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ABSTRACT 

 The process of using electroporation to introduce plasmid DNA into host cells is a 

valuable molecular technique that is increasingly employed in labs worldwide. 

Electroporators are generally small and relatively inexpensive, making them attractive 

systems to use for a variety of purposes. Electroporation protocols are numerous in the 

published literature and encompass all cell types, from prokaryotic bacterial cells to 

eukaryotic human cells. The TargeTron Gene Knockout System by Sigma-Aldrich is an 

affordable option for the electroporation of numerous bacterial species. However, its 

use in Listeria monocytogenes has not been extensively characterized. Here we sought 

to discuss the effectiveness of the TargeTron Gene Knockout System in transforming 

Listeria monocytogenes via electroporation along with the challenges this process 

presents.  

 

 We attempted to transfect Listeria monocytogenes with two plasmids 

constructed through SigmaAldrich as part of the TargeTron Gene Knockout System, 

pACD4K-C and pNL9164, both of which are designed to induce targeted deletion of 

genes within the host genome. Electroporation was performed under varying 

conditions, with voltages ranging from 200 to 1250V. Following shock, cells were grown 

in blood agar or brain heart infusion media containing kanamycin.  Pores were induced 

in the cell wall prior to electroporation by incubating the bacteria in media containing 

pencillin, ampicillin, or lysozyme. Results show no colonies on selective media post-

electroporation for either plasmid across all conditions.  
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CHAPTER 1 

 

Introduction 

The process of using electroporation to introduce plasmid DNA into host cells is 

an increasingly employed method in labs worldwide. Electroporators are generally small 

and relatively inexpensive, making them attractive systems to use for a variety of 

purposes. Electroporation protocols are numerous in the published literature and 

encompass all cell types, from prokaryotic bacterial cells to eukaryotic human cells. 

While a significant number of bacterial species have been successfully 

transformed using this method, the specific protocols for each species vary greatly. In 

some cases, the bacteria can be difficult to transform. Commercial systems have been 

developed by manufacturers in order to make the process of transforming bacterial cells 

more accessible, streamlined, and readily available. The TargeTron Gene Knockout 

System by Sigma-Aldrich is rapidly becoming a commonly used system for 

electroporating cells and is an affordable option for smaller, less well-funded 

laboratories. 

In this thesis, I will discuss the methods involved in attempting to transform 

Listeria monocytogenes via electroporation along with the challenges this process 

presents. I will also assess the effectiveness of the TargeTron Gene Knockout System 

and whether or not it is a viable option for labs planning on working with this particular 

species. 
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CHAPTER 2 

Literature Review 

Listeria monocytogenes, PrfA, and listeriolysin O 

 Listeria monocytogenes is an intracellular, food-borne pathogenic bacterium 

responsible for the disease listeriosis. It is classified as Gram-positive, motile via flagella, 

and facultatively anaerobic. L. monocytogenes is not always pathogenic, but possesses 

inherent and initially inactive cellular properties, primarily the production of a 

hemolysin called listeriolysin O, that render it virulent upon activation. Although 

normally limited to gastroenteritis in healthy individuals, infection with pathogenic 

Listeria monocytogenes can cause up to a 30% fatality rate in certain risk groups, 

including immunocompromised patients such as those with AIDS, the elderly, or the 

very young (10). In pregnant women, infection of the fetus is possible, leading to 

potential abortion or stillbirth (20). 

 In its extracellular state, L. monocytogenes exists as a non-virulent saprophyte 

and is seen primarily in soil rich with decaying vegetable and plant matter (20). Once 

ingested by a susceptible host, the bacteria enter epithelial cells of the GI tract. From 

there, they move to the liver or spleen via macrophages, where they rapidly reproduce 

within the cytosol of infected cells. If not stopped by the host immune system, they then 

migrate to the bloodstream causing systemic or central nervous system infections (20). 

While antibiotics are capable of halting these processes, prolonged use can lead to 

harmful side effects, such as weight loss and disruption of the normal microbiota of the 
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host. To combat this, researchers are now investigating the use of bacteriophages as a 

safer alternative treatment. Promising results have been observed in mice, with no 

negative effects from the phages being reported (35). 

 The ability of L. monocytogenes to infect and destroy host tissue is mediated by a 

variety of pathways, genes, and receptors (10). However, a regulatory gene known as 

PrfA has been shown to control most of the virulence factors in pathogenic forms of the 

bacteria (12). PrfA is post-translationally regulated and becomes activated upon arrival 

in the cell cytosol (55).  Synthesis of PrfA-regulated proteins has been shown to occur 

under various types of environmental stress, particularly heat stress, although changes 

in pH, sugar availability, and carbon metabolism appear to play an important role in 

activation as well (42). While the environmental conditions required to activate PrfA 

translation are known, the molecular method of activation has not been fully 

determined. Primary activation appears to occur via the binding of a small cofactor not 

yet identified, although research suggests that it may be a negatively charged ligand due 

to the overall positive charge found within the PrfA binding pocket (55).   

 The regulatory and transcriptional pathways leading to PrfA translation after 

initial environmental stress and cofactor binding are also poorly understood. However, 

recent research indicates metabolic pathways, such as the branch chain amino acid 

(BCAA) and arginine pathways, may play an important role in the ability of L. 

monocytogenes to replicate within the cell cytosol (31). One study in particular explored 



4 

 

the relationship between the BCAA pathway and the expression of virulence genes, 

indicating a positive correlation between the two (31).  

 Of the virulence factors controlled by PrfA activation, the production of 

listeriolysin O (LLO) is arguably the most important. LLO is a cholesterol-dependent, 

pore-forming toxin and is biochemically similar to other commonly studied bacteria 

toxins such as streptolysin O and perfringolysin O (61). It is encoded by the hly gene 

locus and is an essential component for virulence. It is only present once the bacteria 

have successfully entered host cells, although the specifics of this environmentally-

driven activation are still unknown. To date, only a theoretical model of the protein's 

folding exists as no crystal structures have been resolved. 

 Listeriolysin O is secreted outside of the bacterium as a monomer, although it 

initially begins as a 529 residue precursor protein before cleavage (61). Upon secretion, 

LLO migrates to the wall of the phagosome of macrophages where it then blocks the 

fusion of the phagosome to the lysosome, although the exact mechanism of this action 

is not currently known (61). This effectively halts destruction of the bacteria allowing it 

to escape into the cell cytosol. From here, the bacteria is able to replicate and continue 

proliferation throughout the host (61).  

 During escape from the phagosome, listeriolysin O works in synergy with lipases 

such as phospholipase PI-PLC. However, even in the absence of these lipases, the 

bacteria can still escape from the vacuole using LLO alone (LLO REVIEW). In contrast, the 

absence of listeriolysin O significantly stunts escape in most cell types. It is for this 
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reason that I chose to focus on this particular virulence factor and its connection to the 

translational activator PrfA in my study. 

 

Methods of Listeria monocytogenes mutagenesis 

Due to lack of thorough information regarding the relationship between 

metabolism and virulence and its potential to be an effective way of reducing the ability 

of the bacteria to spread in host cells, further research into this aspect of the bacteria’s 

cellular processes should be conducted.  A simple method for exploring this possible 

connection would  be through targeted mutagenesis of the bacterial genome, a process 

which has been successfully accomplished, but yet still remains somewhat difficult , 

complex, and many times, costly. 

The use of electroporation to transform Listeria monocytogenes has been 

described previously in a multitude of papers (3, 38, 46). However, the specifics of this 

process vary widely depending on the particular strain, gene locus, and vector being 

used. Many studies also report varying degrees of effectiveness of the transformation 

themselves, not only between different techniques, but also between repeated 

performance of the same protocol and process, even within an individual study. Due to 

these variations, finding a singular consistently effective protocol is difficult. 

Further review of the literature also indicates that the vast majority of successful 

studies show a strong favoring of the allelic exchange method in lieu of more basic 
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electroporation procedures. This method also appears to yield a higher number of 

successful transformants in comparison to other commonly used methods, in particular 

that of standard electroporation using bare plasmids. 

Another popular method for the transformation of Listeria monocytogenes is 

through transduction via the use of listeriophages. This method, as described by Lauer 

(2002), once again proves to be relatively successful as compared to more standard 

electroporation procedures. Unfortunately, this method requires more equipment and 

reagents, making it significantly more expensive and costly.  

While allelic exchange and transfection both appear to be viable methods for 

introducing plasmid constructs into Listeria monocytogenes, they are also complex, time 

consuming, and expensive procedures to perform. Smaller university labs, particularly 

those with limited research funding or support, often lack the necessary equipment 

required to implement these methods. The simpler system involving transformations via 

transposons is a much more realistic venture for a small setup. However, this technique 

is much more difficult to perform successfully in Listeria monocytogenes. 

In 2008, Monk et. al. conducted a review of the tools available to observe 

genomic changes in L. monocytogenes using the transposon method previously 

mentioned above. Their results were impressive and a large number of transformants 

were successfully recovered. However, like most transfection and allelic exchange 

protocols, the methods used to design the Listeria -specific plasmids used in the study 

were complex, expensive, and difficult to perform. Required reagents included a total of 
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six different vector constructs, 10 sets of primers, a strain of E. coli, and eggs obtained 

from the frog species X. laevis for cytoplasmic culture (35, 38). Unfortunately, this level 

of vector construction is generally beyond the scope of a smaller lab. Due to these 

limitations, a simpler and more user-friendly system is desirable. 

 

The TargeTron Gene Knockout System 

 The TargeTron Gene Knockout System is a simple and streamlined protocol 

designed by Sigma-Aldrich for the purpose of rapidly and permanently interrupting 

genes in a variety of prokaryotic organisms (50). The system was primarily designed with 

E. coli and other taxonomically related bacteria in mind; however, the availability of 

different TargeTron vectors allows the system to be used in a wide variety of bacteria 

(50). It has been tested in numerous bacterial species, both Gram-positive and Gram-

negative, including S. aureus, S. pyogenes, and E. coli.  

 It is important to note that the TargeTron System protocol is geared toward the 

design of primers, ligation of plasmids, and the induction of introns present within the 

available vectors. While it is intended to be used as a way of introducing transposable 

elements into the genome of cells through the use of electroporation, it does not 

actually include the specific parameters needed to accomplish this. Instead, the system 

requires users to find appropriate information using outside resources. 
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 While the efficiency of the TargeTron System has been clearly demonstrated 

across numerous genera, Listeria does not fall under this category. As it stands, only one 

independent study, (3), has successfully recovered transformants using this system. The 

study, which was conducted to assess the effect of mutational activation of PrsA2 on the 

virulence of the bacteria, used the pNL9164 vector alongside a separate, cadmium-

inducible shuttle vector (3). This additional shuttle vector is not an official TargeTron 

vector and is not commercially available for purchase.  

 

Proposed Project 

 For my project, I attempted to fill in some of the gaps in knowledge indicated by 

previous research. As stated earlier, prior studies have suggested that the cellular 

processes governing metabolism may be connected to those controlling virulence 

activation (31). Based on this, I designed my project to examine at the effect of 

interrupting the arginine tRNA ligase gene on production of listeriolysin O. A decision 

was made to use the TargeTron Gene Knockout System by Sigma-Aldrich  to complete 

this study as our lab was already in possession of the written protocol, all standard 

reagents required, and an adequate amount of complementary primer purchases. 

However, after a considerable amount of time attempting to complete our designed 

project, it became apparent that the system chosen was not producing results. At this 

point, my research focus shifted from the effects of transformation to the technical 
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process of Listeria monocytogenes mutagenesis itself. Multiple published studies show 

that this process is incredibly complex and nuanced with consistent results being 

somewhat tenuous (38). Only one paper, published by Alonzo in 2009, addresses the 

TargeTron System’s use in this particular species of bacteria. For this reason, I chose to 

aim this thesis at the overall efficiency of the TargeTron System and its associated 

vectors and reagents in transforming Listeria monocytogenes and whether or not it is a 

viable option for smaller labs such as ours. 
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Glossary of Terms 

Arginine tRNA ligase - a gene involved in the metabolism and synthesis of arginine 

Electrocompetence - a state in which cells are prepared to undergo electroporation; 

involves specific growth parameters, media, and treatment with antibiotics 

Electroporation - the use of an electrical voltage to create small pores in the wall of cells 

in order to allow the uptake of plasmid DNA 

Listeria monocytogenes - a pathogenic bacterial species responsible for listeriosis 

Listeriolysin O - a hemolysin used by L. monocytogenes primarily to escape host cell 

vacuoles 

PrfA - a gene that controls a significant amount of virulence factors present in L. 

monocytogenes 

Saprophyte - an organism that feeds on decaying organic matter 
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Purpose of Research 

For this project, our lab attempted to fill in some of the gaps previous research has 

indicated. As stated earlier, prior studies have suggested that the cellular processes 

governing metabolism may be connected to those controlling virulence activation. 

Based on this, I designed my project to look at the effect of interrupting the arginine 

tRNA ligase gene on listeriolysin O production. A decision was made to use the 

TargeTron Gene Knockout System by Sigma-Aldrich  to complete this study as our lab 

was already in possession of the written protocol, all standard reagents required, and an 

adequate amount of complementary primer purchases. 

 As transformation of Listeria was not possible, we shifted focus onto the viability 

of the TargeTron Gene Knockout System itself. Thus, this thesis serves as an attempt to 

document the pitfalls and complications involved with using this system as a 

mutagenesis protocol for the transformation of Listeria monocytogenes. 
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CHAPTER 3 

Methods 

Listeria monocytogenes strain 

For this project, we chose the L. monocytogenes strain EGD-e (Murray, et. al.) 

purchased from ATCC®. Kwik-Stick swabs were kept at 4° C prior to culturing. Bacteria was 

cultured on blood agar plates (BAP) using isolation streaking and incubated overnight in 

a 37° C table-top incubator. Individual colonies were subsequently harvested and 

transferred to sterile Eppendorf tubes containing 1mL of fresh 1% serum sorbitol solution 

(100 mL distilled water, 1g sorbitol, 1mL bovine solution, mixed and autoclaved. Tubes 

were stored at -80° C until needed. In total, 15 tubes were prepared and frozen. 

 

Primer design for arginine tRNA-ligase 

 To locate the insertion site for gene interruption, we used the NCBI GenBank 

program to choose an appropriate gene locus. The locus containing the arginine tRNA-

ligase gene (Accession #YP_007608457) was determined to be the best choice. To 

design primers for re-targeting of the vector, we used the TargeTron Gene Knockout 

System automated algorithm. Three sites were generated using this system and ranked 

according to the estimated percentage of insertion success. The top two matches were 

chosen for this study. Primers were generated via the TargeTron System. 
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Testing of DNA extraction protocols for detection of listeriolysin O in samples 

Prior to beginning the mutagenesis protocol, we tested the efficiency of the 

Invitrogen DNA extraction kit in isolating DNA from Listeria monocytogenes. Thawed 

samples were cultured on BAP and incubated at 37° C overnight. Individual colonies were 

then transferred to tubes containing 9mL of tryptic soy broth (TSB) and again incubated 

overnight at 37° C. DNA was extracted from the broth cultures using the protocol included 

with the Invitrogen DNA extraction kit. DNA was extracted via ethanol precipitation. The 

resuspended DNA  pellet was kept in sterile Eppendorf tubes at 4° C overnight or -25° C 

for long-term storage. Thawed samples of DNA were tested for amount and purity using 

the NanoDrop™ provided by another lab.  

 

Testing of positive controls for detection of listeriolysin O through PCR 

 Upon receiving the Invitrogen primers specific to the gene locus hly (accession 

#NC_003210.1), we tested our previously cultured samples for the presence of 

listeriolysin O in order to confirm our positive controls. Samples of frozen culture were 

thawed and mixed thoroughly. Each primer was rehydrated with 11.95 µL of RNase free 

water to make 12 µL of master stock. Rehydrated primers were then further diluted into 

working stock (10 µl master stock, 90 µl RNase free water) and aliquoted into sterile PCR 

tubes for storage at 4° C.  
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Samples from the previous DNA extraction with high yields were chosen for 

positive controls. A total of 4 tubes were prepared. Upon completion of PCR, samples 

were removed and analyzed via gel electrophoresis using a 1% agar gel with a run time of 

1.5 hours at 80 V. The gel was then observed under UV light for bands at 48 kDa. 

 

Primer-mediated re-targeting of TargeTron System introns via PCR and gel electrophoresis 

Two primer sets specific for the arginine tRNA gene locus acquired via the 

TargeTron System were rehydrated to 100 µM in preparation of PCR (designated 285-

285a IBS, EBS1d, EBS2 and 97-97a IBS, EBS1d, and EBS2). A master mix was prepared for 

each set according to the TageTron Gene Knockout System protocol guidelines for a total 

of 20 µl (Fig 1). PCR reactions were prepared using GE Healthcare PuReTaq tubes (23 µl 

RNase free water, 1 µl master mix, 1 µl intron PCR template, and 25 µl JumpStart REDTaq 

ReadyMix). After PCR cycling was complete, 3 µl of loading dye and 7 µl of water were 

added to 10 µl of the PCR samples and mixed thoroughly. Samples were then loaded into 

a 1% agar gel and run using a standard gel electrophoresis protocol. The gels were 

observed under UV light for the presence of banding at 300 bp.  
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Purification of PCR products 

PCR products were purified with the GenElute PCR Purification kit from Sigma-

Aldrich using the protocol provided. A ratio of 50 µl of binding buffer to 10 µl of PCR 

product was determined to be optimal. Purified products were then tested via the 

NanoDrop machine as described previously. Gel electrophoresis was performed on 

purified samples to ensure an increase in purity and adequate yield. 

 

Double digestion of purified PCR products 

Samples were digested according to the TargeTron System protocol. 8 µl of 

purified PCR product, 2 µl of 10x Restriction Enzyme Buffer, 1 µl of the restriction enzyme 

HindIII, 1 µl of the restriction enzyme BsrGI, and 8 µl of RNase free water were added to 

an Eppendorf tube and vortexed. Tubes were incubated in a 37° C water bath for 30 

minutes, a 60° C water bath for 30 minutes, and an 80° C water bath for 10 minutes. After 

cooling, samples were then stored at  

-20° C overnight. 

 

Preparation of media for electroporation protocol 

Brain heart infusion (BHI) broth was prepared using 74 g of powdered BHI per 1 

litre distilled water. The mixture was stirred and heated till boiling to ensure complete 
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homogeneity of solution and subsequently autoclaved for sterilization. A sucrose solution 

containing 59.9 g of sucrose in 175 mL of distilled water was made for supplementation 

of BHI broth. The mixture was stirred and heated until all sucrose had dissolved and 

subsequently filter sterilized into a freshly autoclaved flask using a .45 micron nylon 

membrane syringe filter. BHI sucrose (BHIS) broth was prepared by mixing BHI broth and 

sucrose solutions in a 1:1 ratio. 

Selective media was prepared by supplementing 500 mL autoclaved BHI agar with 

450 µl stock kanamycin solution. Plates were stored in the walk-in freezer at 4° C until 

needed. 

 

Preparation of electrocompetent cells 

Thawed L.monocytogenes was cultured on BAP overnight at 37° C. Individual 

colonies were subcultured in 7.5 mL BHI broth supplemented with 7.5 mL filtered sucrose 

solution overnight at 37° C. The following day, 5 mL of subculture was transferred into 50 

mL of BHIS and incubated for 4 hours at 37° C. At 4 hours, 1 mL of penicillin G stock 

solution (0.0125 g penicillin sodium salt + 20 mL NaOH) was added to the BHIS broth and 

incubation continued for a further 2.5 hrs.  

The bacterial culture was then transferred to a sterile, disposable centrifuge tube. 

The solution was centrifuged at 5000 x g, 4° C for 10 minutes. Supernatant was removed 

and the cells washed with 40 mL of filtered sucrose solution. The tube was again 
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centrifuged using the same parameters. Supernatant was removed and cells washed with 

20 mL of sucrose solution. This was repeated twice. After the final spin, supernatant was 

removed and the cells were resuspended in 2.5 mL of sucrose solution. 100 µl aliquots 

were transferred into sterile autoclaved Eppendorf tubes and frozen at -25° C until further 

use. 

 

Ligation of TargeTron System vector 

In accordance with the TargeTron System protocol provided in the kit, the 

TargeTron vector pACD4K-C was ligated using the QuickLink T4 Ligation Kit (Sigma-Aldrich, 

cat. #LIG2-1KT). A solution containing 2 µl vector, 6 µl digested primer product as 

previously described, 10 µl QuickLink Buffer A, and 2 µl QuickLink Buffer B was prepared 

and mixed in a sterile Eppendorf tube. The mixture was heated to 60° C via water bath for 

30 seconds. The tube was then immediately transferred to ice and cooled for 1 minute. 

Upon removal from ice, 1 µl of QuickLink T4 Ligase was added to the mixture. The tube 

was left at room temperature for 30 minutes.  

 

Transformation of Listeria monocytogenes 

After ligation, 100 µl of thawed electrocompetent cells were transferred into a 

chilled 1 mm Bio-Rad cuvette. The entirety of the ligation mixture (a total of 20 µl) was 

added to the cuvette. The cuvette was loaded into the Bio-Rad GenePulser Xcell 
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electroporator. Cells were pulsed in the electroporator at 1,250 volts (V), 25 mirco farads 

(µF), and 200 Ohm. This protocol was based off of recommended settings in the user 

manual for the TargeTron System. 

Electroporated samples incubated for 1.5 hrs in a low temperature incubator at 

30° C. Upon removal from the incubator, the samples were plated on BAP and 

BHI+kanamycin media and incubated overnight at 37° C.  

 

Substitution of provided vector with pNL9164 

Due to the lack of results, each subsequent transformation attempt was modified 

in an attempt to confer a higher rate of plasmid uptake and integration. The vector 

pACD4K-C was replaced with another TargeTron vector (pNL9164, Sigma-Aldrich, Cat. 

#T6701-2UG), a Gram positive specific vector that had been reported to be successful 

according to previous research (3).  

This substitution required a minor change in the previously reported digestion 

protocol and is described as follows: 1 µl of the restriction enzyme DpnI was added while 

the given amount of distilled water was reduced from 8 µl to 7 µl. This resulted in a slightly 

modified digestion mixture with the total volume remaining 20 µl. 
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Table 1. Attempted Modifications to the TargeTron System Protocol. (*represents inclusion of lysozyme.)

Growth 
Media Antibiotic Plasmid Wash Buffer Cells 

Electroporation 
Parameters 

Inc. 
Time 

Plate 
Media Colonies 

250 mL 
BHI + 

sucrose 

1 mL 
penicillin 
G stock  
(0.0125 

g/20 mL) pACD4K-C Sucrose Thawed 
1250 V, 25 µF, 

200 Ohms 2 hrs 
BAP, LB + 

kan None 

250 mL 
BHI + 

sucrose 

2.5 mL 
penicillin 
G stock 

(100 
mg/mL) pACD4K-C Sucrose Thawed 

1000 V, 25 µF, 
200 Ohms 1 hr 

BAP, LB + 
kan None 

100 mL 
BHI + 

sucrose 

5 mL 
penicillin 
G stock (1 
mg/mL) pACD4K-C Sucrose Thawed 

1000 V, 25 µF, 
200 Ohms 1 hr 

BAP, LB + 
kan None 

*500 mL 

BHIS 
autoclaved 

100 µl 
ampicillin 
stock (50 
mg/mL) pACD4K-C SGWB Thawed 

1000 V, 25 µF, 
400 Ohms 

1.5 
hrs 

BAP, BHI + 
kan BAP only 

*50 mL 

BHIS 
autoclaved 

10 µl 
ampicillin 
stock (50 
mg/mL) pACD4K-C SGWB Thawed 

1000 V, 25 µF, 
400 Ohms 

20 
min 

BAP, BHI + 
kan BAP only 

*50 mL 

BHIS 
autoclaved 

10 µl 
ampicillin 
stock (50 
mg/mL) + 

10 µl 
kanamycin 

stock pNL9164 SGWB Thawed 
200 V, 25 µF, 

400 Ohms 
20 

min 
BAP, BHI + 

kan None 

50 mL BHIS 
autoclaved 

10 µl 
ampicillin 
stock (50 
mg/mL) pNL9164 SGWB Thawed 

1000 V, 25 µF, 
400 Ohms 

1.5 
hrs 

BAP, BHI + 
kan 

BAP and 
BHI + 
kan* 

50 mL BHIS 
autoclaved 

10 µl 
ampicillin 
stock (50 
mg/mL) pACD4K-C Sucrose Thawed 

500V, 25 µF, 
400 Ohms 

1.5 
hrs 

BAP, 
BHI + kan, 
LB + kan BAP only 

50 mL BHIS 
autoclaved 

10 µl 
ampicillin 
stock (50 
mg/mL) pNL9164 BHI Fresh 

750 V, 25 µF, 
400 Ohms 

1.5 
hrs 

BAP, 
BHI + kan, 
LB + kan BAP only 
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Other changes to standard protocol 

 In addition to the substitution of pACD4K-C with pNL9164, other modifications 

were made to each attempted transformation. Due to the high number of attempted 

transformations, all modifications made are categorized in the table on the following page 

(Table 1). 
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CHAPTER 4 

Results 

Gel electrophoresis of positive controls and re-targeted TargeTron primers 

Positive control samples amplified at the hly gene locus showed banding at 

approximately 250 bp (Fig 2). This is consistent with expected results of the 

electrophoresis, with the amplified portion of the hly gene being approximately 200-300 

bp in size (29). 

 

Fig 1. Gel Electrophoresis of Positive Controls 



22 

 

Re-targeted primers showed clear, bright banding at 300 bp (Fig 3). This is 

consistent with predicted results according to the TargeTron System protocol (50).  

Fig 2. Gel Electrophoresis of Re-Targeted TargeTron Primers 

 

 Purified re-targeted primers also showed banding at 300 bp as expected (Fig 4). 

However, one of our primer sets (95-96, shown in wells 4 and 5 in the figure below) did 

not stay in their designated wells. Two new samples were mixed with loading dye and 

re-entered before running the gel. 
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Fig 3. Gel Electrophoresis of Purified Re-Targeted TargeTron Primers 

 

Electrocompetent cell growth and transformations 

Multiple attempts to transform Listeria monocytogenes proved unsuccessful 

using the provided reagents, protocols, and vectors that were included with the 

TargeTron System. Modifications to the protocols compiled from outside sources were 

implemented with varying results (Table 1). Some changes, in particular the transition 

from a sucrose wash buffer to SGWB (without the addition of lysozyme), dramatically 
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increased growth of electroporated cells on BAP. When using only the sucrose solution, 

few colonies were seen on the plates with most concentrated in the area of the primary 

streak. Upon switching to SGWB, complete growth comprising all streaked segments of 

plate were observed. When supplementing the SGWB with lysozyme according to the 

protocol put forth by Park, growth was significantly hindered, although still more 

pronounced than that seen using only sucrose. 

Growth of transformed bacteria on selective media appeared to be virtually 

nonexistent. A small amount of growth was observed after run #7 on the selective 

media BHI+kanamycin (indicated in Table 1 by the asterisk), but upon performing a 

Gram stain, these colonies were shown to be Staphylococcus epidermidis. We concluded 

that this was due to contamination of the sample tubes prior to electroporation. This 

resulted in viable S. epidermis cells taking up the pNL9164 ligated vector present in the 

cuvette during electroporation. These results are consistent with the advertised use of 

the vector, which is described as species-specific for Staphylococcus and more generally 

for all Gram positive species as a whole. 
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CHAPTER 5 

Discussion 

First Hypothesis 

 Upon beginning our originally planned project, our goal had been to introduce a 

mutation in the arginine-tRNA ligase gene locus of the L. monocytogenes genome. This 

gene was chosen based on its involvement with the bacterial metabolism of this species, 

specifically in the catabolism of environmental arginine. As previous studies had shown a 

possible link between active metabolism genes and the synthesis of virulence factors, we 

believed that a connection could exist between certain metabolic genes and the 

production of listeriolysin O, a highly important hemolysin required for the pathogenesis 

of the bacterium (31).  

 Originally, our proposed outline had included multiple metabolic genes, including 

pyridoxine kinase and the thiT thiamine transporter gene (45). However, exploring these 

other genes was contingent upon successful transformation of L. monocytogenes through 

the mutation of arginine-tRNA ligase. 

 It is important to note here that the gene for arginine-tRNA ligase, which is a 

critical element of the translation machinery, is vital in regard to protein synthesis and 

cellular function. In many instances, this gene could very easily be considered to be 

essential to the cellular function of the bacterium. However, due to the discussion of 

arginine biosynthesis potentially being involved in activation of PrfA-mediated virulence 
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in the paper by Lobel, et. al., we proceeded with mutagenesis attempts under the 

assumption that this paricular gene was non-essential in L. monocytogenes. This 

assumption could very well be erroneous and is discussed in the section titled 

"PROBLEMS, TROUBLESHOOTING, AND IMPROVEMENTS." 

 

Protocol Selection 

 As stated in the introduction of this thesis, we chose the TargeTron Gene 

Knockout System as our protocol for a variety of reasons, including the availability of 

reagents, the accessibility with which the user manual was designed, and primers 

included with the kit. In addition, on-going experiments conducted by other students in 

the lab had led to numerous successful transformations and plasmid integrations in 

multiple different species. This led us to believe that it could potentially be a viable and 

useful method of introducing mutations in Listeria monocytogenes as well. 

 For the preparation of electrocompetent cells, a simple protocol titled 

"Transformation of Listeria monocytogenes" was obtained via an online database of 

user-submitted protocols (51). Adjustments to volume were made to accommodate a 

smaller lab size, although ratios of reagents, antibiotics, and live culture remained the 

same, as did incubation times and temperatures. 
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Initial Transformation Attempts 

 Repeated attempts were made to transform our samples using the protocol 

cited above (51). It is assumed that these transformations all failed, as no growth was 

observed on any of the plates. Gel electrophoresis results indicated that the plasmids 

were being properly retargeted to our gene of interest through PCR (Fig. 3 and 4). 

However, as these PCR products were never sequenced, it is possible that the bands 

were indistinguishable from those of non-retargeted plasmid. Arginine-tRNA ligase is 

known to be a very small gene of only about 300 bp. On a gel with a ladder for 

constructs upwards of 7,000 bp, this is an incredibly incremental size difference that 

would lead to very similar bands. If this were the case, it could easily be attributed to 

simple human error and a lack of appropriate controls, issues which will be discussed 

further in the section "PROBLEMS, TROUBLESHOOTING, AND IMPROVEMENTS." 

 In theory, however, an improperly targeted plasmid should not necessarily lead 

to a lack of growth on media provided it did not disrupt additional genes required for L. 

monocytogenes' survival in vitro. In general, un-incorporated, empty vector is relatively 

harmless to bacteria and is often lost during subsequent replication. If an empty vector 

containing an antibiotic resistance gene were to remain within a population of bacteria, 

growth on selective media should be observable. For this reason, I believe that an 

unsuitable or harmful empty plasmid would not be a viable explanation for the lack of 

transformants recovered during these initial attempts. 

 



28 

 

Revision of Protocols 

 After repeated attempts to transform our samples using the initial protocols we 

had chosen failed, we began to make modifications to both the TargeTron System as well 

as our preparation of cells prior to electroporation. We abandoned the online protocol 

that outlined electrocompetency in lieu of a more thorough and peer-reviewed system 

by Monk (2008). This new protocol made significant changes to both the antibiotics used 

and the media used to grow our cultures (39). However, while this change significantly 

improved the viability of our cells after electroporation and led to increased growth on 

our non-selective BAP media, it did not contribute to the recovery of transformed cells on 

our selective media. 

 After calling Sigma-Aldrich and speaking with a consultant, we were informed of a 

paper by Alonzo that used the TargeTron Gene Knockout System to transform Listeria 

monocytogenes (3). As of now, this paper appears to be the only published example of 

this system successfully inducing observable mutations through this system within this 

particular species of bacteria. As opposed to using the standard pACD4k-C linear vector 

provided in the base TargeTron System kit, this study used the TargeTron vector pNL9164, 

which has been optimized for Gram-positive bacteria (3).  

 A comparison of the two vectors shows significant differences including the type 

of selective resistance markers, promotors, origin of replications, and size of the construct 

itself  (Fig 5). Any of these changes could potentially modify the behavior of the plasmid 
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once integrated into the bacterium. For example, one promoter could be more powerful, 

leading to a higher replication rate. 

 Using this new vector alongside the modifications in our electrocompetency 

protocol, we again attempted to transform our samples (see Problems, 

Troubleshooting...). Additional failed attempts led to more modifications to our previous 

protocol all to no avail. A final modification was considered involving the use of a different 

vector entirely unrelated to the TargeTron System.  As stated previously in the literature 

review, there exists a wide variety of options for performing mutagenesis in L. 

monocytogenes using allelic exchange, horizontal gene transfer via conjugation, and 

transduction through the use of listeriophages (30, 38, 40). However, very few papers 

focus on transformations using bare plasmid as was being performed in this study. Those 

that did choose this method used very complex plasmids constructed from the ground 

up, targeted and designed to integrated only within their specific gene of interest. An 

example of this type of system can be seen in Lyska (2013) where researchers used a 

multitude of oligonucleotides and promoters to build a working vector series for their 

species of interest. This procedure started with a commercial vector which was then 

modified via PCR and ligation multiple times to reach a viable construct. 
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Fig 4. Comparison of pNL9164 and pACD4K-C. Source: "TargeTron Gene Knockout System User Guide." 

Sigma Aldrich, 2008. 

 

 Unfortunately, manufacturing this type of plasmid is incredibly complicated, 

costly, and time consuming. Additionally, designing the final, usable vector requires a 

starting base construct with its own set of requirements that are equally as complex (35, 

38). For a smaller lab, constructing these plasmids with the available resources is 

unrealistic, especially in the event of a closing deadline, as was the case in our study. 

Attempts were made to contact a private company in the event that they could construct 

the vector for us, but their own reservations about the complexity of the project 

eliminated the possibility of receiving the vector in a timely manner. Due to increasing 

time constraints and the inability to find a supplier of our preferred plasmid, a decision 
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was made to reframe our original hypothesis rather than continuing to make 

modifications to our transformation protocol. 

 

Final Hypothesis 

 In light of our unsuccessful attempts at transforming Listeria monocytogenes, we 

decided to alter our focus from the virulence, metabolism, and genetics of the bacterium 

to the techniques and available systems used to generate mutations in this particular 

species. As stated earlier, only one paper has been published on the use of the TargeTron 

Gene Knockout System in Listeria monocytogenes. This paper (3) was successful in its 

attempt to transform the bacteria, but showed a lack of efficiency and a lower yield than 

that of other studies using different methods. As no other papers attempting to replicate 

these results were discovered, we have decided to explore the data, modifications, and 

results collected in this thesis to discover whether or not the TargeTron Gene Knockout 

System and its available vectors is a viable method for the transforming Listeria 

monocytogenes in a small laboratory setting. 

 

Assessment of protocols, vectors, and the TargeTron Gene Knockout System 

In this particular study, we used multiple types of antibiotic treatment to 

introduce the previously described pores. Specifically, we chose penicillin G and 

ampicillin. This selection was chosen based on prior research which referenced these 
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antibiotics on multiple occasions (3, 38). Stock solutions created with these antibiotics 

were roughly 10 mg/mL in concentration. While it is possible that the amount of 

antibiotic used during incubation could have negatively affected the survival rate of our 

samples, repeated growth of the samples on BAP indicate that this is unlikely.  

Electroporation parameters were also chosen based on those described in prior 

research with modifications implemented after multiple failed attempts. Once again, it 

is unlikely that these changes, specifically the increase in voltage to 1500V or the 

extended duration of pulses, contributed to the lack of growth on selective media due 

to the repeated growth on BAP that occurred with most samples that were shocked. 

Having eliminated other explanations, we concluded that the lack of successful 

transformants could only be explained by the inability of our ligated plasmids to enter 

the cells.  There are two points at which this failure could be occurring: entry of the 

vector into the host cell or integration of the ligated plasmid into the genome of the 

bacteria.  

The inability of the vector to be taken up by the bacteria could be caused by an 

insufficient breakdown of the cell wall prior to electroporation. When using a standard 

transformation protocol in which the bacteria is incubated with bare plasmid DNA, it is 

crucial that the cells be properly prepared beforehand. Broadly, this requires a 

temporary and repairable disintegration of small areas of cell wall large enough to allow 

entry of the plasmid yet small enough to not cause cell lysis.  This process tends to be 

more difficult in Gram-positive bacteria due to the thick peptidoglycan layer present. 



33 

 

Many Listeria species also possess the ability to produce a capsule which could 

potentially further complicate the induction of these pores, although these capsules are 

rarely observed in controlled laboratory environments and may be negligible in their 

effect. 

Provided that the plasmid is able to successfully enter cells, it must then 

integrate into the host genome. It is at this point that the re-targeting accomplished by 

the TargeTron Gene Knockout System becomes particularly important. If the intron has 

been re-targeted appropriately, the plasmid should easily insert into the gene of 

interest; however, if the plasmid was not properly targeted, it will remain in the cytosol 

of the cell where it is vulnerable to disintegration or migration out of the cell itself.  

It is difficult to confirm at which point in the process our system was 

experiencing difficulty. The lack of growth on our BHI+kanamycin and BHI+ampicillin 

plates indicate that there were no viable transformants generated by our 

electroporation, but it does not indicate whether or not the cells initially received the 

vector. As the TargeTron System plasmids require successful integration for activation of 

their resistance genes, potential vectors free-floating in the cells could confer growth on 

selective media, making it impossible to distinguish between cells with intake plasmids 

versus those without. However, as plasmids are prone to being lost after multiple 

cellular divisions and as numerous different electrocompetency protocols were 

attempted, we have concluded that the most likely explanation is the inability of the 

generalized TargeTron System plasmids to properly integrate into the host cell genome 
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as compared to plasmids designed and specifically constructed for Listeria 

monocytogenes.  

In conclusion, these consistently negative results suggest that while the 

TargeTron Gene Knockout System is a simple, user-friendly, and affordable system for 

many other bacterial species, the limited vectors and lack of sufficient trials in Listeria 

species' make it a poor choice for the transformation of Listeria monocytogenes. 

 

Problems, Troubleshooting, and Improvements 

 The first write-up of the results and discussion sections reported in this thesis 

were compiled in August, 2014. A detailed review of these initial findings in the 

following months showed a significant number of issues, mistakes, and unaddressed 

potential solutions within the methods used to conduct these experiments. This section 

will attempt to address some of these mistakes as well as provide improvements that 

could have been implemented. 

 

TargeTron System Plasmid Re-Targeting  

 As stated earlier in the discussion section, it is possible that the pACD4K-C 

plasmid I was attempting to retarget for our gene of interest was not correct and was 

instead empty, non-specific vector. While the bands observed on my electrophoresis 
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gels appeared to be in the correct spot, this does not guarantee a correct plasmid. Gel 

electrophoresis is a quick, easy, and useful method for determining the relative size of 

PCR products but is not an absolute indicator of plasmid size, sequence, or target. As the 

gene of interest for this study is incredibly small (~300 bp), the difference between a 

plasmid size of approximately 7,700 bp and 8,000 bp is almost impossible to distinguish 

using a gel alone. In hindsight, relying on this method for retargeting my plasmid was, 

frankly, naive and ineffective. However, had additional steps been taken alongside the 

electrophoresis, the technique might have been much more reliable 

 The easiest way to improve upon this method for differentiating retargeted 

plasmid from empty plasmid would be to simply run empty vector alongside ligated 

vector in the same gel as a control. While the differences between the two would be 

very small, seeing them both side by side on the same gel could have shown an 

observable size shift between bands. If this size shift was large enough to be seen by the 

naked eye, it could indicate that the plasmid had been altered to incorporate the 

targeted section specific for our gene of interest. This size shift would not have given 

any additional details such as direction of the targeted section or the plasmid's 

sequence, but it would be an essential first step in determining if our retargeting 

protocol was working effectively. 

 In addition to this simple electrophoresis control, sending off the samples for 

sequencing would be the best way to ensure that the plasmid was not only re-targeted 

to our gene of interest, but also oriented properly. Orientation of the variable region of 
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a plasmid can play an important role in the function of said plasmid. Improperly 

oriented variable regions can place promoter regions in inappropriate directions, 

leading to no transcription of the genes under their control. Misplaced promoter regions 

can also lead to an increase in transcription of potentially dangerous genes or a 

decrease in genes which are essential, both of which could adversely affect the survival 

rate of the transformed bacteria.   

 

Media Preparation and Inappropriate Antibiotic Choice 

 When preparing selective media for recovery of transformed bacteria, use of a 

proper antibiotic is essential. The two plasmids used in this study, pACD4K-C and 

pNL9164, have resistance genes for ampicillin and kanamycin, respectively. 

Unfortunately, the selective media used to plate the bacteria after it had been 

electroporated with these plasmids did not always contain appropriately matching 

antibiotics.  

 During the first half of the study, I attempted to transform Listeria 

monocytogenes with the pACD4K-C. However, instead of using ampicillin in my BHI 

plates, I used kanamycin. The reason for this is unknown, even after consulting the lab 

notebook associated with these experiments. In lieu of a specific, documented reason 

for this choice, it is my assumption that it was a mistake due to either a lack of 

understanding of the plasmid itself or a mix-up between the two plasmids. Use of an 
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inappropriate antibiotic would have been crippling to the study, as even properly 

transformed bacteria that had integrated plasmid present would not have been able to 

grow on antibiotic plates without the associated resistance gene. 

 During the second half of the study, I continued to use kanamycin plates while 

also using the pNL9164 plasmid in my transformations. However, even though this 

antibiotic and the resistance gene present in the plasmid are complimentary to one 

another, I still saw no growth on my selective media. Considering that the pNL9164 

plasmid was designed specifically for Gram-positive bacteria and that I was seeing 

substantial improvements in growth on my non-selective media, it seems unlikely that 

the major issues in this study can all be attributed to using the wrong antibiotic plates 

while attempting to transform the bacteria with pACD4K-C. There is a small chance that 

the initial transformation attempts with the pACD4K-C plasmid were actually effective 

and simply not being recovered due to my mistake, but I feel that this is unlikely simply 

because proper transformations with pNL9164 should have been more effective than 

those performed with pACD4K-C due to its specificity for Gram-positive bacteria.  

 

Arginine t-RNA Ligase 

 The most glaring issue of this thesis is the target gene itself. A survey of the 

literature lead me to a paper that provided a brief list of metabolic targets whose 

relationships with the regulatory PrfA gene needed further characterization. Mentioned 

in this list was the gene encoding arginine tRNA ligase. At the time, my knowledge and 
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understanding of metabolism, genetic replication, and vector-mediated knockouts was 

minimal. Due to my lack of thorough understanding of arginine tRNA ligase’s function, I 

chose to begin with this particular gene.  

 However, months later, after beginning my Ph.D. study and taking more in-depth 

classes on genetics and cellular metabolism, I realized that choosing to knockout a gene 

that codes for a tRNA ligase was an incredibly poor choice. During DNA replication, the 

various tRNAs are responsible for locating appropriate amino acids to the replication 

machinery during translation. tRNA ligase is then facilitates binding of the amino acid to 

the synthesizing strand of DNA that is being produced during translation. 

Arginine, an amino acid that is present in numerous, if not nearly all, proteins is 

required for proper function of cellular mechanisms. By knocking out the ligase that 

allows this amino acid to attach to replicating DNA, we would effectively halt translation 

of potentially essential proteins, or, adversely affect their ability to properly fold due to 

changing the hydrophobicity or charge present in their domains. In the event that these 

proteins were not able to be synthesized properly or be folded into their normal 

confirmation, we could very easily have induced lethal cellular defects or halted growth 

and replication of the bacteria.  

From this line of thought, we can assume that in the event of our plasmid being 

successfully been retargeted and inserted into the genome of Listeria monocytogenes, 

disruption or knockout of the arginine tRNA ligase could have attributed to the lack of 

growth seen on both our selective and non-selective media. While we did observe small 
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amounts of growth on non-selective BAP plates after some electroporation attempts, it 

is more likely that the colonies found were simply bacteria that did not pick up the 

plasmid due to the lack of growth on selective media from these same attempts.  

However, ideally, when growth is observed on non-selective media, the next 

step would be to plasmid purify the colony through performing a mini-prep, plasmid 

extraction, and gel electrophoresis and clean-up. The DNA could then be sent off for 

sequencing using primers that specific to our insertion site in an attempt to confirm that 

the plasmid was present. Unfortunately, due to my own inexperience and lack of 

confidence in these positive results, this step was never taken. 

Nevertheless, I still believe that the poor choice of target gene is the most likely 

explanation for our lack of results as an inappropriately targeted plasmid or one that 

was unable to cross the cell wall into the cytoplasm of the bacterium would likely not 

halt all growth on non-selective media. Instead, we would most likely find colonies 

lacking plasmid entirely or containing empty or inactive vector.  

 

Future research 

 While these results indicate that the TargeTron System should be avoided in lieu 

of more complex methods when attempting to induce mutations into this particular 

species, it does not mean that it could not eventually become an effective system with 

the proper modifications made. Due to the vast number of mistakes and potentially 
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incorrect assumptions made during the course of this study, the results presented 

should not be taken as reliable. In addition, as stated previously in the literature review, 

Alonzo, et. al., successfully used this system to introduce genetic deletions in Listeria 

monocytogenes, suggesting that with the proper vectors and parameters, the TargeTron 

protocol could still be a viable method of transformation. If this were the case, it would 

be especially helpful for smaller labs where access to expensive constructs and 

equipment is not readily available. 

 However, in light of this study, it may be more applicable to use alternative 

methods for silencing or deleting genes of interest that do include electroporation of 

this bacteria. One such method that could prove useful is siRNAs, also known as 

silencing RNAs. These small molecules are usually 20-30 bp long and can be targeted to 

a specific mRNA transcripts. Upon base pair-binding to these transcripts, the complex 

will be degraded by endogenous cell processes, halting translation of the transcript and 

thus production of the protein of interest. Previous studies have already used this 

method to knockdown genes in other bacterial species, such as methicillin-resistant 

Staphylococcus aureus, although its use in Listeria appears to be limited to simple 

screening methods for genes of interest rather than robust studies of the gene 

knockdown themselves (62). However, the fact that siRNA delivery has been confirmed 

for Listeria is a promising sign that this method could be viable for a project such as this 

one. 
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 While not as novel, transduction is also another method that could be worth 

consideration in this particular species of bacteria as it once again does not require 

pore-formation on the surface of the cell wall. Instead, it uses synthesized viral 

constructs containing a plasmid to deliver the DNA into the host cell. This could be 

useful if a marker for selectivity, such as antibiotic resistance, was needed as the original 

plasmids featured in this study could still be used with the addition of some 

modifications. Unlike siRNAs, colonies recovered after infection with virus could be 

screened by simple plating the bacteria on selective media rather than requiring 

additional techniques such as Western blots or rtPCR to test for mRNA or protein 

production. 

 Future research should focus on redoing the experiments presented here with 

the appropriate controls in place. Other avenues that could be explored include 

improving upon the existing protocol by using other commercially available vectors, 

different electroporation parameters, and a variety of electrocompetence methods 

alongside the general TargeTron Gene Knockout System protocol, as well as trying new 

techniques for DNA delivery entirely. While the results here are discouraging, it is 

possible that with the proper changes, a fast, effective, and inexpensive TargeTron 

protocol could be devised for this particular bacteria. These changes should be explored  

in order to gain a better understanding of this system and its potential to become a 

possible transformation system for Listeria. 
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