectivity.   

Although IBD was statistically supported, the genetic clustering results in 

STRUCTURE gave the most support for three genetic groups of wood frogs in the study 

system. Visualizations of the no prior location graph (Figure 5) gave support for recent 

migrants between D30 and LP populations. Although the two populations have a 

relatively large distance between them (Table 4), they are part of one distinct genetic 

group. This could be because there are wetlands interspersed between the two 

populations that allow for gene flow between the populations, and if sampled would show 

recent migrants from the two populations (Figure 7). Juveniles are the main dispersers of 

the species, and are able to travel up to 2.5 km, which may explain why there is low 

genetic structure between the five sites if gene flow occurs between wetlands over several 

generations. Because D30 and LP are part of one distinct genetic group, the wetlands 

between them could be sampled to determine if juveniles are facilitating gene flow, or 

historically the populations were more connected and have recently been fragmented. 

Additionally, D30 and LP are the largest natural wetlands in the study, and produced the 

highest number of egg clutches (Table 5) and may be acting as population sources for the 

surrounding wetlands. Populations SG and HK were shown to be one genetic group. This 

was expected because the wetlands are in close proximity to one another, and there is a 

large distance between the two wetlands and the other three natural wetlands (Figure 6). 

The RF population was a distinct genetic population. Although it is geographically close 

(6.1 km) to the wetland D30, there is urban development directly adjacent to RF between 

it and D30 (Figure 8). This could be preventing dispersal to the intervening wetlands. 
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Previous studies at the same geographic scale showed similar results. Scherer et al. 

(2012) found two distinct genetic groups of wood frogs in the Rocky Mountain National 

Park, Colorado.  Over a larger scale, Richardson (2012) found three distinct genetic 

groups of wood frogs in Connecticut.  

   

Conservation and Future Work 

 This research aids in the overall understanding of wood frog population genetics 

and specifically increases the knowledge of genetic diversity and structure of populations 

of wood frogs in the DBNF, Kentucky. No research has been conducted on population 

genetics of amphibians in the DBNF, and the data collected can be used as a reference to 

compare to future studies focusing on genetic structure and overall health of amphibian 

populations. In addition to genetic data, wetland size and wood frog clutch size can be 

used to monitor future populations of wood frogs in the system.   

Future work in the DBNF should include looking at the relationship of 

constructed wetlands and natural wetlands. Because constructed wetlands have been built 

in close proximity to natural wetland and support a different community (Denton and 

Richter 2013; Drayer 2011), there are potential interactions between the constructed and 

natural species. The outcome of these interactions could include disease transfer or 

predation of the natural species such as wood frogs by species in the constructed wetlands 

(Richter et al. 2013; Kross 2014), which could affect population structure and genetic 

diversity. Constructed wetlands may be acting as population sinks, and natural wetlands 

acting as sources. In addition, more wetlands should be studied across a larger scale to 
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determine if there is a relationship between the density and distribution of natural and 

constructed wetlands and population genetic diversity of wood frogs. 

Habitat fragmentation can influence long-term persistence of amphibian 

populations (Cushman 2006), and should be taken into consideration in any future 

studies.  In the future, landscape features such as distance, roads, topography, aspect, and 

land cover should be analyzed to see if there is a relationship to genetic structure. 

Landscape genetics focuses on geographic and environmental features to explain 

population structure (Crosby et al. 2009).  It is important for conservation biology to 

understand how habitat alteration affects populations so successful management 

strategies can be implemented and preserve the remaining amphibian species.  
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Table 1. Primer information for twelve Lithobates sylvaticus microsatellite DNA loci. 

Primers were developed by Julian and King (2003). 

Locus Repeat 

motif 

Size range 

(bp) 

No. of 

alleles 

n 

RsyD25 

RsyD32 

RsyC41 

RsyC52 

RsyC63 

RsyD70 

RsyD77 

RsyC83 

RsyD88 

 (TAGA)18 

(TAGA)11 

 (TACA)8 

(TACA)17 

(TACA)12 

(TAGA)17 

(TAGA)15 

(TACA)10 

(TAGA)13 

124–200 

148–232 

104–160 

129–217 

145–237 

140–340 

165–241 

115–147 

114–226 

16 

17 

18 

23 

21 

27 

32 

6 

21 

110 

110 

109 

117 

115 

116 

115 

113 

112 
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Table 2. Observed (HO) and expected (HE) heterozygosity, FIS, and DST for each locus and 

mean allelic richness for each Lithobates sylvaticus population in the Daniel Boone 

National Forest, Kentucky. Loci out of HWE within populations are shown in bold. 

 D30 LP HK SG RF    

n 0 0 0 0 0    

Mean 

allelic 

richness 

SE 

10.26 

 

 

1.17 

10.82 

 

 

1.22 

10.05 

 

 

1.38 

8.83 

 

 

0.99 

11.95 

 

 

1.31 

   

Locus HO   HE HO HE HO HE HO HE HO HE n FIS
 DST 

RsyD25 

RsyD32 

RsyC41 

RsyC52 

RsyC63 

RsyD70 

RsyD77 

RsyC83 

RsyD88 

Mean 

SE 

0.565 

0.727 

0.739 

0.636 

0.682 

0.625 

0.960 

0.538 

0.550 

0.669 

0.044 

0.675 

0.786 

0.868 

0.794 

0.892 

0.844 

0.758 

0.596 

0.641 

0.761 

0.035 

 

0.500 

0.773 

0.450 

0.680 

0.762 

0.619 

0.762 

0.500 

0.826 

0.652 

0.047 

 

0.770 

0.869 

0.851 

0.879 

0.889 

0.876 

0.891 

0.453 

0.543 

0.780 

0.055 

 

0.636 

0.727 

0.909 

0.682 

0.833 

0.609 

0.826 

0.583 

0.667 

0.719 

0.038 

 

0.773 

0.884 

0.871 

0.913 

0.911 

0.436 

0.776 

0.521 

0.868 

0.772 

0.059 

 

0.591 

0.783 

0.739 

0.640 

0.625 

0.538 

0.636 

0.348 

0.739 

0.627 

0.044 

 

0.777 

0.871 

0.827 

0.777 

0.867 

0.476 

0.787 

0.421 

0.821 

0.736 

0.056 

 

0.348 

0.857 

0.857 

0.391 

0.500 

0.682 

0.750 

0.250 

0.591 

0.581 

0.074 

 

0.733 

0.764 

0.907 

0.892 

0.906 

0.876 

0.869 

0.270 

0.773 

0.777 

0.067 

 

20-23 

21-23 

20-23 

22-25 

21-24 

21-26 

21-25 

20-26 

20-24 

 

0.292 

0.074 

0.146 

0.288 

0.238 

0.124 

0.036 

0.018 

0.075 

0.143 

0.035 

 

-0.004 

0.021 

-0.001 

0.043 

0.000 

0.126 

0.059 

0.006 

0.068 

0.035 

0.014 
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Table 3. Results from a Wilcoxon’s test preformed using BOTTLENECK for five 

populations of Lithobates sylvaticus under three mutation models. Results shown are P-

values based on 5000 replicates. I.A.M. = Infinite alleles model, T.P.M. = Two-phase 

mutation model, and S.M.M = Stepwise mutation model 

  

 

 

 

 

Table 4. Genetic distance values for Lithobates sylvaticus populations in the Daniel 

Boone National Forest, Kentucky. Pairwise FST values are reported below the diagonal, 

and geographic distance (km) values are above diagonal.   

 D30 LP HK SG RF 

D30 - 11.108 7.627 7.162 6.077 

LP 0.033 - 8.580 12.167 6.140 

HK 0.045 0.045 - 3.845 8.449 

SG 0.042 0.053 0.020 - 10.532 

RF 0.032 0.036 0.050 0.043 - 

 

Table 5. Wetland variables used to explain the variation of genetic variability.  

Wetland Clutch size Wetlands within 1,000m buffer Wetland size (m2) 

D30 

LP 

HK 

SG 

RF 

636 

579 

45 

133 

52 

5 

1 

2 

2 

1 

785 

943 

597 

274 

628 

 

 

Population I.A.M. T.P.M. S.M.M. 

D30 

LP 

HK 

SG 

RF 

1.0000 

0.4961 

0.0273 

0.4961 

0.4961 

0.0039 

0.0273 

0.7344 

0.1641 

0.0195 

0.0020 

0.0137 

0.5703 

0.1641 

0.0059 
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Table 6. Evanno statistics including log likelihood and delta K for the detection of 

Lithobates sylvaticus populations using STRUCTURE v 2.3.4. In both the prior and non 

prior sampling runs, a K value of three was most supported 

K Mean LnP(K) SD LnP(K) Delta K 

 

1 

2 

3 

4 

5 

 

1 

2 

3 

4 

5 

No prior on Sampling Site 

-4679.560 

-4608.840 

-4462.600 

-4739.940 

-4658.680 

With prior on Sampling Site 

-4680.140 

-4565.320 

-4400.680 

-4394.260 

-4446.560 

 

0.631 

24.268 

3.752 

114.274 

118.462 

 

0.385 

7.163 

4.261 

12.563 

80.478 

 

–  

3.112 

112.904 

3.138 

– 

 

– 

6.955 

36.873 

4.674 

– 
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Figure 1. Topographic map of Jackson County, Kentucky with five natural wetlands 

indicated by stars.
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Figure 2. Mean (± 1 SE) observed heterozygosity and mean expected heterozygosity for 

five populations of Lithobates sylvaticus in the Daniel Boone National Forest, Kentucky.   

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

D30 LP HK SG RF

Ho and HE mean by population with SE

Ho Mean

He Mean



35 
 

 

 

 

Figure 3. Histogram of allele frequency distribution for all genotyped loci by each of the 

five populations of Lithobates sylvaticus in the Daniel Boone National Forest, Kentucky. 

Allele frequencies are grouped into 0.1 class intervals along the x-axis.  
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Figure 3 (continued). Histogram of allele frequency distribution for all genotyped loci by 

each of the five populations of Lithobates sylvaticus in the Daniel Boone National Forest, 

Kentucky. Allele frequencies are grouped into 0.1 class intervals along the x-axis.  
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Figure 4. Genetic distance (FST/(1–FST) plotted against geographic distance (km) for all 

sampling sites in the Daniel Boone National Forest, Kentucky. The solid line represents 

the best-fit linear regression and R2 value.  
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Figure 5. Visualizations of Lithobates sylvaticus individuals using STRUCTURE 

HARVESTER of the most supported value of K=3. The top graph shows individuals 

assigned to groups without prior location knowledge, and the bottom graph shows 

individuals assigned to groups with prior location.   
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Figure 6. Map of Jackson County, Kentucky. Natural wetlands are labeled as stars Dale30 

(D30), Lynch Pond (LP), High Knob (HK), Sand Gap (SG), and Rolling Fork (RF).   
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Figure 7. Map of Jackson County, KY. Natural wetlands used in my study are labeled 

with red stars, other natural wetlands are labeled as black stars, and constructed wetlands 

are labeled as blue circles.  
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Figure 8. Aerial view of Jackson County, KY. Natural wetlands used in my study are 

labeled as red stars, other natural wetlands are labeled as black stars, and constructed 

wetlands are labeled with blue circles.  
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