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ABSTRACT

In this paper we introduce the definition of a reality-based algebra as well as a
subclass of reality-based algebras, table algebras. Using sesquilinear forms, we
prove that a reality-based algebra is semisimple. We look at a specific reality-
based algebra of dimension 5 of the form C @& M,(C) and provide formulas for the
structure constants of this algebra. We determine by looking at these structure
constants and setting conditions on 41, do, 03, and n when this particular reality-
based algebra is a table algebra. In fact, this will be a noncommutative table

algebra of dimension 5.
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Chapter 1

Definitions and Examples

1.1 Algebras

Definition 1.1. An algebra over a field F' is a vector space A over F, such that
there is a binary operation on A called multiplication (so x -y € A for each
x,y € A), and such that for each z € A, multiplication of the elements of A on
the left by x and on the right by x yields linear transformations of A. That is, for

all z,y,z€ Aand \ € F,

r-(y+z2)=x-y+z-z
z-(Ay) = Alz-y)

(y+z2) x=y-x+zx
(Ay) -z = Ay - 2).

We will sometimes drop the - and write x - y as xy. Note that z-0=0=0-x for

all x € A, where 0 is the zero vector.
i. An algebra A is called associative if x(yz) = (zy)z for all z,y,z € A.
17. An algebra A is called commutative if zy = yx for all x,y € A.

ii1. If there exists an element 1 € A with the property x -1 =2 = 1z for all

x € A, 1 is called the multiplicative identity of A.



Definition 1.2. A subalgebra of an algebra A is a vector subspace which is closed
under the operation multiplication. So a subalgebra is another algebra, if it has

an identity element (either the identity from A or another).

Example 1.3. C is a two dimensional algebra over its subfield R. More generally,

any field is an algebra over itself, as well as an algebra over any subfield.

Example 1.4. Let F[x] be the set of all polynomials over F, where elements
are of the form f(z) = ag + a1x + axx® + ... + a,x™ where ag,ay,as, ...,a, € F
and n € NU {0}. Fl[z| has two binary operations + and -, called addition and
multiplication, defined as follows. Let f(z) = ag + a1 + asz® + ... + a,z" and
g(z) = by + bz + boz® + ... + b,x™, with m < n. Assume that a; = 0 for any i > n

and b; = 0 for any j > m. Then define

f(z)+g(z) = (ag+bo)+ (a1 +by)x+ (ag+bo)x? + ...+ (A +bp )™ + ...+ (an +by) 2",

and
f(@) - g(x) = co+ 1+ cx® + ...+ Cpana™,
where
k
Cr = Zaibk_i,o S k S m + n.
i=0

and scalar multiplication is defined by

M (x) = Mag + a1x + aox® + ... + a,2") = Aag + Aarx + Aagx® + ... + Aaz".

Let A € F and f(z),g(x),h(z) € F[z], where f(x) is of degree n, g(x) is
of degree m, and h(x) is of degree p with p < m < n. F|x] is closed under
multiplication since f(z)-g(z) yields a polynomial of degree n+m with coefficients

in F. Thus, f(x)-g(z) € A.

f(@) - (g(x) + Mx)) = fz) - g(x) + f(z) - h(z);



(9(x) + h(z)) - f(z) = g(z) - f(x) + h(z) - f(2);

(Ag(x)) -

f(@) = Mg(x) - f(=)).

Each of these properties follows directly from the commutativity and distributivity

of field elements. Thus, each of the conditions specified in the definition is met,

and F[z] is an algebra. F[z] is a commutative, associative algebra over F with

identity 1 = 2% and an infinite basis {1 = x

over F.

0 2 n
, L, X%, ..., T,

...} as a vector space

Example 1.5. Let F be a field and n € ZT. Let M,(F) denote the set of all

n X n matrices over a field F', where elements are of the form

ai

21

Gn1

a2

22

Ap2

A1n

Q2n

Qnn

where each entry a;;,1 <i <m,1 < j <n,isin F. We may simply denote the

above matrix as (a;;). The addition of two matrices is defined by

11 A2

Q21 A22

Qp1  An2

ayy + b1y

ag; + boy

an1 + bnl

A1n

Q2

ann

ais + b1o

g2 + bao

an2 + bn2

bll b12

621 b22

bnl an
A1n + bln
A2n + b2n
Qpn + bnn

bln
an

bnn




and scalar multiplication is defined by

a;y a2 ... Qip )\CLH /\alg e /\aln

21 A22 ... (Q9pn )\CL21 )\&22 Ce )\azn
A =

Apl An2 - ..  Gpn AGp1 AAp2 ... App

If A= (a;;) and B = (b;;) are each n x n matrices, the the product AB of A and

B is another n x n matrix whose (i, j)-entry is

ailblj + aingj + ...+ &mbnj = Z aikbk]‘.
k=1

Expressing matrix multiplication visually we get

aypr a2 ... Qip bll b12 Ce bln
Q21 Q22 ... Q2 bar Doy ... by
AB =
An1  Qn2 QAnp, bnl bn2 bnn
a11b11 + ...+ alnbnl a11b12 =+ ...+ alnb,ﬂ e anbln + ...+ alnbnn
ClleH + ...+ agnbnl a21b12 + ...+ agnan e CLleln + ...+ a2nbnn
anlbll + ...+ a'rmbnl an1b12 + ...+ annan s anlbln + ...+ annbnn

Let A € F and A = (a;5), B = (bi;),C = (cij) € M, (F). M,(F) is closed
under multiplication since A - B yields an n x n matrix with each (a;;)-entry in F.
Thus, A- B € M,(F). With the definitions of matrix addition, scalar multiplica-

tion, and matrix multiplication, M, (F') satisfies all the following properties:

A-(B+C)=A-B+A-C



A-(AB) = A(A- B)
(B+C)-A=B-A+C-A
(AB)- A= \B-A).

Thus, the set M, (F') of all n x n matrices over F' is an algebra under the defined
matrix addition and multiplication, and scalar multiplication. M,,(F) is associa-

tive, but not commutative (except when n = 1). The identity element is I,.

Example 1.6. The group algebra F[G], where F is a field and G a group, is the
set of all linear combinations of finitely many elements of G with coefficients in
F, hence all elements are of the form a,9; + asgs + ... + a,g, where aq,...,a, € F

and g1, ..., g, € G. This element can be denoted in general by Y a,g. F[G] is an
geG

algebra over F' with respect to addition defined by

Zagg + Z byg = Z(ag +bg)g,

geG geG geG

scalar multiplication defined by

A Z agg = Z()‘ag)ga

geG geG

and multiplication defined by

<Zagg) (Zbgg> = > (agby)gh.

geG geG g€G,heG

The identity element of G is the unit of F[G] (1 -e). F[G] is associative, and is

commutative if and only if G is an Abelian group.

1.2 Association Schemes

Definition 1.7. Let S be a finite set and d a positive integer. For each integer

J with 0 < j < d, let R; be a nonempty relation on .S, so that the set of d + 1

bt



relations R; has the following properties:
i. Ry={(z,z):x¢€ S}
d
it. JR;j=SxSand R,NR; =0ifi# j;
5=0
iii. for each j, 'R; = R;~ for some j* with 0 < j* < d;

iv. for any integers h,i,j from 0 to d, and any pair (z,y) € R;, the number of
elements z € S such that (z,z2) € R, and (z,y) € R; is independent of the

particular choice of  and y. So this nonnegative integer may be denoted by

DPhij -

Then the configuration S := (5, {R;}o<j<q) is called an association scheme of
class d on S. The numbers py,; are called the intersection numbers of S. § is
called commutative if py;; = pip; for all h, i, j. Note That (5%)* = j for all j. S is

called symmetric if 7* = 7 for all j.

Definition 1.8. Let S = (S, {R; }o<j<a4) be an association scheme. Define the jth
adjacency matriz A;j of S to be the matrix of degree |S|, whose rows and columns
are indexed by the elements of S (in some fixed order), and whose (z,y) entries

are

1 if (z,y) € Ry,
(Aj>:cy =
0 if not.

Note that a given pair (z,y) occurs in just one of the relations R;, by property
ii. of Definition 1.7, and hence the (z,y) entry is nonzero (is 1) in just one of the

A

je

Proposition 1.9. Let S = (S, { R, }o<j<a) be an association scheme, and Ay, Ay, ..., Ag

the adjacency matrices. Then,

ii. {Ao, Av, ..., Aa} is a linearly independent set in Mg (C);



iit. Ao+ Ar+ ...+ Aqg = J, where J is the matriz with all entries equal to 1;
iv. YA; = Aj» ("M means the transpose of M, for any matriz M );

d
v. ApAi = Y prijA; for all h,i, j, where the py;; are the intersection numbers
3=0

for S;
VL. Phij = Dich*j*;
vit. S is commutative if and only if AyA; = A; Ay, for all h,i;
viii. S is symmetric if and only if 'tA; = A; for all j.
Proof.

i. Ap is the adjacency matrix whose (z,y) entries are

1 if (x,y) € Ry,
(A0>wy =
0 if not.

Therefore, the (z,y) entry contains a 1 if and only if z = y. Hence, only the

diagonal entries contain a 1, and therefore Aqg = I.

1. Suppose that \gAg+ M\ A1 +...+XgAg = 0. By property #i. of Definition 1.7,
we know that R; N R; = () if ¢ # j. Hence, the (z,y) entry is 1 in just one
of the adjacency matrices, and all other adjacency matrices have an (z,y)
entry of 0. Suppose that the (z,y) entry of A; is 1 and all other A; have

(x,y) entry 0. Hence, \; = 0 for each i.

14¢. The proof for this is straightforward and follows from the fact that
iv. If the (z,y) entry of A; is 1, then the (y,x) entry of *A; is 1. *A; = Ay for

some k that depends on i. Hence k = i*, so 'A; = A;-.

v. Suppose the (z,y) entry of A; is not zero. The (z, y) entry of ApA;, (ApAi)(zy) =
> (An)(2,2)(As) (2, Which represents the number of z such that (Ap) ) 7# 0

z€S



and (A;) @y # 0 with (2,y) € Aj. So, (AyAi) @y = {2](2,y) € Rn; (2,y) €

d
Ri} = Phij- So ApA; = Z phz‘jAj-
=1

J

d d d
1. t(AhAz) = Z t(phijAj) = A;kAZ = thz’jA;' But A?A}: = th*i*j*A;'
j=1 j=1 j=1

Hence ppij = pi=pj=.
O

Definition 1.10. Let S = (5, { R, }o<j<a) be an association scheme, with |S| = n.
Let A = A(S) be the vector subspace of M,,(C) spanned by the adjacency matrices
of §. For any two adjacency matrices A, A; = i phi;Aj for all h, 7,5 where the
Dhi; are the intersection numbers for S. From tlriizsofact it follows that A is closed
under matrix multiplication, and hence is a subalgebra of M, (C) which contains

I = Ay. We call A the adjacency algebra, or the Bose-Mesner algebra, of S.

Definition 1.11. Let S = (S, R, be an association scheme. For each integer

Oﬁjéd)

1 with 0 <4 < d, define the nonnegative integer k; as follows: for each z € S,
k; := the number of elements z € S with (z, 2) € R;.
Then k; is called the valency of R;.

For any association scheme S, the definitions of k; and adjacency matrix A;

make it clear that k; is the sum over any row of A;.

Proposition 1.12. Let S = (S, {R; }o<j<a be an association scheme with intersec-
tion numbers pri;, 0 < h, 1,5 < d, and valencies k;, 0 < i < d. Then the following

hold:
1. ki = piro > 0, and k; is any row sum of A;;
1. ko =1;
1. ki = kix;

. Dhio = ki=Opix;



.

d
kpk; = Z phijkj-
=0

Proof.

7.

2.

Let y = © € S. Then (z,2) € Ry, and for any z € S, (z,2) € R; iff
(z,z) € Ry, by Definition 1.7 (éii.). Hence k; counts the number of z € S
with (z, z) € R; and (z,x) € R;«. However, this means that k; = p;;+¢, which
is independent of the choice of x € S. So, k; = p;;+¢ = any row sum of A;. If
k; = 0, then no x € S is paired with any z € S in R;; so R; would be empty,
a contradiction to the definition of an association scheme. Therefore k; > 0

for all 7.
Since any z € S is paired only with itself in Ry, ko = 1.

If k; is any row sum of A;, then k;|S| = number of entries 1 in A; = number

S.

of entries 1 in tA; = k;-

For any = € S, (z,x) € Ry. So, ppio counts the number of elements z € S
with (z,2) € Ry, and (z,2) € R;. If (z,2) € Ry, then (z,2) € Ry, but
(z,z) € R;. So, for ppo # 0, i = h*, and h = i*. Thus, if h # * then

Prio = 0. If h = i*, then Prio = Pixio = k’l* by (Z)

. Fix x € S. Then kj, counts the number of elements z € S with (z,z) € Ry,.

For each such z, k; counts the number of elements u € S with (z,u) € R;.
Hence, kpk; is the number of ordered triples (z, z,u) with (z,z) € Rj, and

(z,u) € R; (for a single fixed x).

Exactly k; of the elements u € S are such that (z,u) € R;. For each such
u, there are py,;; elements z € S with (z,z) € R;, and (z,u) € R;. So there

are exactly ppijk; of the set of triples above with (z,u) € R;. Hence there
d
are Y ppijk; of the triples altogether. Since we also calculated the number
7=0
of these triples as kyk;, (v.) is proved.



1.3 Algebra Homomorphisms and Ideals

Definition 1.13. Let A, B be algebras over F. An algebra homomorphism

¢ : A — B is a linear transformation such that ¢(zy) = ¢(x)o(y) for all z,y €
A. Then B is called a homomorphic image of A if and only if (iff) there is an
algebra homomorphism ¢ : A — B which is onto B. A homomorphism is called a
monomorphism iff it is one-to-one, and is an isomorphism from one given algebra
to another iff it is both one-to-one and onto. When an isomorphism exists from A
onto B, A and B are said to be isomorphic (A = B). An isomorphism of A onto

itself is called an automorphism.

Since the composition of two homomorphisms is again a homomorphism, it

is easily seen that being isomorphic is an equivalence relation among algebras.

Proposition 1.14. Let A, B be algebras over F', V = {a;}?_, a basis for A, and

¢ : A— B a linear transformation.
i. ¢ is an algebra homomorphism < ¢(apa;) = ¢(an)P(a;) for all ap,a; € V.

it. Let {b;}I*, be a basis for B so that dimA = dimB, and let {caupi;},{Bni;} be
the arrays of n® structure constants for {a;}, {b;} respectively. Letv: A — B

be the vector space isomorphism such that ¥ (a;) = b; for 1 <i <mn. Then
Y 1s an algebra isomorphism < api; = Bri; for all h,i,j.

Proof.

i. (=) Since ¢ is a homomorphism, it follows directly from the definition that
od(apa;) = ¢lap)o(a;) for all ay,a; € V.
(<) We first need to show that ¢(z)p(y) = ¢(x)o(y) for all z,y € A. Since

10



r,y€ A x =73 wa; and y = Y ypan.
j h=1

=1
Ty = (Z l’iai) (E yhah)
i=1 h=1

= % TYnaiap
oey) =X awnda)o(a)
Hr)oly) = (z nofa) ) (Smotan)
= S rand(a)olan)
= q;(xy)-

Hence, ¢ is an algebra homomorphism.

it. (=) Since V is a basis for the algebra A, apa; = ) apija; and bpyb; =
J

>~ Brijbj. ¥ (a;) = b; by assumption. So,
J

; Bhij; = bnb; = Y (an)(a;)
= ¢(ana;) =1 (ZJ: Oéhij@j)
= Z]: anij(a;) = ZJ: his;
Therefore we now have ag;; = Bhij-

]

Example 1.15. Let A = A(S) be the adjacency algebra of an association scheme
S = (S,{R;}o<ni<a), with basis {A;}¢ ,, where 4; is the adjacency matrix corre-
sponding to the relation R;. Let ¢ : A — C be the linear transformation such that
¢(A;) = k; for all i, where k; € Z* is the valency of the relation R;. Propositions

1. and 1.12 imply that for all 0 < h,i < d,
d d d
S(ARA) = 60> prijA7) = prigd(A) =Y prijhy = knki = ¢(An)d(As),
=0 =0 =0

11



where the pp;; are the intersection numbers for S. Thus, ¢ is an algebra homo-

morphism by Proposition 1.14(%).

Definition 1.16. Let A be an algebra over F. The center of A, denoted Z(A),

is the set of those elements of A which commute with all elements of A. That is,
Z(A) :={x € Alax = za,Va € A}.
Z(A) contains 1 and 0, and is a subalgebra of A. Note that Z(A) = A iff A is

commutative.

Example 1.17. Let A = M,,(F) then Z(A) is the set of diagonal matrices Z(A) =
{al|a € F}. Let (a;;) be an n x n matrix and I be the n x n identity matrix. It

is known that for a matrix, (a;;)I = I(a;;).

ay; a2 ... Qipn a 0 ... 0 aa; g ... Qi
Qg1 G2 ... Qo 0O o ... O Qo1 Qg ... oy
e T N P
api Qpa -.. Qpn 0 0 ... « QAlp1 Qpa ... OQpp
ai; a1 ... Qip a 0 ... 0 ai; a1 ... Qip
21 A22 ... QAgpn 0O a ... 0 o1 A22 ... QAgpn
=« = : = al(a;))
Al Ona  --.  Qpn 0 0 ... « Ap1 Ap2  -.. Gnn

Definition 1.18. Let A be an algebra over F. A left ideal (right ideal) C of A is
a vector subspace of A such that for all z € C and a € A, ax € C (za € C). An
ideal of A is a vector subspace which is both a left and a right ideal.

So a right or left ideal C' of A is necessarily a subalgebra, but does not
contain the multiplicative identity 14 unless C' = A. A itself and {0} are always

ideals of A (called trivial ideals). Any other ideals of A are called proper.

Proposition 1.19. Let A be an algebra over a field F' and fix any element y € A.

12



Define Ay = {ay|a € A} and yA = {yala € A}. Then Ay is a left ideal of A and
yA is a right ideal of A.

Proof. Let u,v € Ay. Then u = a,y and v = a,y for some a,,a, € A. So,
u—v=(a.y) — (a,y) = (a, — a,)y € Ay since a, — a, € A. So, Ay is a subspace
of A. Let b € A and ¢ € Ay. Since ¢ € Ay, ¢ = ayy for some a, € A. So,
bg = b(a,y) = (ba,)y € Ay since algebras are closed under multiplication. So, Ay
is a left ideal of A.

The proof for yA is similar. m
Definition 1.20.

i. Let VW be vector spaces over a field F. Define Homp(V,W), the F-
homomorphisms from V into W, as the set of all linear transformations

vV =W

ii. If C, D are left ideals of an algebra A over I, define Hom(C, D), the A-

homomorphisms from C'into D as

Homy(C, D) ={¢|tv € Homp(C, D) and ¢ (ac) = arp(c) for all
a€ A ceC}.

igi. If C'is aleft ideal of A, denote Hom 4 (C, C) and End(C), the A-endomorphisms
of C.

Definition 1.21. Let C, D be left ideals of an algebra A. Then C and D are
called isomorphic (C = D) iff there exists a vector space isomorphism ¢ : C' — D

with ¥ € Hom(C, D). Such v is called an A-isomorphism.

z 0
Example 1.22. Let A = My(F),C =C(1) = r,yeFy,D=C(2)=
y 0O
0 x
z,y € F 3. Then C(1) = C(2) because the map ¢ : C(1) — C(2)
0y

13



such that ¢ )) is a vector space isomorphism, and for all
z 0
0

€ A and e C(1),
t u Y
T S z 0 rr+sy 0 0 rs+ sy
(G = =
t u y 0 tr+uy 0O 0 txr+uy
r s 0 =z ros xz 0
s p— /l/)
t u 0 vy t u y 0

Therefore 1 is an A-automorphism.

Definition 1.23. Let C, D be left ideals of an algebra A and ¢» € Hom4(C, D).
Define the kernel of ¢ as kery := {c € CJi(c) = 0}; and the image of ¥ as

W(C) = A{(c)c € C}.

Proposition 1.24. Let C, D be left ideals of A and ) € Homa(C, D). Then kery
is a left ideal of A contained in C' and 1»(C') is a left ideal of A contained in D.

Proof. By definition, keryy € C. kertp # 0 since 0 € kerip (¢(0) = 0). Let
x,y € ker. Y(x —y) =) —Y(y) =0—-0=0,s0 z —y € keryp. Let a € A,
k € kerp. Since ¢ € Homu(C, D), ¢(ak) = ap(k) = a-0 = 0. So ak € kery.
Thus kery is a left ideal of A contained in C'.

By definition, 1(C) C D. 1(C) # 0 since 0 € 1(C) (1(0) = 0). Let z,y € ¢(C),
so x = ¢¥(c;) and y = (¢,) for some ¢;,c, € C. . —y = P(c,) — Y(ey) =
P(ez —¢y) € P(C). Let a € A,d € Y(C). d = (cq) for some ¢4 € C. ad =
ap(cqg) = ¥(acq). Since C is a eft ideal of A, acq € C, so (acy) € ¥(C). Thus
»(C) is a left ideal of A contained in C. O

1.4 Simple Ideals and Semisimple Algebras

Definition 1.25. A nonzero left ideal C' of an algebra A is called simple if there
is no left ideal D with {0} # D & C.

14



Definition 1.26. An algebra A over a field F' is called a direct sum of left ideals
C,Cs,....C, if A=C1 P Cy @ ... B C, as a vector space that is, each a € A has a

unique representation as
a=c,+cy+ ... + ¢y, for some ¢; € C;.

Definition 1.27. An algebra A over a field F' is called semisimple if for each left
ideal C' of A, there exists a left ideal C” such that A =C & C".

Proposition 1.28. If A is semisimple then each nonzero left ideal of A is a direct

sum of simple left ideals. In particular, A is a direct sum of simple left ideals.

Proof. Let C' be a nonzero left ideal of A. If C' is simple then the conclusion holds
for C.

Assume that there exists a left ideal C; of A with {0} # C; & C. Choosing C4
to be of minimal dimension, we may assume that C'; is simple. By hypothesis, there
is a left ideal C] of A with A = C; & (. Then C]NC is a left ideal of A. For any
x € C,x = ¢+ forsome ¢; € Cy and ¢} € C]. Since C; C C, ¢} =x—c; € CINC.
It follows that C' = C; + (C; N C). Since C; N (C; N C) C C; N C; = {0},
we have C' = C; & (C] N C). By induction on dimension, we may assume that
ciNC =Cy® ... ® Cpy, a direct sum of simple left ideals of A. Therefore,
C=CaC,@...0 0. O

Definition 1.29. An anti-automorphism of an algebra A over a field is a vector
space isomorphism ¢ : A — A such that o(zy) = o(y)o(z) for all a,y € A. In
other words, ¢ is an algebra isomorphism between A and A°, where A is the

opposite algebra of A defined as the same vector space as A, but with multiplication

x defined by a x b = ba,Va,b € A.

If A is commutative, any automorphism of A is an anti-automorphism. If
A = M,(F), then the matrix transpose map is an anti-automorphism. If A 22 A

then of course A has no anti-automorphism.
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Theorem 1.30. (Wedderburn-Artin Theorem) Let R be a ring satisfying the
descending chain condition on left ideals and with no two-sided ideals except (0)

and R. Then there exists a positive integer n such that for any minimal non-trivial

left ideal L of R the following hold:
t. R s isomorphic to a direct sum of n copies of L.

ii. If D = Endg(L) then D is a skew field and L is an n-dimensional vector

space over D.

iti. R~ Endp(L).
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Chapter 2

Reality-Based Algebras

Definition 2.1. A reality-based algebra (RBA) (A, B) is an algebra A over C
with a distinguished basis B = {;|0 < i < d}, where d < o0, by = 14, and the

following three conditions hold:

1. Forall 0 <1,75 <d,
d
bibj = > Binb,
=0

where each coefficient (structure constant) f3;;; is in R.

ii. There is an algebra anti-automorphism * of A, such that (x)? = id4 and

B* = B. (So x has order at most two, and permutes the elements of B. Set

bi* = b*)

7

1. For all 0 <i,5 <d,

Bijo = 0if j #i*, and B0 = Bisio > 0.

Definition 2.2. A degree map ¢ is an algebra homomorphism from A to C such
that 0(b) € R\ {0} for all b € B. If §(b) > 0 for all b € B, then ¢ is called a

positive degree map.
Definition 2.3.

i. A C-algebra is a commutative reality-based algebra with a degree map.
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11. A table algebra is a reality-based algebra with all nonnegative structure con-

stants.
Proposition 2.4. A table algebra has a unique positive degree map.

The proof of this property requires the orthogonality relations of irreducible

characters of table algebras. For a proof see [4].

Example 2.5. Given the basis {bg, b1, b, b3, by} where

100 6 0 0 6 0 0
bo=|0 1 0|.bi=]0 =28 by = [0 =238 =
00 1 0 0 s 0o = =3+5v3
6 0 0 6 0 0
by= |0 P8 R b= 0 S BVESEV

0 —5v6-3v2  —3+5V3 0 —5V6+3v2  —3+5V3
12 12 12 12

1. The structure constants for the algebra elements are as follows:

=1 ifl =9 or = 1 ifl=1
bobj _ 5031 J biby — Biot

Boji =0 ifl#7, Biow =0 ifl#1,

biby — {f110 = 6, f111 = %, B2 = 5, Bus = 5, Bia = 5 -
bibo — {B120 = 0, B121 =, P22 = 5, Bras = 2, Braa = 3}
bibs — {5130 =0, 8131 = %7ﬁ132 = 28—3,5133 = %,ﬁ134 = %}
biby = {Bra0 = 0, Bra1 = &, Brao = 2, Puus = 2, Bras = 2}
boby — {Ba10 =0, o1 = %75212 = 18—1,5213 = %,5214 = %}
baby = {Bazo = 6, Baa1 = X, Bazs = &, Pozs = 5, Pooa = T }-
babs — {B230 = 0, Boz1 = 275232 = %,5233 = %1,5234 = %}
boby — {Ba10 = 0, foa1 = %75242 = 18—1,5243 = 153,5244 = %}
bsby — {B310 = 0, B311 = &, B312 = 2, fBa1s = &, Ba1a = 2}
bsbo — {B320 = 0, B321 = 2, Bazo = 4, B33 = 3, B30 = 2.

bsbs — {B330 = 0, B331 = %7@;32 = 18—3,5333 = %,5334 = %}
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bsby — {B340 = 6, Bz = %7ﬂ342 = 2,?1,5343 = %;5344 = %}
baby — {Ba10 =0, fan1 = %75412 = 28—3,5413 = 153,5414 = %}
bsby — {Ba20 = 0, Byz1 = 275422 = %,6423 = 1?5’,5424 = %}
bsbs — {Bazo = 6, Baz1 = %,5432 = §,5433 = %,5434 = %}-

baby = {Bas0 = 0, Baar = 2, Baso = 3, Buas = 2, Baas = 3}

ii. Define x : A — A,b; — bl = b} (the algebra anti-automorphism is defined

as the transpose of the matrix). 0f = by,b; = b1,05 = b, b5 = by, b} = bs.

Notice that % has order two, and it permutes the basis elements.

i1i. Looking at the structure constants, 5;;0 = 0 when j # i*. Boo«0 = Booo =
Boxoo = 6 > 0; Br1xo = Br1o = Brr10 = 6 > 0; Pogeg = Paog = Paxoo = 6 > 0;
B33+0 = B340 = Barao = 6 = P3+30 = Pazo = Paao > 0.

So, this is a reality-based algebra of dimension 5. In fact, it is a noncommutative
table algebra of dimension 5 with degree map d(by) = 1 and d6(by) = 0(by) =
d(b3) = 0(by) = 6.

Example 2.6. The adjacency algebra is an example of an RBA. The set of adja-
cency matrices forms a basis for the algebra that it generates, B = {Ag, A1, ..., Aq}.
By Proposition 1.9, Ay = I; the matrix transpose map permutes the elements of
B and thus is an anti-automorphism of A whose square is id 4; and the structure
constants py;; for B are nonnegative integers. This satisfies Definition 2.1(i.) and
2.1(i1.).

2.1(i73.) is satified by the fact that p;o = 0 if j # i*, and pi=0 = ki > 0,
where k; is the sum over each row of the n x n matrix A;, and k;« is the sum over

each column.

Proof. If x € S, (x,x) € Ry. Hence, pyio counts the number of elements z € S with
(z,2z) € Ry, and (z,x) € R;. Since (z,z) € Ry, (z,2) € Ry+. Since R; N R; = 0 if

1# 7, h* =1 and i* = h. Hence, prio = pi*io = ki~. From Proposition 1.9 we know
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that ppij = pi=n+j=, and so ppio = pirio = Piio- It follows also that if h # ¢*, then

Dhio = 0. [

And so Definition 2.1(i4i.) is satisfied and an adjacency algebra is an RBA.

2.1 Sesquilinear Forms

Definition 2.7. Let V be a vector space over C. A sesquilinear form on V is a
function S : VxV — C (where S(u, v) will denote the complex number assigned to
the pair of vectors (u, v)), such that the following properties hold for all u,v,w € V
and a € C:

S(u, v+ w) = S(u,v) + S(u, w)
S(au,v) = a-S(u,v)
S(v,u) = (S(u,v)).
Remark: @ denotes the complex conjugate of .

Proposition 2.8. Let S be a sesquilinear form on a vector space V' over C. Then,

for all u,v,w eV and a € C,
i. S(v+w,u)=Sw,u)+ S(w,u);
ii. S(u,av) =a- S(u,v);
iti. S(v,0)=0=5(0,v);
iv. S(v,v) € R.

Proof.

i. S(v+w,u) = (S(u,v+ w)) = (S(u,v)+ S(u,w)) = (S(u,v)) + (S(u,w)) =
S(v,u) + S(w,u).

ii. S(u,av) = (S(av,u)) = (aS(v,u)) = (@)(S(v,u)) = @S(u,v).
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iii. For a vector u € V S(v,0) = S(v,0-u) = 0S(v,u) = 0-S(v,u) =0 =
0-S(u,v) =5(0-u,v) =.5(0,v).

iv. S(v,v) = (S(v,v)), which is only true when S(v,v) € R.
[

Definition 2.9. A sesquilinear form S on V is called positive definite (nonnegative

definite) if S(v,v) >0 (S(v,v) >0) for allv # 0 € V.

Definition 2.10. Let S be a sesquilinear form on V', and let B = {v;} be a basis
for V over C. Then B is called orthogonal (with respect to S) it S(v;,v;) = 0 for all

i # j. B is called orthonormal if B is orthogonal and S(v;,v;) = 1 for all v; € B.

Example 2.11. Let vector space V' over C be finite dimensional, with basis B =

{v1, ..., v, }. Fix real numbers (31, B, ..., B,. Each v € V is written uniquely as
v =ag(v)vy + az(v)vy + ... + @, (V)vy,

where a;(v), ag(v), ..., a,(v) are complex numbers. Define S: V x V' — C by

S(u,v) = Z ﬁiai(u)m.

Then S is a sesquilinear form on V', and B is orthogonal with respect to S. S is
positive definite iff all §; > 0, and S is nonnegative definite iff all 5; > 0. If S is

positive definite, the basis {%vz (v € B} is orthonormal with respect to S.

Proposition 2.12. (Gram-Schmidt Orthonormalization) Let vector space V' over
C have basis {v;},. Let S be a positive definite sesquilinear form on V. Then
one can obtain B = {w;}!,, and orthonormal basis with respect to S, such that

for all1 < j <mn, (ui,us,...,u;) = (v1, v, ..., v;).

Proof. Let f; = S(v1,v1) > 0, and let uy = 111)1. Then S(up,u;) = 1 and
(ur) = (v1).

=
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Suppose inductively that wg, ..., u; are vectors in V' such that (uq,...,u;) =

V1, ..., 0), and S(u;, u;) = 0;; for all 1 <17, 5 <t. Define
< ) ) >7 s Wy J 7.]

t
W=V — E S (Vgp1, u) ;.
=1

So, w # 0, S(w,u;) = 0 for all 1 < j < ¢, and (uy, ..., us, w) = (V1, ..., V¢, Vyp1)-
Let f = S(w,w) > 0, and define uyyq = \/iﬁw. It follows that S(ust1,u;) =
0 = S(uj,uyq) for all 1 < 5 < ¢, S(wgr,u1) = 1, and (ug, ..., up, wgq) =

(V1, .oy Vg, Ue41). So by induction on ¢, B = {u;}?_, can be obtained as desired. [

Proposition 2.13. Let S be a positive definite sesqilinear form on a finite dimen-
sional vector space V over C Let U be any subspace of V. Then UNU+L = {0}
and U + U+ = V. In other words, V = U ® U+, so that the union of any bases of
U and U+ is a basis of V.

Proof. If u # 0 is in U, then S(u,u) > 0 implies that u &€ U+. Hence, U N U+ =
{0}. Let {wq,...,wm, Vmi1,-..,0s} be a basis for V' such that {ws,...,w,} is a
basis for U. Application of the Gram-Schmidt process to this basis yields a basis
{uy, o U, Uy 1,y -y U} for Vowich is an orhtonormal basis for V' with espect to
S, and so that (uy, ..., uy) = (wi, ..., w,) = U. Now for each j > m and i < m,
S(uj,u;) = 0 implies that u; € U*. Hence (upi1,...,u,) € UL and we have
U+Yt =V (Infact V = U @ U? yields dimU+dimU+ =dimV = n, hence

Ut = (Upmgty ooy Up).) O

2.2 Reality-Based Algebras are Semisimple.

Theorem 2.14. Suppose that A is an algebra over C and that S is a positive
definite sesquilinear form on A with the property that for all x,y,z € A there

exists some T € A such that S(xy, z) = S(y,2z). Then A is semisimple.

Proof. Let C be any left ideal of A. By Proposition 2.13, A = C' @ C* as a direct

sum of vector subspaces, where C* is the subspace of all vectors v € A such that
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S(v,c) = 0 for all ¢ € C. By definition of semisimple, it suffices to prove that C*
is a left ideal. For all v € Ct,a € A and ¢ € C,S(av,c) = S(v,ac) for some
a € A, by hypothesis. Since C' is a left ideal, ac € C. Hence, S(v,ac) = 0. Then

S(av,c) =0 for all ¢ € C', whence av € C*+. The result follows. ]
Lemma 2.15. Let (A, B) be reality-based.

i. When writing elements of A as linear combinations of B, the coefficient of

by in xy equals the coefficient of by in yx, for all x,y € A.

1. For all indices i, 3,1, Bu0Bijt = Bjj-08ixt;-
Proof.

d
i. Let © = > aubi,y = Y by, for some o,y € C. Then zy = > a;y:b:b;
i=0 i=0 .3
implies that the coefficient of by in xy equals

Z @iV Bijo = Z Yir i Bixio,
irj i*

by Definition 2.1. Similarly, the coefficient of by in yx equals

Z%O‘jﬁijo = Z%‘O@*ﬁn‘*o = Z’)/i*aiﬁiio.
i’-j Z Z‘*

Since B;i+0 = Bi+io by Definition 2.1, the result follows.

it. Since (b;b;)by = Xd: Bijmbmbi+, the coeflicient of by in (b;b; )by is Byt B0 by
Definition 2.1. Swilljge (bib;)byx = b;(bjby+), i. implies that by has the same
coefficient in (b;b+)b;. Since % permutes the elements of the basis, B, and
bs = bo, by has the same coefficient in (b;b+b;)* = bbbj«. Since bbby =

d
Y Birtmbmbj-, this coefficient is B;=4;8;+0. Thus, Bu-0Bijt = Bjj+0Bi;-

m=0
L]
d
Definition 2.16. Let x € A, where (A, B) is reality-based, and set = = > «a;b;,
i=0

d
for a; € C. Define z = ) ab}.
i=0
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Lemma 2.17. Let (A, B) be reality-based. There exists a positive definite sesquilin-
ear form S on A such that B is orthogonal with respect to S and S(b;,b;) = Biio

for 0 < i < d. Furthermore, for all x,y,z € A,
S(zy, z) = S(y,z2).

d d
Proof. For any u,v € A, let u =Y a;b;,v = > v;b;, with ay,v; € C. Define
i=0 i=0

d
S(u,v) = Z Biir007i-
i=0

Then, as in Example 2.11, S is a positive definite sesquilinear form on A for which
B is orthogonal. The definition implies that S(b;,b;) = Bii=o for all i. For all
0<14,j,t<d,
S(bibj, b)) = S (%: Bijmbm,bt) = %:@jms(bm,bt)
= ijtS(b, b) (B is orthogonal)
= BijtBi-o = Bi=tjBj~0 (Lemma 2.15 (i7))
= S(bj, Birsjp,) (since P = 51_153 (Definition 2.1))
= > S(bj, Bi+tmbm) (B is orthogonal)
= S(bj, 22 Birtmbm) = S(bj, bixby)
So S(biby,by) = S(b;, bby for all 4, j, .
For any z,y,z € A, set x = Zozibi,y = Zﬁibi,z = Z%zi with o, 5;, 7 €
C. Then Z l 1

5(371%2) = S (Z Oéiﬁjbibpzt:%bt)
Z?-]
= > a;B7S(bibj, by) = > ;875 (bj, bixby)
1,5,t ,5,t

= > S(Bjbj, vibi-by)

i7j7t

= S <; B;b;, (;mbl) (; %bt>> = S(y, zz).

Theorem 2.18. If an algebra A is reality-based, then A is semisimple.
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Proof. Since A is reality-based, Lemma 2.17 tells us that there is a positive definite
sesqulinear form S on A such that the basis is orthogonal and S(b;, b;) = B0 for
0 <i<d. Also, for all z,y,z € A, S(zy,z) = S(y,zz). It follows directly from

Theorem 2.14 that A is semisimple. n

2.3 Noncommutative Reality-Based Algebras of
Dimension 5

Herman, Muzychuk, and Xu show in [1] that a finite-dimensional noncommutative
semisimple algebra with involution always has an RBA-basis. They focus on
algebras of the form C'® M,,(C),n > 2 and ask questions involving whether or not
the RBA admits a positive degree map. For RBAs that have a positive degree map,
they try to find an RBA-basis with nonnegative structure constants to determine
if there is a generalized table algebra structure. Below we list the key theorems

proven in [1].

Theorem 2.19. For all n > 2, M, (C) with the conjugate-transpose involution

has a rational RBA-basis.

Theorem 2.20. Let CCy be the complex group algebra of the group Cy = {e,x},
and let & be the trivial character of the group Cy. Let B be a rational RBA-basis
of M,,(C).

Then Cy Os B is a rational RBA-basis of C & M, (C).

Theorem 2.21. Let (A, B) be an integral RBA with a positive degree map.
If |[Irr(A)| = 2, then |B| = 2.

The following theorem was also proven in [1], and is the key theorem we

focus on for the work presented in the rest of this paper.
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Theorem 2.22. Suppose

a 0 voow r s T
CEM ORIV S DR N DTN K RO R )

0 d w T t u s u

is a standardized RBA®-basis of C® My(C) with respect to the conjugate-transpose
involution. Assume all matriz entries of these basis elements are real numbers. Let

€1,€9,63 = 1 be three sign choices. Then the matriz entries satisfy the identities

5 nd1(n—1-461)
@ n—1 + €1 n—1 ’
. 51 nd1(n—1-41)
d = n—1 +e n—1 )
v 02 £1 nd102
n—1 (n—1)y/nd1(n—1-61)’
_ 5o nd1d2
r = —= 4 €1
n—1

(n—1)3/né1 (n—1-61)’

_ 20203
W = 2/ GDy(n-1-01)

03 €1 nd1d3
n—1 (n—l)\/n(Sl(n—l—(sl)7

03 nd1d3
n—1 (n—l)\/mil(n—l—(il)’

s = —%+53,/—2(‘;3f1), and

d3n
2(n—1)"

t = —%—63

Conwversely, given positive real numbers n, 61, 02, and d3 satisfying n =
1+ 01 + 09 4+ 203 and three choices of sign for €1, €2, and 3, the above identities

produce an RBA®-basis of C & My(C) having real matriz entries.

Also, formulas for the structure constants for the basis were calculated. The

formulas for these structure constants are (with € := e1e9¢3, and not including
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those involving by):

(n+1)62—3(n—1)8;

Alin = e 7
n 62_ n—1)§
)\112 = )\113 = )\114 = %,
Al?l — )\211 = (n+1)5(1,rf3;)(;_1)62,
A2z = Ag12 = (n+1)5(17§52;)(n,1)61’
A2z = Ao1a = ("+1)5152(:L15(;l) 1)\/W
Aog = Ag13 = (”+1)6162(ns(?) 1)m
AM31t = A1 = A\311 = \ap = (n+1)5(17;s31)( )53,
A32 = M2 = (n+1)d10203+€(n— 1)53\/W
82(n—1)2
Mgz = Ay = (FLo8—(noDo—c(n=1)Vn8i5
(nfl)g )
A134 = Az = A3ig = A1z = (71(:?1‘5)1253
Mg = A312 = (n+1)818283—e(n—1)d3/né162
52("*1)2 )
Alag = Az13 = (n+1)5163_(”Ei)fll;gs(n—l)\/m7
n 62—-(n—1)8
Aoo1 = Ago3 = g9y = %7
n 627 n— 6
Aoz = ( +1)(27?1>§2 1) 2
Aozt = M\ao1 = ("+1)51525§1?Z(_”1—)21)53\/m’
Aoga = A\g22 = Aoga = Ag02 = (”+1)5(2n<5:)(2n—1)53’
A3z = Agaq = (n+1)8203—(n—1)82+e(n—1)v/nd1 5>
(n—1)2 1]
Aoss = Ago3 = Agu3 = Agoq = (72:21){5)2253’
Aog1 = A1 = (n+1)818283+e(n— 1)53\/W
81 (n—1)2
Aogg = Ago3 = (n+1)6263_(”z;)flz);a(n—l)m7
>\441 - >\442 == )\443 —_ ((7:::11);5257
A343 = A3aq = A33 = Mgz = ("H)fiifgﬁ—lﬁs,
n 62_ n—1)6
A333 = \aq = ( +1)($Lj§2 1) 3
n+1)6162—(n—1)8103—e(n—1)53/nd10
Azq1 = M3z = (nt+1)d165—( 511)(; 31)2( 1) 3m,
A =\ _ (n+1)6162—(n—1)5163+e(n— 1)53\/m
e 51(n—1)2
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2.4 Noncommutative Table Algebras of Dimen-
sion 5

Lemma 2.23. Let (A, B) be a standard noncommutative reality-based algebra of

dimension 5. Then (A, B) is a table algebra if and only if the following hold:

(n41)0; > 3(n—1) (2.1)

(n+1)5, > 3(n—1) (2.2)
(n+1)0,8, > (n — 1)y/nd18, (2.3)
Sl(n+ 185 — (n—1)] > (n —1)\/néb, (2.4)
Sa[(n +1)d5 — (n = 1)] > (n — 1)y/né18, (2.5)
(n+1)85 > 2(n — 1) (2.6)

Proof.
(=) We first assume that (A, B) is a table algebra; so, using the formulas for the

structure constants, we can derive (2.1) - (2.6).

_ (n+1)62-3(n—1)8;

Step 1: /\111 = (n—1)2 2 0 = (n+1)(5f—3(n—1)51 = 51((n+1)51—3(n—
1)) > 0. So, §; > =t and (2.1) holds.
Similarly, o9y = ("“’fijg?”é? gives us the condition d, > 3((7::11)) and (2.2)
holds.

Step 20 A2g = Ao1g = (”+1)5152(:i(?);1)m >0

(n+1)818 + e(n — 1)v/nddy >0
(n+1)616, > —e(n — 1)v/nd10,
(n+ 1)2(6:8,)2 > (n—1)*nd16
(n+1)26,09

(AVARNLY,

v

(n—1)*n

n(n—1)>2
(n+1)%

010

Vv
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So, (2.3) holds.

(n+1)0152—e(n—1)v/nd102 (n+1)01203+¢e(n—1)d3v/nd102

Similarly, Ajgq = Ag13 = (n—1)2 s A132 = Aq12 = 32 (n—1)2 )
A A (n+1)516263 E(TL 1)53\/77,515 A _ A _ (n+1)616263—5(n—1)§3\/n5162

142 = A312 = S2(n—1)2 231 = A421 = S n—1)2 )
and \oyp = A391 = (”H)‘SI‘SQ‘S;IZ("DD% V19192 gives us the same condition.

Step 3: Aizz = A\a1a = b=l (5)511) elnd)Vnhds > 0.

(n + 1)(51(53 — (’I’L — 1)51 — €(n - 1)\/ 716152 Z 0
(n+1)6103 — (n —1)d; > e(n — 1)v/nd109
51((’[1 + 1)53 — (TL — 1)) Z E(Tl — ]_)\/ n5152

61((n+1)03 — (n—1))> > (n—1)’nd,
51 > (n—1)2nd

((n+1)d3—(n—1))*
So, (2.4) holds.

(n+1)(51 I3 —(nzi)_(sll)-‘ga(n— 1)\/ nd102 and

1)6162—(n—1)6103—e(n—1)83v/nd102 - ..
X341 = Ayzg = (n4D)o1%5—(n 61)(;_31)25(71 )93v/nd192 gives us the same condition.

Similarly, )\144 = )\313 =

Step 4: )\233 _ )\424 _ (n+1)8203—(n—1)d2+e(n—1)/nd12 > 0.

(n—1)?
(n+1)0505 — (n — 1)y + e(n — 1)v/nd1d; >0
(n+1)8205 — (n — 1)6, > —e(n — 1)v/nd10;
5y((n+1)05 — (n —1)) > —e(n—1)v/ndi0,
2((n+1)85— (n—1))2 > (n—1)%nd10,
So((n+1)65 — (n—1))2 > (n—1)2né
5y > (n—1)*nd;

((n+1)d3—(n—1))*"
So, (2.5) holds.

Simﬂaﬂy, A244 = A323 = (n+1)62§3—(n—l)ég—s(n—l)\/m and

(n—1)?
Aze2 = Aag1 = = (n_gl)&g_gf)rza(n_l)é?’ 9% gives us the same condition.
Step 51 Asaz = Assr = Mzz = Mzt = Aszz = A = (n+1)(€ijgg,1)53 >0 =
(n+1)82 —2(n — 1)d3 > 0. So, d3 > 2("+ 1)) and (2.6) holds.

29



(<) Now we assume that (2.1) - (2.6) hold; however, one can see from above,
that it is easily verified that all the structure constants will be nonnegative. Thus,

(A, B) is a table algebra. O

(n+1)62—(n—1)8;

Remark. The structure constants Aj1o = Ajjz = Aa = 1)

(n+1)0f = (n—1)0y = 61 ((n + 1)1 — (n—1))) > 0. So, 6y > 2=

Similarly, Ai21 = Ao11 = (n+1)6(17;5:)(;—1)52 and Az = A = Az11 = Ay =

("H)é(f:)(; —U% gives us the condition d; > Z—;} However, we can ignore this
condition since 3((:;11)) > EZ;B

Also, Mgy = Agip = RGN 3y Ny = Mgy = (I
and Aoza = Moo = Aaan = N300 = W*”‘ifﬁ;fﬁ —U% oives us the condition d, > Z—H
However, we can ignore this condition since 3’((:—;11)) > EZ;B

Lemma 2.24. For a > 3, the polynomial f(x) = 2* + 2% + ax — a is increasing

in (—o0,00), and hence has a unique real Toot, denoted by E(a).
i. 0 < E(a) <1.
it. E(a) > E(b) ifa > b.
iti. E(a) = 1 if a — 0.

The root of f(z) is given by:

E(a) = —3 Sa—1 L—1+41 —a+ 11a + )3
()= -1+ TP N i L(—-1+18a+3V3V—a+11a + d?)s

Proof. Consider f'(z) = 3z% + 2z + a, which is an upward-facing parabola with

-1

vertex (5, 5t + a). Since a > 3, we have that =' + a > 0, which means that

f'(x) > 0 always. So f(x) is increasing on (—o00, 00).

i. f(0) =—a < 0and f(1) =2 > 0. So, by the intermediate value theorem,
there exists a real-valued root of f(z) in (0,1). Hence 0 < E(a) < 1. Also,

since f(z) is increasing on (—oo,00), E(a) is the unique real root of f(z).

it. Efa) = - Jal +1(—1+18a+3v3v—a + 11a® + d¥)5.

1
__'_ T
3 3(—1+18a+3v3vV—at1la?+ad)3
E'(a) =
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2
9(—1+418a+3v3v—aF11a2+a%) % —(3a—1) 1 - | [ 184 2814220 43aT)
(—14+18a+3v3V —a+11a2+a3)3 2(—a+11a2+a3)2

9(—1+18a+3v3v—a+11a2+a3)?

+ ( 1 2> (18 + 3‘/5(_1”2“3“?)) > 0 when a > % So
9(—14+18a+3v3vV—a+11a2+a3)3 2(—a+11a2+a3)2

E(a) is increasing, and so E(a) > E(b) when a > b.

i11. Suppose that lim F(a) = 3 < 1. So, E(a) <8< 1land 82+ p*+af—a >0
a—r o0

for all a > % Therefore

B +3 >a—af
> a(l—p3)

So, a < 'Bifgg for all a > % Let a = Bifgz + 1. But then we have 'Bifgz +1<

P45 \which yields 1 < 0, a contradiction. Hence lim E(a) = 1.

1-8 a—00

]

Lemma 2.25. Let (A, B) be a standard table algebra, then each 6; > 1. If each

0; = 1, then B is a group under multiplication.

Proof. Assume that B = {by = 14,01, ...,b43}. Then for any 0 <i < d,

d
bibi* = Z )\ii*jbj7 >\ii*0 = 52‘, )\ii*j Z 0

J=0

Applying the degree map to both sides, we see that
d
522 — Z A“*](S] Z /\,-Z-*O50 — 51" (50 - ]_, )\ii*O — 5% (27)
=0

That is, 7 > §;, so 6; > 1.
Now assume that all §; = 1, Then we prove that B is a group. From (2.7) we get

that

d d
L= N =14 Niej.
j=0 J=1
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So, Nji=; = 0 for all j > 1, and b;b;+ = by = 14. That is, b; is invertible, and
b;l = b;«. Then

d
bj = bobj = (bixb;)b; = Z Aijmbi= .-

m=0

Since the structure constants are non-negative, the terms appearing in the right
hand cannot cancel each other. Thus for any m such that A, # 0, bib,, = anb;
for some «,,. Applying the degree map, we get that b;+b,, = b; for all m such
that \;j, # 0. Thus if there are at least two distinct m, say m; and mg, such
that Xijm, # 0, Aijm, # 0, then bj<by,, = bi=by,,. Hence b;(bi=b,) = b;(bixby),
and b,,, = b,,,, a contradiction. This proves that there is only one m such that

Aijm # 0, and b;b; = by,. So B is a group by the definition of a group. O]

Lemma 2.26. Let (A, B) be a noncommutative standard table algebra of dimen-

sion 5, then n > 5.

Proof. If n =5, then each §; = 1. Hence B is a group (under multiplication) of

order 5. Hence B is abelian, and (A, B) is commutative, a contradiction. O

Lemma 2.27. f(x) = % for x > 5 is an increasing function.

Proof. Consider f'(z).

(#4+1)(1+vE+(2—1) 522) —(—1) (1+/2)
flx) = e
(z+1)(2vz+2z+2—1)—(2—1)(2/z+22)
o 2v/z(z+1)2
2a+/z+2v/c+322 43z —x—1—(20/x—2/T+22° —27)
2y/z(z+1)2

2?2 4da+4y/z—1
2v/z(2+1)2

Since z > 5, % + 4z +4y/z — 1 > 0 and 2v/z(z +1)* > 0. So, f'(x) > 0 and f(z)
is increasing. O
Remark. From (2.4) and (2.5), (n+1)d3 — (n — 1) > (n — 1)y/ny/% and (n +
)03 —(n—1) > (n—1)y/n g—;. Since either g—; > 1 or g—j > 1, we always have
(n+1)03—(n—1) > (n—1)y/n. So (n+ 1)d3 > (n — 1)(1 + v/n). Now it follows
from n > 5 that (2.6) is a direct consequence of (2.4) and (2.5).
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Theorem 2.28. If (A, B) is a table algebra, then

6
51>3 52>3 53>2+—\/_
and
9+4\/5<n<#—1
=M ST TR

where E(0102) is the (unique) real root of x® + 1 + 81097 — 6105 = 0.

Proof. Take the square of both sides of (2.3) and we get

n

n—1\>

Thus, 61 + 09 > 24/0109 > 2\/52—:1 From (2.4) and (2.5) we have

(n—i—l)d;;—(n—l)Z(n—l)\/ﬂ-max{\/%,\/g}.

Since either g—f >1or g—; > 1, we always have (n+1)d3 — (n — 1) > (n — 1)/n.
Thus
03 = -

1(1 +/n). (2.9)

Therefore,

n—1 1
— > -
n 1+51+52+253_1+2\/ﬁ<n+1)+2(1+\/_)( +1)

Hence, (%) (14 4y/n —n) < 0. Since n > 5, we see that 14+ 4y/n —n < 0. So
n>9+4V5.

Now from (2.1), 6; > 3((:;11)) > 31(Zii£) = %g‘ Similarly from (2.2) we see that
9y > %5. Furthermore, (2.9) implies that

n 8 + 45 6v/5
b3 > n+(+f) o 4\[( \/9+4f)_2+—

Let z = 1—% Since n > 9 + 4v/5, we have z > 0,1 — 2 > 0, and (2.8) is
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equivalent to

SL’S -+ .’172 —+ (5152I - (5152 S 0. (210)

Note that 8,6, > %Y by (2.8). So (2.10) holds if and only if z < E(8;6).

Thus, (2.8) holds if and only if n < % -1

n=1)2,
Towards a contradiction, assume that §; < 3. Then from (2.8) d, > (=) >

(254)"n

3

.

n=1)2,
. Also ‘52 > 2 > %. Hence from (2.4),

(n+ 1) —(n—1) >

Thus, 45 > n—2 [1 + <T3) ] We have already shown that §; > %5 > 2. There-

fore, n =1+ 01 + 65 + 263 > 3 + (““)2 +2 (%) [1+ ("“) } 3+2(29) +
(Z—:) n. Son(n+1)? > 3(n+1)?+2(n—1)(n+1)+(n—1)?>n. Thus, n?+6n+1 < 0,
a contradiction to n > 9 + 44/5. This proves that §; > 3. Similarly, we can prove
that d, > 3.

]

Corollary 2.29. For any n > 9+4v/5, there is a standard noncommutative table

algebra of dimension 5 such that

B _(n—l) (n—1)(n+1-2yn)
01 =0 Vi, b = 2(n+1) '

Proof. Since n > 9+ 4+/5,/n > /9 + 45 ~ 4.236... > 3. So, (” 1)\/_ > 3=l

n+1 ?

which satisfies (2.1) and (2.2).

0109 = <(Z+i) ) = n+1 2n which satisfies (2.3).

Substituting in the given 6y, d2,d3 into (2.4) and (2.5) gives us the inequality

(n—1) > . Substituting in n = 9 +4/5, we get 16.944... > LIl x5

(n—1— 2\f 71.775...

So (2.4) and (2.5) is satisfied.
Also, ™52 > 54 9v/5 — /0 + 45 ~ 5.236... > 2. Thus, "=mH2vi)

2(n+1)

2((:;11)), which satisfies (2.6).
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Example 2.30. Let n = 9+4v/5,6, = 0, = 2(5+52\/5), and 03 = 2+ %5. Then from
Corollary 2.1, this forms a standard noncommutative table algebra of dimension

d.

Corollary 2.31. For any n > 9+4v/5, there is a standard noncommutative table

algebra of dimension 5 such that

(n—1)(n—1—24/n) n—1

Proof. Since n > 94 4v/5, "2 > 4 4 2/5 — /9 + 44/5 ~ 4.236... > 2. Thus,
(n=Dn122vm) o 30D " which satisfies (2.1) and (2.2).

2(n+1) (n+1)?
S8 — (=Dm-1-2ym) 2 12(—1-2ym)?  (n—1-2ym)? S BHVE-V01avE)?
-2 = 2(n+1) - 4(n+1)2 : 4 = 1 ~

40.373... > 9 + 41/5, which satisfies (2.3).
Substituting in the given dy,dq,05 into (2.4) and (2.5) gives us the inequality
01,00 > W but actually d;, 0y = W so (2.4) and (2.5) are

satisfied.

Also, 1 ++/n > 1+ /94 4v/5 ~ 5.236... > 2, which satisfies (2.6). O

Theorem 2.32. Let (A, B) be a standard noncommutative reality-based algebra

of dimension 5.
i. For an o > 3, there is a noncommutative table algebra of dimension 5 such

that 6 = a (or 69 = ).

. Ifn 2 9+4\/g, 51 Z 3,52 Z 3,E(51(52) Z 1— 2 and (53 Z maX{51762}+E

n+1’ n+1’

then (A, B) is a table algebra.
Proof.

t. Since o > 3, there is a positive real number £ such that for all n > 3,
(@ =3+ (6 —a—a’)n*— (a+2a°+3)n—ala—1) >0  (2.11)

and

n? — (24 3a)n* + (1 — 6a)n — 3a > 0. (2.12)
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2
n—1
(n 1) n

Let 61 = o, 6o = ,and 03 = %(n— 1 —6; —03). Then 5, > 3 by (2.12),
and by choosing n large enough, we may assume that d, > d; . So by (2.11)
03 > Z—j& (1 + 4 /nﬁ—f). Hence the reality-based algebra is a table algebra.

The proof of 7. is straightforward and follows directly from Theorem 2.28.

[]
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