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ABSTRACT 

 
 

Transforming growth factor beta ligands and receptors are known to be pro-

hypertrophic and pro-fibrotic factors in the heart, and are known to contribute to the 

development of cardiac hypertrophy and heart failure.  It is well established that 

premenopausal females possess a lower incidence of these pathologies.  We and others 

have observed a greater level of fibrosis in male hearts compared to female hearts in 

rodent models of cardiac hypertrophy.  It is well established that estrogen is 

cardioprotective in that it can prevent the development of cardiac hypertrophy, as well as 

abrogate the development of heart failure following sustained cardiac hypertrophy.  It is 

not fully understood how estrogen mediates these cardioprotective effects.  In this study, 

we address the hypothesis that sex differences in the development of cardiac hypertrophy 

and heart failure is at least in part mediated by differential expression of TGFβ family 

members.  To test this hypothesis, we utilized an angiotensin II pump infusion rodent 

model of cardiac hypertrophy in both male and female mice, followed by gene expression 

analysis and gene expression analysis of non-failing and failing human heart specimens.   

Interestingly, sex differences in cardiac hypertrophy were not observed in the angiotensin 

II pump mouse model, suggesting that angiotensin II may circumvent the 

cardioprotection afforded to females. Interestingly, TGFβ family members were more 

similarly expressed in this mouse model.  Taken together these results provide evidence 

that sex specific differences in the development of cardiac hypertrophy are mediated in 

part by TGFβ signaling.   
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Human hearts reveal some sex differential gene regulation in both non-failing and 

failing hearts. Taken together, these results provide evidence that sex specific differences 

in the development of cardiac hypertrophy and heart failure are mediated in part by TGFβ 

signaling.  
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Chapter I 

 

 
INTRODUCTION & LITERATURE REVIEW 

 

 
The morbidity and mortality of cardiovascular disease is on the rise in the western 

world (1). According to the CDC, over 67 million Americans have hypertension.  

Prolonged hypertension eventually leads to the development of cardiac hypertrophy, 

which is a significant risk factor for heart failure (HF). HF afflicts 6 million Americans 

and costs the United States $31 billion per year. Treatment options for patients with heart 

failure remain limited, and 50% of affected individuals will die within 5 years of being 

diagnosed (2). Therefore, new therapies and treatments are desperately needed. Of late, 

noticeable correlations have been established in the prognosis of heart failure such as the 

pathophysiologic differences between males and females with heart failure (1,3). For 

example, females with left ventricular hypertrophy are more likely to have preserved 

cardiac function and less likely to develop decompensated heart failure than men with 

similar levels of hypertrophy (4,5). Despite this, current guidelines recommend the same 

treatments (beta-blockers and drugs targeting the renin-angiotensin aldosterone system) 

for all patients despite these known hypertrophic sex differences. However, the molecular 

basis for sex-specific differences in heart failure is not yet understood.  

 To study the molecular and physiological components of cardiac hypertrophy, 

investigators primarily rely on animal models through specific gene transgenic models, a 

surgical transaortic constriction (TAC), or infusion of angiotensin II (ANG II) into 

individual animals in order to model hypertrophy. Our lab, as well as others, have 

observed sex-specific responses to TAC in the development of cardiac hypertrophy.  
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Specifically, heart weight to body weight ratios (HW:BW) significantly increased in TAC 

male mice as compared to females, which was accompanied by an increase in expression 

of hypertrophy gene expression markers. These include:  atrial natriuretic peptide (ANP), 

brain natriuretic peptide (BNP), alpha myosin heavy chain (α-MHC), and beta myosin 

heavy chain (β-MHC). Sex differential expression of transforming growth factor beta 

(TGFβ) superfamily members were also observed in our TAC model. TGFβ signaling is 

one of the major profibrotic signaling pathways studied in these models.  Others have 

demonstrated that a greater upregulation of TGFβ profibrotic family members correlates 

with more severe left ventricular hypertrophy and fibrosis (6).   In an effort to further 

investigate whether the TGFβ pathway is involved in sex specific differences in the 

development of cardiac hypertrophy and heart failure, we sought to establish the first 

survival surgeries at EKU using an ANG II infusion model.  This model was established 

with the expertise of Dr. Lindsay Calderon.  We were able to successfully model 

hypertrophy using this model. However, unlike that seen in the TAC model, sex-specific 

differences in the degree of hypertrophy were not observed.  These animals were further 

characterized in terms of cardiac gene expression.   

Because the ANG II infusion model of cardiac hypertrophy could not be used as a 

model to determine how sex specific gene expression, we sought another research model.  

Dr. Ken Campbell at the University of Kentucky provided us access to the human 

biospecimens bank, a source of nearly 100 human heart samples.  Dr. Campbell also 

provided access to microarray data from 18 human hearts. Ten non-failing hearts (five 

females and five males) and eight failing hearts (1 female and 7 males) samples were 

analyzed with Affymetrix chips at the University of Kentucky Microarray Core.  We 
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analyzed this expression data, specifically for genes of protein families known to affect 

fibrosis or contractility, identifying several gene candidates differentially expressed 

between failing hearts and non-failing hearts, as well as those differentially expressed in 

the non-failing hearts of males vs. females (Table 1).   

Table 1. Differentially Expressed Heart Failure Candidate Genes in Midwall of the 

Heart.   
Differentially Expressed Genes by Microarray Analysis 

TGFβ Collagen Deposition Inflammation Angiotensin Other 

TGFβ 

TGFβ1I1 

TGFβR3L 

COL1α2 

COL12α1 

COL14α1 

COL15α1 

COL21α1 

COL27α1 

COL4α5 

COL6α1 
MMP10 

MMP11 

MMP16 

MMP2 
MMP23B 

MMP27 

TIMP1 

TIMP3 

IL6R 

NFκB2 

TNFαIP1 

TNFαIP2 

TNFαIP8L1 

TNFαIP8L2 

ACE 

AGTR2 

ACER1 

ACER2 

βACE1 
CTNN α 1 

CTNNβIP1 

CTNNβIP1 

DPAGT1 

HACE1 

IMMP1L 

IMMP2L 

LACE1 

MCOLN1 

MYOM2 

PGLB1 

PTGFRN 

RTTN 

TGFα 

TNN 

 

Notes: Microarray analysis was performed on 10 non-failing human hearts and 8 failing 

human hearts by Ken Campbell to assess transmural gene expression in failing vs. 

nonfailing hearts. Comparison of non-failing vs failing myocardium, regardless of sex, 

revealed numerous effects of heart failure when analyzed using multiple-comparison 

corrected t-tests (p-values < 0.05). These genes are organized by gene family or pathway. 

Of the 10 non-failing hearts, 5 were from female patients and 5 were from male patients, 

allowing for statistical comparison between sexes. Those shown by microarray to be sex 

regulated in non-failing hearts are shown in bold. Sex comparison in failing hearts was 

not possible because these data were initially generated for a separate project and only 1 

of the 8 samples was from a female patient. MMP1 that demonstrated sex-specific 

expression in non-failing myocardium and differential expression in non-failing vs. 

failing are both bold and underlined.  
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Not enough female samples were present in the failing heart group to identify sex specific 

differences between non-failing and failing myocardia. However, six sex-specific genes 

were identified in non-failing myocardia, which are likely to play a role in heart disease. 

Due to both time and financial resources, the study was necessarily limited, but it did 

provide an impetus for further investigation of these genes and their sex specific 

expression in heart failure.   

Cardiac Hypertrophy and Heart Failure Progression 

 
 

Cardiac hypertrophy is the remodeling or thickening of the myocardium that leads 

to decreased chamber size (7). As the myocardium widens and the ventricular wall thins, 

the overall size of the heart increases as depicted in figure 1 (8).  

 
Figure 1: Visualization of Left Ventricular Hypertrophy. The myocardium 

surrounding the left ventricle is thickened in the heart depicted on the left in comparison 

to the left ventricle’s myocardium of heart on the right. This thickening is due to the 

addition of sarcomeres in series rather than parallel and the fibrosis, or scarring of injured 

tissue (10). 
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Additionally, inflammation, fibrosis, and collagen deposition occur in ventricular 

remodeling (8). On a cellular level, cardiac hypertrophy is characterized by 

cardiomyocyte hypertrophy, not myocyte hyperplasia (7). In fact, as the diseased state 

progresses, cardiomyocytes are replaced by proliferative fibroblasts (8). These changes 

may result in a weakened and rigid heart that prevents systemic output and increases 

blood pressure within the heart (7). The presence of left ventricular hypertrophy is a 

strong independent risk factor for future cardiac events and mortality (9). 

Cardiac remodeling is largely influenced by hemodynamic load, neurohumoral 

activation, and additional factors such as endothelin, cytokines, nitric oxide production 

and oxidative stress (11). The cardiac remodeling observed in cardiac hypertrophy can be 

physiological or pathological  (11, 12, & 13).  

The pathological or physiological remodeling that results from cardiac 

hypertrophy determines individual outcomes. Physiological remodeling in cardiac 

hypertrophy is a normalized change in the proportions and functions of the heart (11). 

Physiological remodeling may result in enhanced contractile function and elongated 

cardiac structure as observed in athletes and pregnancy (11 & 12). The Frank-Starling 

mechanism describes how heart muscle is able to increase contractile force when the 

ventricular wall is stretched, yet as cardiac remodeling progresses, this ability is greatly 

diminished (11). The increased volume and pressure loading in volume overload leads to 

the dilation of the left ventricle and an increase in left ventricular wall thickness; this is 

known as eccentric hypertrophy, in which sarcomeres are added in parallel and elongate 

the heart (11). The dual characteristics of eccentric hypertrophy allow for it to be 
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compensatory (11). Volume overload leads to the compensation and increase in cardiac 

output (11).  

Pathological remodeling is due to an increased afterload, causing a need for 

increased intraventricular pressure to open the aortic valve, which in turn increases 

myocardial wall stress (11). Pressure overload is initially compensatory because 

increased pressure within the heart is offset by an increase in wall thickness; thus 

normalization occurs (14). It is sustained pressure overload that is deleterious. When 

sustained, pressure overload increases wall thickness without ventricle dilation because 

sarcomeres are added in series. This is in contrast to volume overload which adds in 

parallel and allows for lengthening (11). Pressure overload decreases cardiac output and 

is associated with ventricular remodeling, contractile dysfunction, interstitial and 

myocardial fibrosis, and re-expression of fetal cardiac genes (13). The production of 

collagen by myocardial fibrosis increases the stiffness of the myocardium, which 

interferes with heart filling (11). As fibroblasts replace cardiomyocytes within the 

ventricle, the contractile force and myocardial wall thickness both decrease, leading to 

ventricular dilation (11). Re-expression of the fetal cardiac genes, α-MHC and β-MHC, 

as well as ANP and BNP, results in characteristics associated with heart failure, (15). 

Decreased and increased expression of  α-MHC and β-MHC, respectively, have been 

accepted as cardiac hypertrophy markers (16). Additionally, the natriuretic peptides have 

altered expression in cardiac hypertrophy;  overexpression of  BNP was strongly related 

to weakened left ventricular function, and overexpression of ANP has been correlated 

with hypertension and  increased blood pressure, both precursors of heart failure  (17). It 
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is when these potentially deleterious changes associated with cardiac hypertrophy are 

sustained that changes in myocardium lead to heart failure. (11).  

Cardiac Hypertrophy Markers 

  

 
Cardiac hypertrophy results from fetal gene reprogramming of alpha-MHC and 

beta-MHC, and increased levels of natriuretic peptides, ANP and BNP (15). The levels of 

these natriuretic peptides in plasma have been used to diagnose the severity of heart 

failure in patients, and thus serve as biomarkers for cardiac hypertrophy (18). Previous in 

vivo results in the lab indicated increased levels of cardiac hypertrophy markers ANP and 

BNP in TAC animals. To verify that hypertrophy was occurring in our angiotensin II 

mouse model of cardiac hypertrophy, we analyzed re-expression of these fetal cardiac 

genes. ANP and BNP are synthesized in the myocardium and brain as the precursors pro-

ANP and pro-BNP that bind to receptors on target cells to mediate their biological effects 

(10 & 19).  

The heart secretes natriuretic peptides as a homeostatic signal to maintain stable 

blood pressure and volume, and to prevent excess salt and water retention by inhibiting 

renin, vasopressin and aldosterone release (20 & 21). As depicted in figure 2, in 

inhibiting renin release, the natriuretic peptides maintain homeostasis by decreasing 

circulating levels of angiotensin II and aldosterone and preventing further natriuresis and 

diuresis, sodium excretion and fluid excretion (22).  
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Figure 2: Mechanism of Atrial Natriuretic Peptide and Brain Natriuretic Peptide 

Expression. Both atrial and brain natriuretic peptides are secreted to maintain blood 

pressure and volume by contributing to vasodilation and inhibiting renin, vasopressin, 

and aldosterone release. Additionally, these peptides act on the kidneys directly to 

increase the glomerular filtration rate and fraction. Overexpression is over compensatory 

mechanism of the heart in attempt to prevent hypertrophy and subsequent heart failure 

(22). 

 

Decreased angiotensin II also contributes to systemic vasodilation and decreased 

systemic vascular resistance (22). Natriuretic peptides maintain natriuresis and diuresis 

by increasing the glomerular filtration rate and filtration fraction (22). The heart releases 

these peptides in response to hypertrophy and subsequent heart failure, but rather than 

contribute to cardiac hypertrophy, these peptides stem its progression.  ANP is released 

by atrial myocytes in response to atrial distension, angiotensin II stimulation, endothelin, 

and sympathetic stimulation (22). 

Elevated levels of ANP are detected when blood volume is elevated and has been 

correlated with hypertension, both of which are precursors of heart failure (22). 

Overexpression of ANP is meant to be a preventative step in disease progression (22). 
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Brain-type natriuretic peptide is synthesized by the brain and ventricles (22). BNP is 

released in response to the same factors that release ANP (22). Increased expression of 

BNP is a means of abating cardiac hypertrophy; however, overexpression of BNP is 

strongly related to weakened left ventricular function (17 & 24).  Increased expression 

causes the arteries to dilate, while reducing blood pressure and blocking adrenalin release 

(19), and also causes a decrease in myocardial fibrosis and remodeling (23).  

The sarcomeres of cardiomyocytes are made up of the key contractile protein 

myosin (25). Myosin and actin work together to contract heart muscle (25).  In the 

mammalian heart, myosin exhibits two myosin light chains and two myosin heavy chains 

(MHC). The heavy chains have two isoforms, alpha and beta (25 & 26). β-MHC is the 

predominant isoform in the fetal heart (25). Figure 3 depicts the myosin heavy chain 

switch and fetal gene reprogramming that occurs a s the heart develops. As the heart 

ages, α-MHC switches to become the predominant isoform (25). 
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Figure 3: Cardiac Hypertrophy Marker Expression. In the fetal heart, α-MHC is the 

predominant isoform of the myosin heavy chain once upregulated after birth. (B) is the 

normal size structure of the adult heart where ANP and BNP are secreted to maintain 

cardiac homeostasis and β-MHC expression is inhibited. As (B) progresses to (C), a 

failure state, the ventricles are remodeled, the expression of ANP & BNP increases as a 

means of compensating cardiac dysfunction and disease, and β-MHC expression no 

longer suppressed but upregulated. These hypertrophy markers lead to proliferation and 

fibrosis of fibroblasts as the number of cardiomyocytes decreases (25). 

 

 Fetal reprogramming occurs when the adult heart re-expresses several fetal 

genes, such as β-myosin heavy chains (25). During cardiac hypertrophy and heart failure 

in mice and humans, the expression of the β-MHC genes increases as α-MHC expression 

decreases (16). Increased β-MHC expression decreases contractile work, and even slight 

changes in expression can significantly change cardiomyocyte power output (16 & 27). 

α-MHC is known to play a role in preserving heart function; therefore, decreases in α-

MHC expression is an indication of decreased cardiac function (16 & 26). In mice 

models it has been suggested that the shift from alpha to beta is well tolerated and does 

not cause heart failure, whereas in human heart failure, it is suggested that the shift is not 

well tolerated and does contribute to disease development (27). 

Fibrosis 

 

 
Most cardiac diseases are associated with increased fibrosis, the thickening and 

scarring of connective tissue, in the heart (28). Thus, it has been suggested that increased 

fibrosis, not myocardial hypertrophy, may be the most significant cause of diastolic 

dysfunction in hypertrophic cardiomyopathy (28). Cardiac fibroblasts synthesize collagen 

and extracellular matrix proteins and are crucial in wound healing (28). Cardiac 

fibroblasts help maintain normal cardiac function by impacting cardiomyocyte function, 
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allowing for the electrical conduction required for contraction, and maintaining 

extracellular matrix (ECM) homeostasis (29).  

As mentioned, fibrosis is a normal physiological response to wound healing (28). 

After injury, fibrosis of the myocardium occurs to replace necrotic cardiac tissue with 

extracellular matrix proteins to preserve the heart wall (28). Fibroblasts accomplish this 

by transforming into myofibroblasts, proliferating, and then migrating into the wound 

where they synthesize elevated levels of the extracellular matrix protein collagen (28). 

The remaining healthy heart tissue compensates for this loss of myocardium and 

ventricular function by increasing levels of fibrosis and inducing myocyte hypertrophy 

(28). As shown in figure 4, in cardiac hypertrophy cardiomyocytes are replaced by 

myofibroblasts (30).  
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Figure 4:  Cellular Makeup in Cardiac Development. Depiction of the changes in 

cellular makeup in normal cardiac development from a fetal to adult on the left in 

comparison to the hearts on the right in which the heart progresses from fetal to disrupted 

hypertrophy. In normal development fibroblasts are nearly nonexistent but as the heart 

progresses to a hypertrophic state, the fibroblasts replace the cardiomyocytes as they 

undergo necrosis leading to a major fibrotic lesion. This connective tissue cannot 

properly contract and disrupts cardiomyocyte electrical signaling and blood output 

leading to heart failure (31). 

 

These myofibroblasts are characteristic of fibrotic lesions and produce a two to 

threefold rise in collagen synthesis (30). The fibrosis component of cardiac hypertrophy 

occurs when reparative fibrosis fails to terminate. The excessive production, deposition, 

and contraction of extracellular matrix and collagen results in increased mechanical 
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stiffness, disrupted electrical conduction and thus contractility. The inflammation and 

fibrosis may decrease the flow of oxygen and nutrients and increase the pathological 

remodeling observed in cardiac hypertrophy that results in heart failure (28). Recent 

research has identified the major fibrotic signaling pathway as the transforming growth 

factor beta superfamily. TGFβ signaling primarily occurs through SMADs, a family of 

proteins named for a portmanteau of the protein homolog in Drosophila known as 

mothers against decapentaplegic (MAD) and the protein homolog in Caenorhabditis 

elegans for small body size (SMA) (28,30,33).  

Transforming Growth Factor Beta Family 

 

 
TGFβ family members are reported as key upregulated components in the 

signaling pathway that results in LV remodeling in both pressure overload animal models 

and human patients with aortic valve stenosis (6). The TGFβ cytokine has cellular 

functions in regulating inflammation, extracellular matrix deposition, cell proliferation, 

differentiation, and growth (32).  TGFβ regulates phenotype and function of cells 

involved in tissue injury, repair, and remodeling in cardiac tissue (32). Furthermore 

TGFβ is a component of cardiomyocyte and fibroblast phenotype and function, 

myofibroblast differentiation, and the fibrogenic mediator connective tissue growth factor 

(CTGF) (32). Results have demonstrated that in vivo TGFβ promotes myocardial 

hypertrophy when overexpressed in mouse models of hypertrophy (32). TGFβ was also 

found to be upregulated in human cases of hypertrophy and in in vitro cardiomyocytes  

(32). Yet, while overexpressed TGFβ leads to collagen deposition, increased myocardial 

stenosis, fibrosis, and diastolic dysfunction, a certain baseline level is required to 
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maintain cardiac structure and protect against cardiac dilation in cases of pressure 

overload (32). TGFβ signaling through SMADs, depicted in figure 5, in pressure 

overload models of hypertrophy are dependent on levels of active TGFβ (32). 

 

Figure 5: Mechanism of TGFβ Signaling. TGFβ binds to transforming growth factor 

beta receptor 2 (TGFβRII) forming a heteromeric receptor complex; this binding might 

be enhanced by the presence of transforming growth factor beta receptor 3 (TGFβRIII). 

Receptor I and Receptor II possess tyrosine kinase activity. Up-regulation of TGFβ and 

its receptors also contributes to increased activity of TGFβ signaling.  After binding to 

TGFβ, TGFβ-RII recruits and phosphorylates transforming growth factor beta receptor 1 

(TGFβR1), leading to activation of the Smad family of transcriptional activators. Smad2 

and Smad3 are phosphorylated by TGFβR1 kinase, to bind as a heterodimer to Smad4 

and translocate into the nucleus. This process is inhibited by Smad7. Together with co-

activators, co-repressors and other transcription factors, the Smad complex regulates gene 

expression. In a recent experiment indicated that adult fibroblasts Smad3 is required for 

TGFβ induced gene expression (28, 30, & 33). 

 

TGFΒ and the Renin Angiotensin Aldosterone System  

 

 
Evidence of a link between the renin angiotensin aldosterone system (RAAS) and 

ANG II indicate that TGFβis downstream of ANG II in this pathway. The renin-

angiotensin aldosterone system is an endocrine pathway that regulates blood pressure and 

fluid volume of the body (34).  Research has verified the presence of RAAS in 
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independent local systems in the heart and blood vessels (35). The enzyme renin is 

secreted by the kidneys and cleaves angiotensin I, the precursor of ANG II (36).  Renin 

production is a rate-limiting step in the RAAS and is stimulated by a decrease in arterial 

pressure, change in salt content, and/or increased sympathetic activity (36). ANG II, the 

byproduct of renin cleavage of angiotensinogen I, directly promotes cell growth, 

regulates gene expression of various bioactive substances, and activates multiple 

intracellular signaling in cardiovascular and renal cells (36). The role of ANG II in 

cardiac hypertrophy is widely accepted to be direct or combinatorial with other growth 

factors (35). 

Angiotensin II is produced through two mechanisms (36). The first mechanism is 

production of angiotensinogen in the liver, cleavage by renin to form angiotensin I, and 

further cleavage of angiotensin I to angiotensin II. The second mechanism involves the 

production of angiotensin I or angiotensin II from angiotensinogen in non-renin specific 

pathways such as the conversion of angiotensin I to ANG II via the secretion of 

angiotensin converting enzyme (ACE) by the pulmonary circulation or RAAS tissues 

(34). Recent in vitro and in vivo evidence supports that the actions of ANG II include 

regulating blood pressure through vasoconstrictive effects, regulating the retention of 

sodium and water by the renal tubules, cell proliferation, fibrosis, inflammation, and 

aldosterone release in cardiovascular and renal diseases, depicted in Figure 6 (34). 
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Figure 6: The Renin Angiotensin Aldosterone System. Angiotensinogen is produced by 

the liver and cleaved into angiotensin I by renin, an enzyme produced by the kidneys. 

angiotensin I is converted into angiotensin II by the angiotensin converting enzyme to then 

act on the adrenal glands to produce aldosterone. Aldosterone acts on the heart, arteries, 

and kidney to produce vascular effects such as vasoconstriction, renin release, natriuresis, 

and diuresis (39). 

 

 These actions are almost exclusively mediated by binding to the angiotensin type one 

receptor (AT1 receptor) (34). AT1 receptors are located in the kidney, heart, brain, smooth 

muscle, adrenal glands, and other tissue and cell types (34). On a molecular level, ANG 

II binding to AT1 impairs nitric oxide synthesis, a molecule required for vasodilation 

(36). Additionally, ANG II may exert effects through binding to intracellular AT1 

receptor–like proteins (37). AT1’s counterpart, the angiotensin type two receptor 

(AT2 receptor), is expressed in developing fetal tissues, although expression rapidly 

decreases after birth, and is limited mainly to the uterus, ovary, certain brain nuclei, heart, 

and adrenal medulla (38). Furthermore it is antihypertrophic in that it mediates 

vasodilation and inhibits fibrosis in addition to playing a role in blood pressure regulation 
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(38).  AT1 receptors are responsible for growth and remodeling ANG II–mediated effects 

in the heart, while AT2 receptors counteract the effects of AT1 receptors (37).  

Signaling by angiotensin II is a key factor in the development of cardiac 

hypertrophy (40). ANG II signaling leads to the induction of prohypertrophic genes (40). 

Additionally, hypertrophy is characterized by interstitial fibrosis caused by increased 

expression of collagen genes (40). Both angiotensin II and TGFβ induce proliferation of 

fibroblasts to myofibroblasts and thus collagen synthesis in the infarctic heart (41). 

Figure 7 illustrates how ANG II activation induces TGFβ transcription by 

cardiomyocytes and fibroblasts (32). 

 

Figure 7: ANG II and TGFβ Signaling. Both cardiomyocytes and fibroblasts 

exhibit TGFβ receptors and angiotensin receptors. Cardiomyocytes undergoing 

mechanical stress release growth-promoting factors, such as transforming growth factor 

beta. Upregulation of TGFβ in cardiomyocytes leads to hypertrophic growth. 

Additionally, a number of in vitro and in vivo studies have indicated that TGFβis up-

regulated by angiotensin II in myofibroblasts and cardiac fibroblasts as well. Binding of 

ANG II to the AT1 receptor upregulates TGFβ expression in fibroblasts, proliferative 

growth, and leads to increased expression of collagen and ECM proteins characteristic 

markers of fibrosis. Kupfahl et al. noted that angiotensin II did not directly stimulate 

collagen expression, but rather caused TGFβup-regulation, which then altered collagen 

production (44 & 45). 
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 In vitro, stored ANG II released from the secretory granules of cardiomyocytes in 

response to mechanical stretch, a means of stretching cardiomyocytes, induces cardiac 

hypertrophy (42).  Inducing hemodynamic overload, a form of mechanical stress, is 

considered to induce a growth response in the overloaded myocardium (43).  

Furthermore, mechanical stress induces the release of growth-promoting factors, such as 

angiotensin II, endothelin-1, and TGFβ, which provide a second line of growth induction 

(43). Mechanical stretching of cardiomyocytes activates the phosphorylation cascade of 

protein kinases, the re-expression of immediate early and fetal-type genes, and increases 

the protein synthesis rate (42). Sadoshima and Izumo in 1993 reported increases in 

protein synthesis but not DNA synthesis in cardiomyocyte culture experiments (35). 

Similar to cardiomyocytes, fibroblasts in vitro had increased protein expression in 

response to mechanical stretching, but also underwent hyperplasia and DNA synthesis 

(35). The re-expression of immediate early genes and fetal-type genes was also observed 

in fibroblast cultures (35). These phenotypic changes observed by Sadoshima and Izumo 

are reported to closely resemble those of load-induced hypertrophy in vivo and suggest 

that this may occur through a positive feedback regulation of angiotensinogen and TGFβ.  

 Reports indicate that the use of ACE inhibitors or AT1 receptor blockers, 

decreased TGFβ expression in hypertrophied hearts (32). Therefore TGFβ has been 

proposed as a therapeutic target for hypertrophy because increased levels indicate cardiac 

remodeling and are associated with the activation of TGFβ signaling pathway (32). 

Future clinical use of TGFβ as a therapeutic agent faces difficulties because of its broad 

range of effects and potentially interfering role in immune regulation (32). Therefore, 
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with the known cardioprotective role of estrogen in cardiovascular disease, it is of interest 

to determine how sex-differences affect TGFβ signaling in hypertrophy.  

Additional Genes in Fibrosis and Collagen Deposition 

 

 
Tumor necrosis factor-alpha (TNF-α), a proinflammatory cytokine, is involved in 

wound healing and antifibrotic through the inhibition of matrix genes (30). TNF-α and its 

receptor also trigger intracellular signaling cascades through phosphorylation of protein 

kinase B (AKT), activation of nuclear factor-kappa B (NFκB), and the phosphorylation of 

c-JUN N-terminal kinase (JNK) (46 &47). These intracellular signaling cascades allow 

TNF- α binding to modulate host defense against injury, facilitate growth and survival, 

and promote apoptosis and matrix metalloproteinase (MMP) expression (46 & 47). TNF-

α is induced in the myocardium under volume or pressure overload (48). Prolonged 

overexpression is implicated in pathogenesis of myocarditis, ischemic heart disease, 

cardiac hypertrophy, and left ventricular dysfunction (49). Patients with HF exhibit 

increased levels of TNF-α in the myocardium (47).  Transgenic mice that overexpress 

TNF-α in the myocardium develop LVH, dilated cardiomyopathy, and premature death 

(48).  

There is evidence that suggests significant cross-talk between neurohormonal and 

inflammatory cytokine signaling in cardiac hypertrophy and failure (46). For example, 

ANG II activates NF-κB to initiate the transcriptional activation of increased expression 

of proinflammatory cytokines, nitric oxide, chemokines and cell adhesion molecules (46). 

TNF-α provokes the activation of the RAAS in the heart through increased ACE activity 

(46). Figure 8 illustrates the crosstalk between ANG II activation of NF-κB and the 

activation of the RAAS through ACE TNF-α. Recent experiments indicate that 
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pathophysiological concentrations of angiotensin II are sufficient to provoke TNF-α 

mRNA and protein synthesis in the adult cardiomyocytes through a NF-κB dependent 

pathway (46).  

 

Figure 8: Cross-regulation of Tumor Necrosis Factor-α and ANG II Pathways. ACE 

cleaves ANG II to provoke an inflammatory response through NFκB pathway. This 

pathway then acts on TNF to provoke increase ACE activity. Both pathways converge in 

the MAPK signaling pathway (46). 

 

Evidence also suggests that TNF-α stimulation has been shown to increase the density of 

AT1 receptors on cardiac fibroblasts and increase their profibrotic sensitivity to ANG II 

(46). Furthermore, the RAAS and inflammatory mediators converge on the mitogen 

activated protein kinase (MAPK) pathway (46). This, however, leads to the hypothesis 

that these two pathways on MAPK signaling may serve to amplify or propagate stress 

signals within the heart (46). One such pathway in the heart involves Jun kinases (JNKs), 

which are activated in TNF-α signaling. (46). Recent studies suggest that angiotensin II 

induced TNF-α signaling activates JNKs in cardiomyocytes (46). 
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As indicated in Table 1, microarray analysis identified TNFαIP1, part of the TNF-α 

pathway, as exhibiting sex-regulated expression. As previously mentioned, TNF-α has a 

cross-regulatory relationship with the renin angiotensin aldosterone system, is 

antifibrotic, and proinflammatory. Signaling cascades of TNF-α lead to activation of 

NFκB and the phosphorylation of JNK that modulates host defense against injury, 

facilitates growth and survival, and promotes apoptosis and MMP expression (46 & 47). 

Lastly, TNF-α is induced in the myocardium in cardiac hypertrophy and left ventricular 

dysfunction (49). Specific aim two of my project is the identification of the role of 

TNFαIP1 in collagen deposition and if it is indeed involved in the proposed interplay of 

genes that result in heart failure.  

Proteolytic enzymes such as matrix metalloproteinases (MMPs) function in the 

extracellular environment of cells and degrade both matrix and non-matrix proteins (50). 

They play central roles in morphogenesis, wound healing, tissue repair and remodeling in 

response to injury, further biological effects are listed in table 2 (50). Their main function 

is the degradation and removal of ECM molecules from tissue. MMPs are implicated in 

the progression of myocardial infarction, atheroma, arthritis, cancer, chronic tissue ulcers, 

idiopathic dilated cardiomyopathy, tachycardia induced heart failure, and pressure-

overload hypertrophy (50 & 51). Collagen deposition, as depicted in figure 9, is caused 

by imbalanced concentrations of MMPs or tissue inhibitors of metalloproteinases 

(TIMPs) (51). TIMPs regulate the activation of MMPs by binding to and preventing the 

degradation of the collagen matrix (50 & 51).  Thus, the balance between the two 

proteins is crucial for ECM remodeling as depicted in figure 10 (50).  
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COL6α1

 
 
Figure 9: Collagen Deposition. Collagen deposition in the ECM by fibroblasts is known 

to promote scarring of the heart and decrease contractibility of surrounding 

cardiomyocytes leading to heart failure (28). Fibrosis rather than hypertrophy is now 

thought to be the most significant cause of cardiac dysfunction in hypertrophy (see page 

20 for more information on fibrosis) (28). In the depicted image, normal cardiac structure 

can be observed to be disrupted in various form of hypertrophy with fibrosis. When the 

collagen concentration is increased is when fibrosis becomes pathophysiological.  Here I 

wish to tie the COL6α1 gene, which was found to be sex-specifically regulated by 

microarray analysis in Table 1, into our project. Specific aim two of my project seeks to 

identify the role of COL6α1 in collagen deposition and if it is indeed in the proposed 

interplay of genes involved with heart failure through.  (53) 
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Figure 10: Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases 

Activation. TNF-α activates MMPs to induce collagen turnover and ECM remodeling It 

is known that an imbalance between TIMPs and MMPs leads to cardiac dysfunction. 

TNF-α inhibits TIMPs unlike the profibrotic cytokine that inhibits MMPs and activates 

TIMPs to cause ECM remodeling. (52) 

 

Recently, it has been suggested that MMPs become activated within the failing 

myocardium (50). In mouse models of LVH, MMP expression disrupted the ECM 

surrounding myocytes and was shown to increase in a time-dependent manner as the 

LVH progressed (28). In patients with hypertrophic cardiomyopathy, findings suggest 

that changes in collagen metabolism by the interactions between MMPs and TIMPs may 

be associated with LV remodeling and the progression of LV systolic dysfunction (51).  

As indicated in Table 1, microarray analysis identified MMP2 as exhibiting sex-

specific expression in non-failing myocardium and differential expression in non-failing 

vs. failing hearts. MMP2 has been implicated in cell migration, increased bioavailability 

of TGFβ, as a vasodilator or vasoconstrictor, and anti-inflammatory among other 

properties (Table 2).  
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Table 2: Biological Effects of MMP2. 

Source: Nagase, Hideaki, Robert Visse, and Gillian Murphy. “Structure and Function of 

Matrix Metalloproteinases and TIMPs.” Cardiovascular Research 69, no. 3 (February 15, 

2006): 562–73. doi:10.1016/j.cardiores.2005.12.002. 

 

Experiments using MMP gene knockout mice have shown that MMP2 plays a key role in 

cardiac rupture after myocardial infarction. MMP2 cleaves and degrades some types of 

collagen. In cardiomyocytes, intracellular MMP2 degrades structures and enzymes that 

contribute to cardiac dysfunction (50). Specific aim two of my project is the identification 

of the role of MMP2 in collagen deposition and if it is indeed involved in the proposed 

interplay of genes that result with heart failure. I specifically seek to determine its 

relationship with TGFβ.   

The roles of TGFβ and MMPs in cardiac remodeling may be intertwined.  In fact, 

both proteins may be part of one complex pathway for fibrosis that we propose in figure 

11. 
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Figure 11: Proposed Interplay of Genes in Fibrosis and Heart Failure. We propose 

an interplay of genes and signaling pathways that lead to the fibrosis observed in heart 

failure. Evidence for this interplay exists in our literature. Upregulation of ACE leads to 

increased ANG II synthesis by the renin angiotensin aldosterone system which in turn 

activates some of the same pathways TNF-α activates as seen in Figure 8. As mentioned 

in Figure 7, ANG II receptors and TGFβ receptors exist in cardiomyocytes and 

fibroblasts and TGFβ is upregulated by ANG II binding AT1. TNF-α and TGFβ appear to 

work independently of each other to alter the balance of MMPs and TIMPS as seen in 

Figure 9. TGFβ expression is known to be profibrotic and to affect collagen deposition. 

Ultimately we propose that each of these individual components work together to cause 

fibrosis and its subsequent result, heart failure. 

 

 Increasing evidence suggests that TGFβ increases MMP activity within the 

myocardium (28). The breakdown of the ECM stimulates the release of growth factors 

that are bound to the ECM, such as TGFβ (50). It has been noted that levels of TGFβ and 

MMP2 expression are higher in terminally failing hearts (28). TGFβ appears to up-

regulate MMP2 expression in fibroblasts to facilitate migration and motility allowing for 

increased fibrosis (28). 

Estrogen is Cardioprotective 

 

 
  Premenopausal women are at a lower risk of developing heart failure, yet the risk 

of heart failure in women significantly increases after the age of 55 (1 & 54). 

Furthermore, risk factors of heart failure including diabetes, anemia, high blood pressure, 

and cardiac hypertrophy occur at different rates between men and women (1). Women in 

particular are protected against cardiac hypertrophy more than men as seen in cases of 

early diagnosis (1). With cardiac hypertrophy being one of the strongest predictors of 

Imbalance MMPs/TIMPs ACE ANG II 
TGFβ 

Collagen 

TNF-α 

Fibrosis Heart Failure 
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mortality in women, premenopausal females with cardiac hypertrophy are more likely to 

have preserved cardiac function and less likely to develop decompensated heart failure 

than men (1, 9, 10,11). This sex-related incidence has been correlated to the 

cardioprotective effects of estrogen in premenopausal women (1, 9). In comparison, 

hormone replacement therapy (HRT) for postmenopausal women was initially thought to 

have numerous beneficial effects (13). Findings, however, differ on the efficacy of HRT. 

While some studies report the cardioprotective benefits of HRT when treatment is begun 

at an early age, other studies have reported HRT to be ineffective overall or even harmful 

if begun at a later age (14). Though this finding seems to negate estrogen’s 

cardioprotective effects, in actuality it provides the need to maximize the potential use of 

estrogen therapies by understanding the molecular mechanism of its beneficial effects 

without activating pathways leading to negative side effects (54). Furthermore, these 

findings attest to the mechanism through which estrogen is cardioprotective; however, 

other potential sex differences still remain elusive and not well understood. Most cardiac 

hypertrophy studies involve primarily male subjects. The study defined here will provide 

insight into biochemical differences between males and females that could lead to better 

treatment for women with heart disease.  

Estrogen is a steroid hormone that binds to the estrogen receptors alpha or beta 

(ERα and ERβ) to mediate transcriptional regulation as well as non-nuclear effects. 

Figure 12 illustrates estrogen mediating transcriptional and non-nuclear effects.  
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Figure 12: Estrogen Signaling and Cardioprotection. Estrogens can bind to either ERα 

and ERβ or GPR30 to regulate transcription after translocating to the nucleus. Binding to 

the latter two generates nongenomic or non-nuclear responses. As depicted, G-1 binds to 

GPR30 (56).  

 

Transcriptional estrogenic effects, when the estrogen-nuclear receptor complex 

binds to estrogen response elements of the target gene’s promoter region, are the result of 

the recruitment of coactivators and displacement of corepressors at DNA binding sites 

(54). Estrogen can bind independently of estrogen response elements by binding to 

transcription factors and regulatory elements, such as cyclic AMP response element sites 

(54). Estrogen has been implicated in mediating vascular tone in response to vasoactive 

agents with effects ranging from vasodilation and reverse acetylcholine-induced 

vasoconstriction through the synthesis and release of nitric oxide (55). Additionally, 

vascular prostacyclin synthesis, inhibition of aortic smooth muscle cell proliferation, and 
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decreases in hemostatic factors are thought to be mechanisms through which estrogen can 

affect the heart (55). Estrogen has proved to be cardioprotective, both in vivo and in vitro, 

in modulating vascular tone, arterial resistance, vasodilation, and blood flow, in addition 

to regulating blood pressure and protection against cardiovascular injury (40).  The 

effects of estrogen on the cardiovascular system include increased expression of the 

genes for nitric oxide synthase and prostacyclin, rapid vascular endothelialization after 

injury, inhibiting the proliferation of vascular smooth muscle cells, and preventing 

apoptosis (54).  

Numerous mechanisms for the cardioprotection effected by estrogen have been 

proposed (54). This cardioprotection occurs in cardiovascular diseases including coronary 

artery disease, ischemia, reperfusion injury on the myocardium, and cardiac hypertrophy 

(54). Its effects are thought to be mediated either by its receptors or its non-

transcriptional effects (55).  ER-α and ER-β are both implicated in increasing intracellular 

concentrations of calcium and in membrane ER binding effects through receptor tyrosine 

kinase and protein kinases such as P13K, Akt, mitogen-activated protein kinase (MAPK), 

Src, and protein kinase A and C (54).   Endothelialization is mediated by ER-α activation 

of antiapoptotic and proapoptotic MAPKs. (54). ER-β has been shown to mediate 

antihypertrophic effects of estrogen through inhibiting angiotensin II induced cardiac 

hypertrophy in a mouse model (40). Estrogen receptors are thought to attenuate cardiac 

hypertrophy through the use of three possible mechanisms: degrading calcinuerin, 

changing the expression of fetal-type genes, and suppressing TGFβ family members. 

Current drugs that use the signal transduction pathways of estrogen include selective 

estrogen receptor modulators (SERMs) as seen in treatments of breast cancers and 
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osteoporosis, a promise for the development of future therapies (54). Furthermore, with 

cardiovascular disease mortality and morbidity on the rise, treatments for its prevention 

and lessening its severity are essential (1).  

Effect of Sex on Cardiac Hypertrophy through Profibrotic Genes 

 

 
Numerous scientific studies have reported that sex has an impact on the cardiac 

modeling response to pressure overload (6). More specifically, more favorable cardiac 

remodeling to protect systolic pumping efficiency in premenopausal women is observed 

in cases of hypertrophy (6). Postmenopausal women, lacking the protection of estrogen, 

experienced less favorable remodeling, similar to cases of male hypertrophy (6). These 

observations have been mimicked in a TAC model of myocardial remodeling in mice (6). 

Two proposed mechanisms of mediation by estrogen are: (1) estrogen is a transcriptional 

regulator of genes implicated in hypertrophy; or (2) that estrogen may regulate 

angiotensin mRNA levels and ACE activity in the RAAS system (57). Therefore, 

although the mechanism is not well understood, the potential use of estrogen in studies of 

cardiac hypertrophy are necessary (6). Sex differences in TGFβ signaling have previously 

been reported. In a two-week TAC mouse model entitled “Androgens Contribute to Sex 

Differences in Myocardial Remodeling under Pressure Overload by Mechanism 

Involving TGF- β”, TGFβ levels were elevated only in males and the use of anti-TGFβ 

antibodies in a TAC group of male mice greatly reduced fibrosis (6). Furthermore, when 

a group of male mice underwent an orchiectomy, surgical removal of the testicles, they 

experienced more favorable remodeling because sex-related differences were eliminated 

both in the physical and molecular assessments of hypertrophy (6). The unfavorable 

remodeling in cardiac hypertrophy can be attributed to sex differences in a downstream 
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mechanism involving TGFβ (6). However, this report attributed this to the detrimental 

effects of androgens in males rather than the protective effects of estrogen in females (6). 

Additionally, estrogen has been identified to affect individual gene expression in our 

proposed pathway. Estrogen has been shown to downregulate ACE and thus ANG II 

production (58). Estrogen is anti-inflammatory and may therefore inhibit the pro-

inflammatory TNF-α (30 &54). As mentioned previously, estrogen suppresses TGFβ 

expression (6). Finally, estrogen improves the balance of MMPs and TIMPs, thus 

inhibiting collagen deposition (59). Therefore, estrogen may mediate its cardioprotective 

effects by downregulating or inhibiting the expression of ACE, MMP2, TNF-α, TGFβ, 

and COL6α1. This effect would result in reduced risk of heart failure by lessening the 

degree of hypertrophy, according to our proposed hypertrophic pathway. 

Research Models for Studying Heart Failure 
 

 

With 67 million Americans suffering from hypertension, a significant risk factor for 

cardiac hypertrophy and HF, research has focused on identifying these signaling 

pathways of disease progression (8). In vivo, studies have reported hemodynamic 

overload induces cardiac hypertrophy in mice through increases in RAS tissue in the 

heart, mRNA and protein levels of renin, ACE, angiotensinogen, and ANG II receptors 

(42). Cardiac hypertrophy induced by angiotensin acts in cardiomyocytes in vivo and in 

vitro and fibroblast cultures in an AT1 receptor dependent manner (35 & 42).  

With the understanding that ANG II is essential for the development of cardiac 

hypertrophy, previous research in our lab has utilized TAC, phenylephrine, and estrogen 

to model cardiac hypertrophy in vivo and in vitro. TAC is a well-established pressure 

overload system of cardiac hypertrophy (60). TAC is a surgical procedure in which a 
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suture is incompletely tightened around the transverse aorta, thereby increasing the 

resistance to blood flow from the left ventricle as depicted in figure 13 (60).  

 

Figure 13: Schematic of Transaortic Constriction. Using the above image as a mental 

guide, transaortic constriction is done by tying a 6-0 suture around aortic arch between 

right and left carotids.  

 

While initially compensatory, the chronic pressure overload that TAC induces 

leads to cardiac hypertrophy by increasing  hemodynamic load on the heart (60). The 

suture placed on the heart leads to a pressure overload system of cardiac hypertrophy. 

TAC contrasts from the angiotensin II infusion model of cardiac hypertrophy in that 

angiotensin II is reportedly not required for pressure overload-induced hypertrophy as 

observed in experimental AT1-α receptor knockout mice (14 & 42). Phenylephrine is 

another means of directly inducing hypertrophy directly in culture. One of the central 

neurohormonal abnormalities of heart failure is the chronic elevation of epinephrine and 

norepinephrine (NE) (61). The mechanism of phenylephrine, a synthetic drug that 

stimulates 1 –receptors on blood vessels and cardiac myocytes, is similar to that of 



 

 

32 

 

epinephrine, and results in increased contraction, heart rate, blood pressure, and 

vasoconstriction (61 & 62). Activation of the α1-receptor with phenylephrine induces 

hypertrophy and upregulation of ANP and β-MHC (61).  

Brief Recap 

 

 
 My research sought to elucidate the molecular basis of the cardioprotective effects 

of estrogen in models of cardiac hypertrophy and heart failure by identifying genes 

affected by its hormonal effects. In the mouse model, the TGFβ pathway was the primary 

research focus. Estrogen is known to suppress the profibrotic TGFβ gene and gene 

expression analysis was used to characterize its expression in an angiotensin infusion 

model of hypertrophy. In the human study, genes identified by microarray analysis that 

demonstrated sex-specific regulation or differential expression in non-failing and failing 

hearts were analyzed for sex-specific regulation. Our question remains: how does 

estrogen mediate its cardioprotective effects? 

Overall Aim and Overarching Hypothesis 

 

 

 The overall goal of my thesis research seeks to expand our understanding of the 

molecular basis of sex on hypertrophy and heart failure, using an angiotensin II infusion 

mouse model of cardiac hypertrophy and clinical study of non-failing and failing human 

hearts. Our hypothesis was that sex influences cardiac hypertrophy and heart failure via 

sex-specific expression of profibrotic genes. To test this hypothesis, we proposed two 

specific research aims. The first specific aim established a new (to EKU) mouse model of 

cardiac hypertrophy to analyze further sex-specific gene expression. To do this, we 

utilized the ANG II pump model of cardiac hypertrophy in male and female C57/BL6 
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mice in order to assess sex-specific gene expression of cardiac hypertrophy markers and 

the prohypertrophic TGFβ pathway. The second specific aim sought to analyze the 

interplay between estrogen and genes in a clinical study of heart failure.  To do this, we 

utilized failing and non-failing hearts male and female hearts to assess sex-specific gene 

expression of profibrotic COL6α1, ACE, TNFαIP1, and TGFβ all of which were genes 

that were identified as sex-regulated by microarray analysis as shown in Table 1.  
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Chapter II 

 

 

SPECIFIC AIM ONE 

 

 
 To characterize the gene expression of prohypertrophic TGFβ family members during 

cardiac hypertrophy, we utilized the well-characterized ANG II mouse model for the 

development of cardiac hypertrophy and heart failure. Our laboratory previously used a 

surgical model of cardiac hypertrophy and HF, but this invasive survival surgery is not 

currently possible at EKU, thus necessitating the less invasive ANG II model.   

The working hypothesis of this aim is that ANG II administered over a period of 4 

weeks induces hypertension, as well as direct effects on cardiomyocytes, leading to 

cardiac hypertrophy and subsequent heart failure 

a. Our first objective was to establish a model of cardiac hypertrophy by way of 

ANG II infusion in BL-6 mice and compare ANG II induced cardiac 

hypertrophy in male and female mice. A higher heart-to-body ratio and heart-

to-tibia ratio would indicate a greater degree of cardiac hypertrophy. Taqman 

gene expression assays of the standard markers of cardiac hypertrophy, ANP, 

BNP, α-MHC, and β-MHC, were used to verify signature gene expression 

patterns in hypertrophy.  

b. The second objective of the experiment was to use RT-PCR to determine sex 

specific expression levels of TGFβ target genes. It would be expected that 

estrogen mediates its antihypertrophic and cardioprotective effects by 

inducing transcription of miRNAs, which silence the expression of 

prohypertrophic members of the TGFβ family. We hypothesized that estrogen 
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suppresses expression of TGFβ either by increasing miRNAs which target 

TGFβ family members. 
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Specific Aim One Materials and Methods 

 

 

Rodent Use and Surgery 

 

 
 Six female and six male C57BL6 mice were purchased from Jackson Laboratories.  In 

addition to marking their ears with identifiable tags, mice of both sexes were numbered 

one through six upon arrival. Pump implantation took place in collaboration with Dr. 

Lindsay Calderon. The desired infusion dosage of angiotensin was 500ng/kg/min. The 

recorded weight of each mouse was used to calculate the concentration of ANG II or 

saline for each corresponding subcutaneous osmotic pump. Calculations using the largest 

mouse’s initial starting weight and estimated weight gain provided the dose per hour per 

animal. The concentration of the ANG II had to be individualized per pump/mouse in 

order to ensure the proper dosage. The pump releases fluid at a constant rate and 

therefore the concentration of the released fluid determines the dosage. The Alzet 

osmotic pumps pumped at a 0.25uL/hr rate. Pumps were loaded according to this 

spreadsheet, weighed, and primed in an incubator overnight in individual tubes of ANG 

II or saline solution. A carprofen injection of 50cc with saline was prepared according to 

the spreadsheet then the surgery room was set up with the appropriate use of the 

isoflurane and oxygen tank. A four-week infusion period occurred before the mice were 

euthanized using isoflurane and cervical dislocation.  A mouse was placed in the 

isoflurane chamber until it was anesthetized and transferred onto a nose cone that 

continuously fed isoflurane to maintain a proper plane of anesthesia during surgery. The 

hair on the back of the mouse was shaved and Nair and alcohol pads were used to remove 

any excess hair. The injection of carprofen was applied by pulling the skin away from the 
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hip region. Using forceps and scissors, an incision was made into the mouse’s shaved 

back. A path was made along the side of the body and the spine into which the pump was 

inserted before suturing and glue was lightly applied on top of the sutures. The mouse 

was then taken off the nose cone and placed back into the cage after movement was 

exhibited. This procedure was repeated for each mouse. Mice were monitored for an hour 

after surgery and daily for signs of distress or removing of their sutures.  

Heart and Tibia Collection 

 

 
 After euthanasia and recording the body weight and pump weight, the heart tissue 

was removed from the body cavity, washed in sterile PBS and dried before being 

weighed. The base of the heart was stored in formalin overnight before being transferred 

to a tube of ethanol for histology lab use. The apex was stored in RNALater at 4°C. The 

tibia was extracted, length measured, recorded, and discarded.  

RNA Isolation  
 

 RNA isolation from the heart utilized the Trizol reagent, lysing D matrix tubes, and 

FastPrep.  The apex of the heart was place in the lysing tube with 1mL of Trizol for 

homogenization in the FastPrep at 6.0m/s for 45 seconds three or four times with rest 

periods on ice for 1 minute in between each run. RNA isolation then followed Ambion by 

Life Technologies Trizol Reagent Protocol. RNA was extracted from the heart using 

Trizol (Invitrogen).  The media was removed from the cells and washed with 3mL of 

PBS, which was then removed. Next, 1mL of Trizol was added to each flask and the cells 

were scraped off the flask using a cell scraper, then removed from the flask and placed in 

a 1.5mL tube. The tubes were incubated and shaken at room temperature for 5 minutes 
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before being centrifuged 2,000xg for 10 minutes at 4°C and supernatant transferred to a 

new tube. To the new tube, 200mL of molecular biology grade chloroform (MP 

Biomedicals) was added, shaken vigorously for 15 seconds by hand and incubated at 

room temperature for 3 minutes. Centrifugation was repeated at 12,000xg for 15 minutes 

at 4°C. The colorless upper aqueous phase was mixed with 0.5mL molecular biology 

grade isopropanol (Fischer Scientific) in a new 1.5mL tube. The samples were incubated 

for a minimum of 30 minutes.   

 After the incubation period the samples were centrifuged at 12,000xg for 10 minutes 

at 4°C. The supernatant was removed and the pellet was washed with 1mL molecular 

biology grade 75% ethanol (Fischer Scientific). The samples were centrifuged at 7,500xg 

for 10 minutes at 4°C and supernatant removed. The pellets were allowed to air dry for 5 

minutes and resuspended in 100ul of nuclease free water (Fischer Scientific) if an RNA 

pellet was visible, or 50ul of nuclease free water if an RNA pellet was not present.  

 RNA quality was determined using a Nanodrop (ThermoScientific), in which the 

RNA concentration and 260/280 values were recorded. A 260/280 value of 

approximately 2.0 was used to denote pure RNA. The RNA was stored at -80°C.  

RT Reaction  
 

 Total RNA was converted to cDNA through reverse transcription using the high 

capacity cDNA reverse transcription kit and protocol by Applied Biosystems. RNA was 

converted to cDNA using a thermal cycler set for the following program: 25°C for 10 

minutes, 37°C for 120 minutes, 85°C for 5 seconds, and hold at 4°C. The cDNA products 

were stored at -20°C for a maximum of thirty days.   
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Taqman PCR 
 

 Taqman RT-PCR was performed using the following commercially available primers 

for the following genes: glyceraldehyde 3-phosphade dehydrogenase (GAPDH), BNP, 

ANP, α-MHC, β-MHC, TGFβ, TGFβR1, TGFβR2, and TGFβR3 purchased from 

Applied Biosystems. Taqman assays were performed according to the Fast Mastermix 

protocol, using 20ul total volume and 2ul of cDNA. The plate was covered with 

MicroAmp 48 well optical adhesive film (Applied Biosystems) and centrifuged at 

1000xg for 1 minute. The step one real-time PCR system by Applied Biosystems was set 

to the following program: Step One: 50°C for 2 minutes, 95°C for 10 minutes; Step Two: 

95°C for 15 seconds, 60°C for 1 minutes, repeat 40 times. Relative expression will be 

determined using the delta, delta CT calculation (2^-(delta CT experimental- average 

delta CT control) to determine fold change relative to GAPDH expression.  Results are 

expressed as mean ± SEM. ANOVA and Welch’s T-test statistical analysis was run to 

compare expression of each primer per treatment and sex. The expression data was 

interpreted to correspond to degree of hypertrophy or prohypertrophic signaling of TGFβ 

and its receptors.  
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Specific Aim One Results 

 

 
 To determine the impact of sex on cardiac hypertrophy induced by an ANG II 

infusion model, we implanted ANG II infusion pumps in six male and six female 

C57/BL6 mice. Three mice of each sex were infused with the saline while the other three 

were infused with ANG II at a 0.25uL/hr rate. During the surgery one female mouse was 

euthanized early. Therefore, the final numbers were three males with saline, three males 

with ANG II, two females with saline, and three females with ANG II (Table 3). After a 

four-week infusion period, heart weight to body weight ratios and heart weight to tibia 

length ratios in Table 4 & Table 5 and hearts were collected to determine hypertrophy by 

gene expression with primers detailed in Table 6.   

Table 3: Mouse Sample ID Numbers and Respective Surgery.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample ID Sex Surgery Sample 

ID 

Sex Surgery 

1001 Male ANG II 2001 Female ANG II 

1002 Male ANG II 2002 Female ANG II 

1003 Male ANG II 2003 Female ANG II 

1004 Male Saline 2004 Female Saline 

1005 Male Saline 2005 Female Saline 

1006 Male Saline 2006 Female Saline 
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Table 4: Mouse Sample ID Numbers with Results after Surgery.  

 
Table 5: Mouse sample ID Numbers with Results after Surgery. 

 

 

Sex Number Body Weight (g) Tibia Length (mm) Heart Weight (g) Pump Weight (g) 

Male 1001 27.6 16.45 0.1409 1.4 

Male 1002 26.5 16.48 0.163 1.4 

Male 1003 25.5 16.46 0.1376 1.4 

Male 1004 26.7 17.8 0.12 1.3 

Male 1005 28 17.43 0.1367 1.3 

Male 1006 26.1 16.67 0.1343 1.4 

Female 2001 21.9 17.34 0.1294 1.3 

Female 2002 20.5 17.64 0.1074 1.3 

Female 2003 23.2 18.851 0.1301 1.4 

Female 2004 22.4 16.72 0.104 1.3 

Female 2006 23.4 17.19 0.1055 1.4 

Sex Number 
Heart Weight/Tibia Length 

(g/mm) Heart Weight/(Body Weight-Pump Weight) (g/g) 

Male 1001 0.0086 0.00538 

Male 1002 0.0099 0.0065 

Male 1003 0.0084 0.0057 

Male 1004 0.0067 0.0047 

Male 1005 0.0078 0.0051 

Male 1006 0.0081 0.0054 

Female 2001 0.0075 0.0063 

Female 2002 0.0061 0.0056 

Female 2003 0.0069 0.0060 

Female 2004 0.0062 0.0049 

Female 2006 0.0061 0.0048 
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Table 6: Real Time PCR Primers used in Specific Aim One. 

 

Heart weight to body weight ratios were analyzed in Figures 14 and 15 and statistical 

analysis of these results are detailed in tables 7 and 8. Heart weight to tibia length ratios 

were analyzed in Figures 16 and 17. Hypertrophy marker expression were analyzed in 

Figures 18 through 25 and statistical analysis of these results are detailed below each 

subsequent figure in tables 9 through 24. TGFβ family member expression were analyzed 

in Figures 26 through 33. Statistical analysis of TGFβ family member expression is listed 

in tables 25 through 36 under each corresponding experiment’s results.  

 

 

 

 

 

 

 

 

 

 

    

Name Gene Name Assay ID 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase Mm99999915_g1 

NPPB Natriuretic peptide B (BNP) Mm01255770_g1 

NPPA Natriuretic peptide A (ANP) Mm01255747_g1 

 

Myh6 Myosin Heavy Chain Alpha (α-MHC) Mm00440359_m1 

 

Myh7 Myosin Heavy Chain Beta (β-MHC) Mm00600555_m1 

 

TGFβ Transforming Growth Factor Beta Ligand Mm01227699_m1 

 

TGFβR1 Transforming Growth Factor Beta Receptor 

1 
Mm01353997_m1 

TGFβR2 Transforming Growth Factor Beta Receptor 

2 
Mm03024091_m1 

 

TGFβR3 Transforming Growth Factor Beta Receptor 

3 
Mm00803538_m1 
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Figure 14: Average Heart Weight:Body Weight Ratios by Treatment. Average saline 

HW:BW ratio was 0.0050. Average ANG II HW:BW ratio was 0.0059. ANGII treatment 

induced a 118% increase in HW:BW. This result was statistically significant according to 

a Welch’s T-test. 

 

Table 7: T Test of Average Heart Weight:Body Weight Ratios. 

Comparison Group P-value 

Saline vs. ANG II 0.0026** 
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 Figure 15: Average Heart Weight:Body Weight Ratios of each Sex-Specific 

Treatment Group. Male saline HW:BW ratio was 0.0051. Male ANG II HW:BW ratio 

was 0.0059. Female Saline HW:BW ratio was 0.0049. Female ANG II was 0.0059.  The 

value increase between male saline and male ANG II was 116% although this was not 

significant by ANOVA or Welch’s T-test p-values. The valued increase between female 

saline and female ANG II was 120%. This was found to be significant by Welch’s T-Test 

analysis indicated statistical significance (p-value 0.0234) between female saline and 

ANG II treatments. 

 

Table 8: ANOVA of Average Heart Weight:Body Weight Ratios.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.2847 

Female Saline vs. Female ANG II 0.1262 

Male Saline vs. Female Saline 0.9920 

Male ANG II vs. Female ANG II >0.9999 

 

Table 9: T Test of Average Heart Weight:Body Weight Ratios.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.1343 

Female Saline vs. Female ANG II 0.0234* 

Male Saline vs. Female Saline 0.3811 

Male ANG II vs. Female ANG II 0.8346 
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Figure 16: Average Heart Weight:Tibia Length Ratios by Treatment. Average saline 

HW:TL ratio was 0.0070. Average ANG II HW:TL ratio was 0.0079.  ANGII treatment 

induced a 113% increase in HW:TL ratio. This result was not statistically significant 

according to a Welch’s T-test.  

 

Table 10: T Test of Average Heart Weight:Tibia Length Ratios.  

Comparison Group P-value 

Saline vs. ANG II 0.2310 
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Figure 17: Average Heart Weight:Tibia Length Ratios of each Sex-Specific 

Treatment Group. Male saline HW:TL ratio was 0.0075. Male ANG II HW:TL ratio 

was 0.0089. Female Saline HW:TL ratio was 0.0062. Female ANG II HW:TL ratio was 

0.0068.  The value increase between male saline and male ANG II was 118% although 

this was not significant by ANOVA or Welch’s T-test p-values. The valued increase 

between female saline and female ANG II was 109%. This too was not significant by 

ANOVA or Welch’s T-test p-values.   

 

Table 11: ANOVA of Average Heart Weight:Tibia Length Ratios.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.2312 

Female Saline vs. Female ANG II 0.9208 

Male Saline vs. Female Saline 0.3381 

Male ANG II vs. Female ANG II 0.0415* 

 

Table 12: T Test of Average Heart Weight:Tibia Length Ratios.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.0993 

Female Saline vs. Female ANG II 0.2496 

Male Saline vs. Female Saline 0.0769 

Male ANG II vs. Female ANG II 0.0287* 
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I. Cardiac Hypertrophy Marker PCR Results 

a. ANP Expression 

 

Figure 18: Average ANP Expression by Treatment. Average saline ANP  

expression was 1.2680. Average ANG II ANP expression was 4.7950. ANGII treatment 

induced a 378% increase in average ANP expression. This result was not statistically 

significant according to a Welch’s T-test.  

 

Table 13: T Test of Average ANP Expression.  

Comparison Group P-value 

Saline vs. ANG II 0.1407 
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Figure 19: Average ANP Expression by Sex-Specific Treatment. Average ANP 

expression for male saline was 1.4650 and for male 3.0503. Female average ANP 

expression is 0.9724 and 6.5397. The value increase between the male treatment groups 

was 208%. This result was not statistically significant according to ANOVA or Welch’s 

T-test. The value increase between the female treatment groups was 673%. This result 

was not statistically significant according to ANOVA or Welch’s T-test.  

Table 14: ANOVA of Average ANP Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.9975 

Female Saline vs. Female ANG II 0.6493 

Male Saline vs. Female Saline >0.9999 

Male ANG II vs. Female ANG II 0.8897 

 

Table 15: T Test of Average ANP Expression 

Comparison Group P-value 

Male Saline vs. Male ANG II 0.2349 

Female Saline vs. Female ANG II 0.2989 

Male Saline vs. Female Saline 0.6733 

Male ANG II vs. Female ANG II 0.4790 
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b. BNP Expression 

 

Figure 20: Average BNP Expression by Treatment. Average saline BNP  

expression was 1.3824. Average ANG II BNP expression was 5.8140. ANGII treatment 

induced a 421% increase in average BNP expression. This result was not statistically 

significant according to a Welch’s T-test.  

 

Table 16: T Test of Average BNP Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.1188 
 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

Saline ANGII

Fo
ld

 C
h

an
ge

Average BNP Expression



 

 

50 

 

 
Figure 21: Average BNP Expression by Sex-Specific Treatment. Average BNP 

expression was 1.3794 for saline males and 3.8745 for ANG II males. Average BNP 

expression was 1.3868 for saline females and 7.8275 for ANG II females. The value 

increase between the male treatment groups was 281%. This result was not statistically 

significant according to ANOVA or Welch’s T-test. The value increase between the 

female treatment groups was 673%. This result was not statistically significant according 

to ANOVA or Welch’s T-test. 

 

Table 17: ANOVA Average BNP expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.9900 

Female Saline vs. Female ANG II 0.6617 

Male Saline vs. Female Saline >0.9999 

Male ANG II vs. Female ANG II 0.8964 

 

Table 18: T Test of Average BNP Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.3301 

Female Saline vs. Female ANG II 0.2849 

Male Saline vs. Female Saline 0.9944 

Male ANG II vs. Female ANG II 0.4730 
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c. α-MHC Expression 

 

Figure 22: Average α-MHC Expression by Treatment. Average saline α-MHC 

expression was 0.9384. Average ANG II α-MHC expression was 1.6194. ANGII 

treatment induced a 173% in average α-MHC expression. This result was not statistically 

significant according to a Welch’s T-test.  

 

Table 19: T Test of Average α -MHC Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.0523 
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Figure 23: Average α-MHC Expression by Sex-Specific Treatment. Average α-MHC 

expression was 1.1166 and 1.6922 for saline and ANG II males respectively. Average α-

MHC expression was 0.6709 and 1.5466 for saline and ANG II female respectively. The 

value increase between the male treatment groups was 152%. This result was not 

statistically significant according to ANOVA or Welch’s T-test. The value increase 

between the female treatment groups was 231%. This result was not statistically 

significant according to ANOVA or Welch’s T-test. 

 

Table 20: ANOVA of Average α-MHC Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.5687 

Female Saline vs. Female ANG II 0.2774  

Male Saline vs. Female Saline 0.8542  

Male ANG II vs. Female ANG II 0.9989 

 

Table 21: T Test of Average α -MHC Expression. 

Comparison Group P-value 

Male Saline vs. Male ANG II 0.2193  

Female Saline vs. Female ANG II 0.2928 

Male Saline vs. Female Saline 0.4968 

Male ANG II vs. Female ANG II 0.4419  
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d. β-MHC Expression 

 

Figure 24: Average β-MHC Expression by Treatment. Average saline β-MHC 

expression was 0.6962. Average ANG II β-MHC expression was 2.4039. ANGII induced 

a 345% increase in average β-MHC expression. This result was not statistically 

significant according to a Welch’s T-test.  

 

Table 22: T Test of Average β-MHC Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.0523 
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Figure 25: Average β-MHC Expression by Sex-Specific Treatment. Average β-MHC 

expression was 1.1090 and 1.8173 for saline and ANG II males respectively. Average β-

MHC expression was 0.2835 and 2.9905 for saline and ANG II female respectively. The 

value increase between the male treatment groups was 164%. This result was not 

statistically significant according to ANOVA or Welch’s T-test. The value increase 

between the female treatment groups was 1055%. This result was not statistically 

significant according to ANOVA or Welch’s T-test. 

 

Table 23: ANOVA of Average β-MHC Expression.  

 

 

 

 

 

 

Table 24: T Test of Average β-MHC Expression. 

Comparison Group P-value 

Male Saline vs. Male ANG II 0.5312 

Female Saline vs. Female ANG II 0.1964 

Male Saline vs. Female Saline 0.3205 

Male ANG II vs. Female ANG II 0.5284 
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Comparison Group P-value 

Male Saline vs. Male ANG II 0.9656 

Female Saline vs. Female ANG II 0.3781 

Male Saline vs. Female Saline 0.9592 

Male ANG II vs. Female ANG II 0.8305 
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II. TGFβ Family Member PCR Results   

a. TGFβ expression 

 
Figure 26: Average TGFβ Expression by Treatment. Average saline TGFβ expression 

was 2.1376. Average ANG II TGFβ expression was 2.3223. ANGII induced 109% 

increase in average TGFβ expression. This result was not statistically significant 

according to a Welch’s T-test.  

 

Table 25: T Test of Average TGFβ Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.8600 
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Figure 27: Average TGFβ Expression by Sex-Specific Treatment. Male saline TGFβ 

expression was 1.9135. Male ANG II TGFβ expression was 2.8378. Female Saline TGFβ 

expression was 2.4538. Female ANG II was 1.8068.  The value increase between the 

male treatment groups was 148%. This result was not statistically significant according to 

ANOVA or Welch’s T-test. The value increase between the female treatment groups was 

74%. This result was not statistically significant according to ANOVA or Welch’s T-test. 

 

Table 26: ANOVA of Average TGFβ Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.9893 

Female Saline vs. Female ANG II 0.9990 

Male Saline vs. Female Saline 0.9996 

Male ANG II vs. Female ANG II 0.9816 

 

Table 27: T Test of Average TGFβ Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.5161 

Female Saline vs. Female ANG II 0.8178 

Male Saline vs. Female Saline 0.8485 

Male ANG II vs. Female ANG II 0.3886 
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b. TGFβR1 

 
Figure 28: Average TGFβ-Receptor 1 Expression by Treatment. Average saline 

TGFβR1 expression was 0.7852. Average ANG II TGFβR1 expression was 0.8810. 

ANGII induced 112% increase in average TGFβR1 expression. This result was not 

statistically significant according to a Welch’s T-test.  

 

Table 28: T Test of Average TGFβ-Receptor 1 Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.8897 
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Figure 29: Average TGFβ-Receptor 1 Expression by Sex-Specific Treatment. Male 

saline TGFβR1 expression was 1.2352 Male ANG II TGFβR1 expression was 1.7895. 

Female Saline TGFβR1 expression was 0.1102. Female ANG II was 0.2753.  The value 

increase between the male treatment groups was 145%. This result was not statistically 

significant according to ANOVA or Welch’s T-test. The value increase between the 

female treatment groups was 250%. This result was statistically significant (0.0436) 

according to Welch’s T-test. 

 

Table 29: ANOVA of Average TGFβ-Receptor 1 Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.9872 

Female Saline vs. Female ANG II >0.9999 

Male Saline vs. Female Saline 0.7598 

Male ANG II vs. Female ANG II 0.4993 

 

Table 30: T Test of Average TGFβ-Receptor 1 Expression. 

Comparison Group P-value 

Male Saline vs. Male ANG II 0.7189 

Female Saline vs. Female ANG II 0.0436* 

Male Saline vs. Female Saline 0.1926  

Male ANG II vs. Female ANG II 0.4118  
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c. TGFβR2 

 
 

Figure 30: Average TGFβ-Receptor 2 Expression by Treatment. Average saline 

TGFβR2 expression was 0.8548. Average ANG II TGFβR2 expression was 2.0262. 

ANGII induced 237% increase in average TGFβR2 expression. This result was not 

statistically significant according to a Welch’s T-test.  

 

Table 31: T Test of Average TGFβ-Receptor 2 Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.1233 
 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

Saline ANGII

Fo
ld

 C
h

an
ge

Average TGFβR2 Expression



 

 

60 

 

 
Figure 31: Average TGFβ-Receptor 2 Expression by Sex-Specific Treatment. Male 

saline TGFβR2 expression was 1.0766. Male ANG II TGFβR2 expression was 1.5712. 

Female Saline TGFβR2 expression was 0.5222. Female ANG II was 2.4812.  The value 

increase between the male treatment groups was 146%. This result was not statistically 

significant according to ANOVA or Welch’s T-test. The value increase between the 

female treatment groups was 475%. This result was not statistically significant according 

to ANOVA or Welch’s T-test. 

 

Table 32: ANOVA of Average TGFβ-Receptor 2 expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.9979 

Female Saline vs. Female ANG II 0.5659 

Male Saline vs. Female Saline 0.9979 

Male ANG II vs. Female ANG II 0.9545  

 

Table 33: T Test of Average TGFβ-Receptor 2 Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.2471 

Female Saline vs. Female ANG II 0.2629 

Male Saline vs. Female Saline 0.3991  

Male ANG II vs. Female ANG II 0.5520  
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d. TGFβR3 

 
Figure 32: Average TGFβ-Receptor 3 Expression by Treatment. Average saline 

TGFβR3 expression was 0.9574. Average ANG II TGFβR3 expression was 1.9338. 

ANGII induced 202% increase in average TGFβR3 expression.  This result was not 

statistically significant according to a Welch’s T-test.  

 

Table 34: T Test of Average TGFβ-Receptor 3 Expression. 

Comparison Group P-value 

Saline vs. ANG II 0.3106 
 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

Saline ANGII

Fo
ld

 C
h

an
ge

Average TGFβR3 Expression



 

 

62 

 

 
Figure 33: Average TGFβ-Receptor 3 Expression by Sex-Specific Treatment. Male 

saline TGFβR3 expression was 1.3392. Male ANG II TGFβR3 expression was 2.1805. 

Female Saline TGFβR3 expression was 0.3846. Female ANG II was 1.3353.  The value 

increase between the male treatment groups was 163%. This result was not statistically 

significant according to ANOVA or Welch’s T-test. The value increase between the 

female treatment groups was 347%. This result was not statistically significant according 

to ANOVA or Welch’s T-test. 

 

Table 35: ANOVA of Average TGFβ-Receptor 3 Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.9770 

Female Saline vs. Female ANG II 0.9758 

Male Saline vs. Female Saline 0.9753 

Male ANG II vs. Female ANG II 0.9765 

 

Table 36: T Test of Average TGFβ-Receptor 3 Expression.  

Comparison Group P-value 

Male Saline vs. Male ANG II 0.5911 

Female Saline vs. Female ANG II 0.1571 

Male Saline vs. Female Saline 0.2786  

Male ANG II vs. Female ANG II 0.5730 
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Specific Aim One Discussion 
 

 

Comparison between the ANG II group versus the saline group indicated that our 

model was successful in inducing hypertrophy. Male-female differences were not 

observed in our model, though significance was observed between the female saline and 

female ANG II group. These observations differed from our previous TAC model which 

demonstrated a clear male-female difference in degree of hypertrophy as little as 2 weeks 

post TAC. This was a preliminary study intended to be expanded once the hypertrophy 

phenotype was established, and therefore only a small number of mice were used.  Both 

HW:BW and HW:TL ratios indicated hypertrophy between the treatment of each sex; 

however, the ratios either did not vary or did not vary greatly across sex and treatment. 

HW:BW ratios increased in each sex between saline and ANG II treated mice, indicating 

that ANG II did induce hypertrophy in each sex. However, the difference did not translate 

across sex and treatment. The male and female HW:BW ratio of ANG II treated mice was 

0.0059 for both sexes. HW:TL ratio increased between male saline and male ANG II 

groups by 0.0014 but not as drastically in female saline and ANG II groups. Between 

treatments and sex, the difference was 0.0013 between male saline and female saline and 

0.0021 between male ANG II and female ANG II. However, statistical analyses indicated 

no significant difference for the majority of our comparison groups based on sex and 

treatment. HW:BW ratios were expected to be decreased in females when compared to 

males, due to the cardioprotection afforded to their hearts. The HW was expected to 

increase in both sexes, but to a greater degree in males, an indication of greater 

hypertrophy. This was not observed. The HW:BW ratio in ANG II groups of both sexes 

did not differ, indicating that hypertrophy occurred almost to the same extent. Sex-
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difference did not seem to affect HW:BW ratios. TL was another means measuring the 

growth of the mice over the infusion period. HW:TL ratios were expected to be decreased 

in females when compared to males, due to the cardioprotection afforded to their hearts. 

Again HW was expected to increase in both sexes, but to a greater degree in males, an 

indication of greater hypertrophy. This was not observed. The HW:TL ratios indicated 

hypertrophy did occur in each sex, though the ratios were not as large as the HW:BW 

ratios per sex. The HW:TL ratios did not greatly differ between the ANG II receiving 

groups, supporting the evidence that hypertrophy may have occurred to the same degree. 

Sex-difference did not seem to affect HW:TL ratios. A future mouse model with a greater 

or longer infusion period may result in greater degrees of hypertrophy. Additionally, a 

larger sample size may allow for significant statistical analysis results.  

Re-expression of fetal genes is known to be a biomarker of cardiac hypertrophy. 

ANP and BNP expression increase in hypertrophy, whereas α-MHC decreases as β-MHC 

increases (15,16, &17). In our model, ANP and BNP expression increased in our ANG II 

treatment groups in comparison with our saline treatment groups in both sexes. ANG II 

males exhibited a 3-fold increase in ANP expression and BNP expression in comparison 

with their saline male counterparts. Females exhibited a 6.5-fold and >7-fold increase in 

ANP and BNP expression respectively in comparison to saline female expression. ANG 

II-treated females exhibited greater expression of both natriuretic peptides. Though we 

expected hypertrophy, and therefore the natriuretic peptides that increase with its 

progression to be expressed greater in our male mice because of a greater degree of 

hypertrophy, we know that increased expression of these peptides is meant to be 

cardioprotective. Therefore, the increased peptide expression in females would indicate 
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increased hypertrophy than their male counterparts and an attempt to afford 

cardioprotection. Males may have expressed lesser amounts of these peptides because 

less of their cardioprotection was afforded. Sex-difference in the females may have 

further upregulated the expression of the cardioprotective fetal genes in our model. 

Further investigation is necessary to conclude this with confidence. A future mouse 

model with a larger sample size may allow for better statistical analysis results. 

 Expression of the myosin heavy chains alpha and beta did not occur as 

hypothesized. Myosin alpha concentration is known to decrease in hypertrophy and 

myosin beta concentration is known to increase. We expected decreased alpha expression 

in our males undergoing hypertrophy in comparison with our females undergoing 

hypertrophy due to the cardioprotection afforded them. Our results indicated decreased 

alpha and increased beta expression between sex and treatment groups. Average α-MHC 

expression increased based on treatment with ANG II in each sex.  More importantly, 

alpha expression between males and females receiving ANG II was decreased, 1.6922 vs. 

1.5466, in females in comparison to males. This supports our surgical and natriuretic 

peptide PCR results that hypertrophy occurred at a lesser degree in our males in 

comparison to our females receiving ANG II, because alpha expression decreases in 

hypertrophy. Beta expression increased based on treatment in both sexes, indicating that 

ANG II upregulates beta expression. Females saw marked increase in beta expression 

when receiving ANG II treatment, 2.9905 in comparison with their male counterparts at 

1.8173. These results support that females underwent greater levels of hypertrophy versus 

their male counterparts.  Statistical analysis did not indicate significant differences 

between sexes and treatments. The myosin heavy chain expression trend of alpha and 
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beta observed in our model indicates that females underwent greater degrees of 

hypertrophy than their male ANG II counterparts. We hypothesized greater expression of 

α-MHC and decreased expression of β-MHC in our female group afforded by the 

cardioprotection of their sex difference. This was not the case. Further analysis is 

necessary to determine if the sex-difference affords cardioprotection in this model, 

because our results indicate otherwise.  Again, a larger sample size may allow for 

significant statistical analysis results. 

TGFβ family members are reported as key upregulated components in the 

signaling that results in LV remodeling in animal models of pressure overload and human 

patients with aortic valve stenosis (6). Evidence of a link between the RAAS and ANG II 

indicate that TGFβis downstream of ANG II in this pathway. ANG II activation induces 

TGFβ transcription by cardiomyocytes and fibroblasts (32). Both angiotensin II and 

TGFβinduce proliferation of fibroblast to myofibroblast and thus collagen synthesis in 

the infarctic heart (41). In our model of ANG II induced hypertrophy, we hypothesized 

that profibrotic and prohypertrophic TGFβ family signaling would be decreased in our 

female mice because of the cardioprotection afforded to females. Ligand expression in 

our model increased with treatment in our male treatment groups. In our females, 

expression decreased between our saline and ANG II groups by 0.6670. Although 

signaling was decreased in our ANG II females in comparison with our ANG II males 

(by 1.0310), which is possibly indicative of less hypertrophy in our females, female 

saline expression of TGFβ signaling was increased. Statistical analysis did not indicate 

significance.  
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Treatment with ANG II increases TGFβ receptor expression. However, 

expression of TGFβ receptors appeared to be decreased in our female ANG II treatment 

groups in comparison to their male counterparts as hypothesized. TGFβR1 increased in 

both sexes in the ANG II groups in comparison with the saline groups. Expression in the 

females was greatly diminished, 0.1102 and 0.2753 in the saline and ANG II groups 

respectively. TGFβR2 expression increased based on sex and treatment. The females 

expressed TGFβR2 >2-fold more than their saline counterparts. Females exhibited greater 

TGFβR2 expression, 0.9100, than their male counterparts. TGFβR3 expression increased 

in both sexes with ANG II treatment. Females exhibited lesser TGFβR3 expression, 

0.8452 less, when treated with ANG II than their male ANG II counterparts. Analyses of 

receptor PCR results did not indicate statistical differences expression based on treatment 

or sex. Our PCR results indicated that females exhibited lower levels of TGFβ receptor 

expression than their male counterparts. Previous studies have shown an increase in 

receptor expression in models of hypertrophy, though not in a sex-specific manner. 

Therefore, our PCR results agreed with our hypothesis that TGFβ receptor expression 

would be decreased in our female mice because they experienced cardioprotection. 

Receptor expression in females did not reflect that females underwent a greater degree of 

hypertrophy than males. Estrogen may be downregulating receptor expression in our 

females treated with ANG II. However, if the receptor expression is downregulated, we 

would expect to see lesser hypertrophy in our female mice, which we did not observe. 

Therefore, further analysis is necessary to determine if this model correctly measured 

TGFFβ expression in relation to ANG II treatment and sex differential expression.  
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Chapter III 

 

 

SPECIFIC AIM TWO 

 
 

 To determine sex differential expression in male and female heart failure patients, 

hearts from heart failure patients and from deceased donors who were never diagnosed 

with heart failure or heart disease were analyzed. The hypothesis of this experiment is 

that sex specific gene expression profiles can be established for failing and non-failing 

hearts. It is also expected that genes that propagate fibrosis will be more highly expressed 

in failing male hearts with a greater degree of fibrosis.  

Hypothesis 

a. Our objective was to analyze sex-specific regulation of genes known to regulate 

collagen deposition. We predicted that our study of heart failure would detect sex-

specific patterns of collagen deposition.  The working hypothesis was that female 

myocardium would exhibit lower levels of gene products that promote fibrosis 

collagen, matrix metalloproteinase, angiotensin converting enzyme, tumor 

necrosis factor alpha, and TGFβ, than comparable tissue from male hearts. In 

addition, it was anticipated that gene expression would positively correlate to 

observed collagen deposition and contractility phenotypes. We anticipated that 

male myocardium would contain more collagen with particularly elevated levels 

in the midmyocardium. Conversely, we anticipated that female myocardium 

would demonstrate a collagen deposition pattern with less fibrosis in the mid-

wall.  
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Specific Aim Two Materials and Methods 

 

 

Heart Collection 

 

 
The University of Kentucky’s Cardiac Biobank directed by Ken Campbell, 

provided the non-failing and failing female and male heart specimens. Every sample was 

procured directly from the operating room and flash-frozen within a few minutes of being 

removed from the patient. A member of Dr. Ken Campbell’s lab group was paged to the 

operating room every time a consented patient was to receive a heart transplant or a 

ventricular assist device. When a sample that would otherwise be discarded was cut free, 

the surgeon would hand it directly to a scientist who immediately placed the tissue in ice-

cold saline slush. The samples were then dissected, flash-frozen in liquid nitrogen, and 

subsequently placed in the vapor phase of liquid nitrogen for long-term storage. The 

samples are stable under these conditions for at least a decade. Identical procedures are 

used to obtain samples from donors who do not have a history of ventricular disease. 

These specimens (currently ~350 from 13 people) were obtained with the assistance of 

KODA, the regional organ procurement agency, from 3 hospitals in Lexington, KY when 

the heart could not be transplanted for technical reasons including inappropriate size 

and/or blood group. Clinical data from each patient’s medical records (or the federally 

organized UNOS database in the case of organ donors) were de-identified and stored in a 

computer database along with a randomly generated hash code linking them to the 

banked samples. 
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Experimental Design 

 

 
Experiments were performed using samples from sub-epicardial, mid-myocardial, 

and sub-endocardial regions of 3 non-failing male individuals, 2 non-failing female 

individuals providing three LV locations, 6 failing male individuals with three of those 

individuals providing three LV locations and the other three providing LV2 locations, 

and 8 female individuals with one of those individuals providing three LV locations. All 

banked hearts were linked to clinical data (including information from echocardiography 

and magnetic resonance imaging studies) collected from the medical records. The 

transmural pattern of gene expression in male vs. female and failing vs. non-failing 

myocardium were determined using Taqman gene expression analysis for candidate 

genes presented in Table 1 using the same samples analyzed in objectives 1 and 2. 

Human myocardium samples were homogenized via Fast Prep using fast prep lysing 

matrix D tubes (MP Biomedicals) and Trizol (Invitrogen). Total RNA was extracted and 

converted to cDNA using the high capacity cDNA reverse transcription kit (Applied 

Biosystems). Taqman gene expression analysis was performed to determine relative 

levels of target gene expression. Relative expression was determined using the delta, 

delta CT calculation.  Results from quantitative studies are expressed as mean ± SEM. 

Comparisons between groups were performed by ANOVA and Welch’s T-tests.  
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Table 37: Real Time PCR Primers used in Specific Aim Two 

Name Gene Name Assay ID 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 
Hs04420697_g1 

MMP2 Matrix Metallopeptidase 2 
Hs01548730_m1 

ACE Angiotensin Converting Enzyme 
Hs01104606_m1 

COL6α1 Collagen Type VI Alpha 1 
Hs01095580_m1 

TNFαIP1 Tumor Necrosis Factor Alpha Induced Protein 1 
Hs00221705_m1  

TGFβ Transforming Growth Factor Beta Ligand 
Hs00998129_m1 
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Specific Aim Two Results 

 

 
 To directly to determine sex differential expression in male and female heart failure 

patients, I analyzed hearts from heart failure patients and from deceased donors who were 

never diagnosed with heart failure or heart disease. Dr. Campbell provided access to 

microarray data from 18 human hearts. Ten non-failing hearts (five females and five 

males) and eight failing hearts (1 female and 7 males) samples were analyzed with 

Affymetrix chips at the University of Kentucky Microarray Core.  This data was used to 

establish the hypothesis of the human study: sex specific gene expression profiles can be 

established for failing and non-failing hearts.  It is also expected that genes that propagate 

fibrosis will be more highly expressed in failing male hearts with a greater degree of 

fibrosis. Experiments were performed using samples from sub-epicardial, mid-

myocardial, and sub-endocardial regions of 3 non-failing male individuals, 2 non-failing 

female individuals providing three LV locations, 6 failing male individuals with three of 

those individuals providing three LV locations and the other three providing LV2 

locations, and 8 female individuals with one of those individuals providing three LV 

locations. Primers detailed in Table 37 were used to analyze gene expression. ACE 

expression was analyzed in Figures 24-26. COL6α1 expression was analyzed in Figures 

27-29. TNFαIP1 expression was analyzed in Figures 30-32. TGFβ expression was 

analyzed in Figures 33-35.  
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a. ACE Expression 

 

 
Figure 34: Average ACE Expression in Male and Female Nonfailing and Failing 

Hearts. Male nonfailing expression was 0.3436. Male failing expression is 1.8177. 

Female nonfailing expression was 0.4927. Female failing expression 1.5677. The value 

increase between male nonfailing and male failing was 529% although this was not 

significant by ANOVA p-values. The valued increase between female nonfailing and 

female failing was 318%. ANOVA statistical analysis did not indicate statistical 

significance. 

 

Table 38: ANOVA of Average ACE Expression. 

Comparison Group P-Value 

Male Nonfailing vs. Male Failing .3205 

Female Nonfailing vs. Female Failing .4902 

Male Nonfailing vs. Female Nonfailing >.9999 

Male Failing vs. Female Failing .9971 

 

 

 

Fo
ld

 C
h

an
ge

Average ACE Expression

Male Nonfailing

Male Failing

Female Nonfailing

Female Failing



 

 

74 

 

 
Figure 35: Average ACE Expression. Male nonfailing LV1 expression was 0.3946. 

Male nonfailing LV2 expression was 0.3181. Male failing LV1 expression was 1.1991.  

Male failing LV2 expression was 2.7399.  Male failing LV3 expression was 0.5920. The 

valued increases between the male nonfailing and failing LV1 and nonfailing and failing 

LV2 locations were 304% and 861% respectively. Female nonfailing LV1 expression 

was 0.3827. Female nonfailing LV2 expression was 0.5521. Female nonfailing LV3 

expression was 0.5730. Female failing LV1 expression was 1.7984. Female failing LV2 

expression was 1.1089.  Female failing LV3 expression was 1.7388. The valued increases 

between the female nonfailing and failing LV1s, LV2s, and LV3s locations were 470%, 

201%, and 303%. 
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Figure 36: Average ACE Expression by Sample. The graphed average ACE expression 

of each sample by sex and location. 
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b. COL6α1 Expression 

 

 
Figure 37: Average COL6α1 Expression in Male and Female Nonfailing and Failing 

Hearts. Male nonfailing expression was 1.7891. Male failing expression is 1.4661. 

Female nonfailing expression was 0.9311. Female failing expression 1.5103. The value 

increase between male nonfailing and male failing was 819% although this was not 

significant by ANOVA p-values. The valued increase between female nonfailing and 

female failing was 162%. ANOVA statistical analysis did not indicate statistical 

significance. 

 

Table 39: ANOVA of Average COL6α1 Expression.  

Comparison Group P-Value 

Male Nonfailing vs. Male Failing .9996 

Female Nonfailing vs. Female Failing .9693 

Male Nonfailing vs. Female Nonfailing .9553 

Male Failing vs. Female Failing >.9999 
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Figure 38: Average COL6α1 Expression. Male nonfailing LV1 expression was 0.5325. 

Male nonfailing LV2 expression was 2.4174. Male failing LV1 expression was 0.8149. 

Male failing LV2 expression was 2.2122.  Male failing LV3 expression was 0.1364. The 

valued increases of male nonfailing and failing LV1 and nonfailing and failing LV2 were 

153% and 91.5% Female nonfailing LV1 expression was 1.1527. Female nonfailing LV2 

expression was 0.4014. Female nonfailing LV3 expression was 1.2392. Female failing 

LV1 expression was 0.5901. Female failing LV2 expression was 1.6365.  Female failing 

LV3 expression was 2.1058. The valued increases between the female nonfailing and 

failing LV1s, LV2s, and LV3s were 51.2%, 408%, and 170%. 
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Figure 39: Average COL6α1 Expression by Sample. The graphed average COL6α1 

expression of each sample by sex and location. 
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c. TNFαIP1 Expression 

 
Figure 40: Average TNFαIP1 Expression in Male and Female Nonfailing and 

Failing Hearts. Male nonfailing expression was 1.0299. Male failing expression is 

1.3245. Female nonfailing expression was 0.5907. Female failing expression 1.0784. The 

value increase between male nonfailing and male failing was 129% although this was not 

significant by ANOVA p-values. The valued increase between female nonfailing and 

female failing was 183%. ANOVA statistical analysis did not indicate statistical 

significance. 

 

Table 40: ANOVA of Average TNFαIP1 Expression. 

Comparison Group P-Value 

Male Nonfailing vs. Male Failing .9932 

Female Nonfailing vs. Female Failing .8045 

Male Nonfailing vs. Female Nonfailing .9673 

Male Failing vs. Female Failing .9776 
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Figure 41: Average TNFαIP1 Expression. Male nonfailing LV1 expression was 

2.1172. Male nonfailing LV2 expression was 0.4863. Male failing LV1 expression was 

1.4144. Male failing LV2 expression was 1.2708.  Male failing LV3 expression was 

1.3420. The valued increases between the male nonfailing and failing LV1 and nonfailing 

and failing LV2 locations were 66.8% and 261% respectively. Female nonfailing LV1 

expression was 0.6024. Female nonfailing LV2 expression was 0.5461. Female 

nonfailing LV3 expression was 0.6236. Female failing LV1 expression was 1.3158. 

Female failing LV2 expression was 0.5802.  Female failing LV3 expression was 1.2739. 

The valued increases between the female nonfailing and failing LV1s, LV2s, and LV3s 

locations were 218%, 106%, and 204%. 
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Figure 42: Average TNFαIP1 Expression by Sample. The graphed average TNFαIP1 

expression of each sample by sex and location. 
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d. TGFβ Expression 

 
Figure 43: Average TGFβ Expression in Male and Female Nonfailing and Failing 

Hearts. Male nonfailing expression was 0.8727. Male failing expression is 1.3289. 

Female nonfailing expression was 1.4626. Female failing expression 1.2682. The value 

increase between male nonfailing and male failing was 152% although this was not 

significant by ANOVA p-values. The valued increase between female nonfailing and 

female failing was 87%. ANOVA statistical analysis did not indicate statistical 

significance. 

 

Table 41: ANOVA of Average TGFβ Expression. 

Comparison Group P-Value 

Male Nonfailing vs. Male Failing .9839 

Female Nonfailing vs. Female Failing .9995 

Male Nonfailing vs. Female Nonfailing .9636 

Male Failing vs. Female Failing >.9999 
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Figure 44: Average TGFβ Expression. Male nonfailing LV1 expression was 0.8911. 

Male nonfailing LV2 expression was 0.8636. Male failing LV1 expression was 1.0505. 

Male failing LV2 expression was 1.7757.  Male failing LV3 expression was 0.7138. The 

valued increases between the male nonfailing and failing LV1 and nonfailing and failing 

LV2 locations were 186% and 206% respectively. Female nonfailing LV1 expression 

was 1.6801. Female nonfailing LV2 expression was 1.0155. Female nonfailing LV3 

expression was 1.6923. Female failing LV1 expression was 0.8356. Female failing LV2 

expression was 0.7235.  Female failing LV3 expression was 2.0011. The valued increases 

between the female nonfailing and failing LV1s, LV2s, and LV3s locations were 49.7%, 

67.7%, and 118%. 
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Figure 45: Average TGFβ Expression by Sample. The graphed average TGFβ 

expression of each sample by sex and location. 
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Specific Aim Two Discussion 

 
 

As depicted in Figure 11, we proposed an interplay of genes and signaling 

pathways that lead to the fibrosis observed in heart failure. Upregulation of ACE leads to 

increased ANG II synthesis by the renin angiotensin aldosterone system, which in turn 

activates some of the same pathways as TNF-α. ANG II receptors and TGFβ receptors 

exist in cardiomyocytes and fibroblasts and TGFβ is upregulated by ANG II binding AT1 

receptor. TNF-α and TGFβ appear to work independently of each other to alter the 

balance of MMPs and TIMPS as seen in Figure 9. TGFβ expression is known to be 

profibrotic and to affect collagen deposition. Using the genes identified in the microarray 

analysis of nonfailing and failing hearts as being sex-regulated or exhibiting differential 

expression, we analyzed these genes to further investigate the sex-specific patterns of 

expression of collagen deposition in failing and nonfailing human hearts. 

 ACE expression was sex-differentially expressed in human nonfailing and failing 

human hearts according to microarray analysis. We hypothesized that ACE expression 

would be lessened in failing female hearts due to the cardioprotection afforded by 

estrogen. It has been proposed that estrogen may mediate its cardioprotection through 

regulating angiotensin mRNA levels and ACE activity in the RAAS system (57). The 

decreased expression observed in the failing female hearts in comparison to their male 

counterparts may support this proposed mechanism of estrogen cardioprotection in our 

model. Furthermore, by LV location, it was observed that overall ACE expression was 

greater in failing hearts of both sexes in comparison with nonfailing hearts.  Additionally, 

failing male LV2 and female LV1 exhibited the greatest expression levels of ACE. Our 

hypothesis remained that females would exhibit lesser expression of ACE due to 
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cardioprotection; in addition, we expected less fibrosis in the midwall of the females. 

This expectation was met in that the failing LV2 location of the females expressed 1.631 

less of ACE than their male failing LV2 counterparts.  

 COL6α1 expression was previously identified by microarray analysis to be sex-

regulated. Interestingly, COL6α1 expression in our failing male hearts was slightly less 

than that of our nonfailing male hearts (1.7891 vs 1.4661). Also of note was that 

expression in our nonfailing female hearts was nearly 2-fold less than our nonfailing male 

hearts (0.9311). Finally, failing female expression was less than nonfailing expression of 

the males but greater than the failing expression of the males (1.5103). By LV location, it 

was observed that overall COL6α1 expression was greater in failing hearts of both sexes 

in comparison to nonfailing hearts, with the exceptions of the LV1 location of female 

hearts and the LV2 location of the males.  Additionally, male nonfailing LV2 and female 

failing LV3 exhibited the greatest expression levels of COL6α1. Our hypothesis was that 

females would exhibit lessened expression of COL6α1 due to cardioprotection and thus 

less collagen deposition in the midwall. Failing females did exhibit lesser expression of 

COL6α1 than their male counterparts. However, nonfailing locations exhibited greater 

COL6α1 expression at the nonfailing male LV2 and female LV1 locations than their 

failing counterparts. The failing LV2 location of the females expressed 0.5757 less of 

COL6α1 than their male failing LV2 counterparts. ANOVA statistical analysis did not 

indicate statistical significance in our findings. We hypothesized that collagen deposition 

in fibrosis would lead to greater expression of COL6α1 in our male failing heart samples 

than our female failing heart samples. Our findings do not support that COL6α1 is sex-

regulated in our model. Further investigation is necessary to determine if collagen is sex-



 

 

87 

 

regulated as we previously concluded through microarray analysis, especially since 

estrogen is suspected to impact the pathway of genes leading to collagen deposition in 

fibrosis and subsequent heart failure.  

TNFαIP1 expression was determined by microarray analysis to be sex-regulated. 

Additionally, the role of the TNF-α cytokine family in fibrosis has been identified. Our 

results indicated that expression of TNFαIP1 was decreased in female hearts in 

comparison with male hearts of both nonfailing and failing conditions. Furthermore, 

TNFαIP1 was upregulated in the failing hearts of both sexes in comparison with the 

nonfailing hearts. Statistical analysis did not indicate that these differences were 

significant.  We hypothesized that TNFαIP1 expression would be less in failing female 

hearts due to the cardioprotection afforded by estrogen. Estrogen is known to be anti-

inflammatory and may suppress the TNF-α pathway. It is also known that estrogen 

regulates components of the RAAS pathway, which has some crossover points with the 

TNF-α pathway (46 & 57). The decreased expression observed in the failing female 

hearts in comparison to their male counterparts may support this proposed mechanism of 

estrogen’s cardioprotection in our model. By LV location, it was observed that overall 

TNFαIP1 expression was greater in failing hearts of both sexes in comparison with 

nonfailing hearts except LV1 males.  Additionally, failing LV1s of both sexes exhibited 

the greatest expression levels of TNFαIP1. We hypothesized that females would exhibit 

lessened expression of TNFαIP1 due to cardioprotection and lesser fibrosis in the 

midwall of the females. This hypothesis was observed in that the failing LV2 location of 

the females expressed .6906 less of TNFαIP1 than their male failing LV2 counterparts. 

Interestingly, TNFαIP1 expression was lessened in the female LV2 location of the heart 
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contradicting our hypothesis. Additionally, other locations of female hearts exhibited 

more pronounced differences in expression compared to the LV2 location. Further 

investigation is necessary to determine if TNFαIP1 is sex-regulated as we previously 

concluded through microarray analysis. 

Central to this thesis is that TGFβ family members are reported as key 

upregulated components in the signaling that results in LV remodeling in animal models 

of pressure overload and human patients with aortic valve stenosis (6). Overexpression of 

TGFβ leads to collagen deposition, increased myocardial stenosis, fibrosis, and diastolic 

dysfunction;  however, a certain baseline level is required to maintain cardiac structure 

and protect against cardiac dilation in cases of pressure overload (32). In our human 

study of heart failure, we hypothesized that profibrotic and prohypertrophic TGFβ family 

signaling would be decreased in our failing female hearts because of the cardioprotection 

afforded to females. Female failing heart expression in our study was less than that of 

male expression (1.2682 vs. 1.3289). We expected this difference to be more pronounced 

because of the cardioprotection females are afforded. Of interest, nonfailing females 

exhibited the greatest expression in both sexes in failing and nonfailing groups. (1.4626). 

The LV2 location of the heart was hypothesized to undergo the most profibrotic 

expression in our human study. Results of our TGFβ PCR indicated that male LV2 and 

female LV3 exhibited the greatest expression of TGFβ. The female LV2 location 

expression was 0.7235 while the male LV2 location expression was 0.8636. Female LV2 

did have less TGFβ expression as hypothesized and therefore this location may have 

undergone less fibrosis than the male LV2 location, potentially due to estrogen 

cardioprotection. Statistical analysis did not indicate significance in these findings.  
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Chapter IV 

 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 
Our aims and working hypotheses sought to investigate the molecular basis of sex 

specific effects on hypertrophy and heart failure. While much work has been done 

regarding sex-specific differences in cardiac remodeling, a complete understanding of the 

mechanism underlying these differences in relation will require further study. We sought 

to test a mechanistic hypothesis that sex differences in the development of cardiac 

hypertrophy and heart failure are regulated by differential expression of genes important 

in regulation by sex specific factors, specifically TGFβ. Furthermore, the human study 

sought to establish whether expression of genes regulating collagen deposition exhibit 

sex-biased expression. Our mouse model, although overall a successful model of cardiac 

hypertrophy, did not demonstrate sex differences.  Cardiac hypertrophy markers were 

shown to be regulated by treatment with ANG II, and TGFΒ family members were 

regulated by both sex and treatment. In our human study, expression of genes known to 

promote fibrosis deposition was higher in failing vs non-failing hearts. Additionally, the 

greatest expression of profibrotic genes were detected in the midwall of failing hearts; the 

expression patterns hint at sex differential expression of profibrotic genes, with greater 

expression of profibrotic genes in male patients. Estrogen, a sex-specific factor, may be 

playing a role in the sex-specific expression of profibrotic genes. Therefore, establishing 

the role of estrogen as a sex-specific factor will better determine whether and why 

hormone replacement therapy is beneficial. This research is significant because the 

negative and questionable effects of HRT in postmenopausal women make it imperative 
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to understand the molecular mechanism of estrogen’s beneficial effects in order to 

develop new therapies without activating pathways that could lead to negative side 

effects (5). Future directions for this research include expanding on the human study of 

cardiac hypertrophy with a larger cohort of non-failing and failing heart samples, 

increasing our studies’ parameters to include more patient health information, 

investigating estrogenic regulation of miRNAs implicated in cardiac hypertrophy and 

heart failure, and increasing the number of genes in our RT-PCR analysis to include a 

wider panel of agents that cause collagen deposition in order to more fully define sex 

differences in heart failure, specifically fibrosis. Our research has direct implications in 

the study of human cardiovascular disease and is of particular interest in our community 

which exhibits an extremely high incidence of cardiovascular disease. 
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