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Abstract

We establish the existence of and then compare smallest eigenvalues for the frac-

tional boundary value problems Dα
0+u + λ1p(t)u = 0 and Dα

0+u + λ2q(t)u = 0,

0 < t < 1, satisfying boundary conditions when n− 1 < α ≤ n. First, we consider

the case when 0 < β < n−1, satisfying u(i)(0) = 0, i = 0, 1, . . . , n−2, Dβ
0+u(1) = 0.

Then, the case when β = 0 is considered, satisfying the conditions u(i)(0) = 0,

i = 0, 1, . . . , n− 2, u(1) = 0.
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Chapter 1

Introduction

In the next two sections, we will follow authors Miller and Ross in their

book, ”An Introduction to the Fractional Calculus and Fractional Differential

Equations” [35].

1.1 History of Fractional Calculus

Taking an nth order derivative when n is a positive integer can be easily

understood and visualized with many types of functions. However, the question

that is a bit more troubling is what if “n be 1/2?” or any other fraction for

that matter. This exact question was asked by L’Hôpital in 1695. At that time,

Leibniz considered fractional calculus to be a “paradox from which, one day, useful

consequences will be drawn.”[35]

Throughout the years, fractional calculus has intrigued many mathemati-

cians. In 1730, Euler commented that finding fractional derivatives of the form

dnp

dtn
, where p is a function of t and n is a fraction, can be made through inter-

polation instead of continued differentiation such as the case when n is a positive

integer, see [16]. The next year, he was able to extend the relation

dnzp

dzn
=

p!

(p− n)!
zp−n
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to when n is an arbitrary α

dαzp

dzα
=

Γ(p+ 1)

Γ(p− α + 1)
zp−α.

This led Euler to extend the Gamma function for fractional factorial values.

In 1812, Laplace [32] was able to define a fractional derivative by the use of

an integral. Then, in 1819, Lacroix [31] published the first mention of a derivative

of arbitrary order. In his paper, he was able to generalize the case of integer order.

Starting with y = tm, where m is a positive integer, Lacroix developed the nth

derivative

dny

dtn
=

m!

(m− n)!
tm−n

under the condition that m ≥ n. Using Euler’s Gamma function, then

dny

dtn
=

Γ(m+ 1)

Γ(m− n+ 1)
tm−n.

He was then able to answer L’Hôpital’s question from over a century before

to show what happens when n = 1/2 if y = t. His conclusion was that

d1/2y

dt1/2
=

2
√
t√
π
.

Joseph Fourier [17] also made mention of derivatives of arbitrary order by use

of his integral representation of f(t) in 1822. In 1823, Abel [1] was the first math-

ematician to apply the fractional derivative to the solutions of integral equations.

He was able to solve the integral equation

k =

∫ t

0

(t− s)−1/2f(s)ds

by operating on both sides of the equation with
d1/2

dt1/2
to obtain

d1/2

dt1/2
k =
√
πf(t). (1.1)
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It was almost a decade later when Joseph Liouville started contributing to

fractional calculus. His first formula for a fractional derivative,

Dα

∞∑
n=0

cne
ant =

∞∑
n=0

cna
α
ne

ant, α, an > 0,

was able to generalize the derivative of arbitrary rational order α. However, it

restricted the functions under consideration to those of the form
∑∞

n=0 cne
ant.

Liouville’s second formula for a fractional derivative,

Dαt−a =
(−1)αΓ(a+ α)

Γ(a)
t−a−α, a > 0,

restricted the functions under consideration to those of the form t−a. He was also

the first to attempt to solve differential equations with fractional operators.

Because of discrepancies between the formulas of Lacroix and Liouville for

fractional derivatives, William Center [3], in 1848, used the function t0 in order to

show that the two were not equal. Thus, he found

d1/2

dt1/2
t0 =

Γ(1)

Γ(1/2)
t−1/2 =

1√
πt
.

Hence, the question of what the generalized form for a fractional derivative re-

mained. In 1840, De Morgan [6], presented the idea that even though neither

Lacroix nor Liouville defined a generalized form for Dntm, they both may have

defined a formula for a more specific fractional derivative. This was proven to be

true.

As a student, G.F. Bernhard Riemann [38] was able to contribute to frac-

tional integration. However, his work did not get published until after his death

in 1892. His goal was to find a generalized form of a Taylor series, and he was

able to derive

Ivf(t) =
1

Γ(v)

∫ t

c

(t− s)v−1f(s)ds+ Ψ(t),
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where Ψ(t) is a complementary function that Riemann added because of the am-

biguity in the lower limit of integration, c. He was trying to provide a measure of

deviation from the law of exponents

Iuc+I
v
c+f(t) = Iu+v

c+ f(t)

for the case Iuc+I
v
d+f(t) when c 6= d.

Many mathematicians commented on the existence of the complementary

function, including Cayley, Peacock, and Liouville. However, errors among the

mathematicians created confusion and distrust for fractional operators.

1.2 Riemann-Liouville Fractional Calculus

In 1869, N. Ya. Sonin [39] published a paper, “On differentiation with arbi-

trary index,” that first led to what we now call the Riemann-Liouville definition.

He was able to use Cauchy’s integral formula for the nth derivative,

Dnf(z) =
n!

2πi

∫
C

f(ζ)

(ζ − z)n+1
dζ,

to guide him in formulating a generalization for other values of n. When n is an

integer, it is easy to generalize using the Gamma Function. However, when n is

not an integer, the integrand is no longer a pole, but it contains a branch point.

Thus, a branch cut is needed to contour, and this was not included in the work of

Sonin and Letnikov.

Laurent [33] published a paper in 1884 where he was able to use Cauchy’s

integral formula as well, but his contour was an open circuit on a Riemann surface,

instead of the closed circuit of Sonin and Letnikov. This produced the definition

that

Ivc+f(t) =
1

Γ(v)

∫ t

c

(t− s)v−1f(s)ds, v > 0, (1.2)

which used for the integration to an arbitrary order. Notice that when, t > c,
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we have Riemann’s formula but without the complementary function. However,

when c = 0, the most common version occurs which is what we refer to as the

Riemann-Liouville fractional integral,

Iv0+f(t) =
1

Γ(v)

∫ t

0

(t− s)v−1f(s)ds, v > 0. (1.3)

A sufficient condition that (1.3) converges is when

f

(
1

t

)
= O(t1−ε), ε > 0.

Integrable functions with this property are commonly known as functions of Rie-

mann class.

When c = −∞, (1.2) becomes

Iv−∞f(t) =
1

Γ(v)

∫ t

−∞
(t− s)v−1f(s)ds, v > 0. (1.4)

A sufficient condition that this converge is that

f(−t) = O(tv−ε), ε > 0, t→∞. (1.5)

Integrable functions with this property are referred to as functions of Liouville

class. Notice that both formulas found originally by Lacroix and Liouville that

started such debate hold true for (1.2) and (1.4).

If the upper limit of integration is infinity, the Weyl fractional integral

W v
∞f(t) =

1

Γ(v)

∫ ∞
t

(s− t)v−1f(s)ds, v > 0, (1.6)

is used.

Notice we have yet to define the standard definition for Riemann-Liouville

fractional derivatives, Dα
c+ , when α > 0. Let n be the smallest integer greater than
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α. Then, 0 < n− α ≤ 1. Thus, the fractional derivative of f(t) can be defined as

Dα
c+f(t) = Dn

[
In−αc+ f(t)

]
(1.7)

with arbitrary order of α where t > 0. If c = 0, then Dα
0+f(t) defines the standard

Riemann-Liouville fractional derivative.

1.3 u0-Positive Operators and Smallest Eigenval-

ues

In this paper, we will consider three boundary value problems consisting of

fractional differential equations

Dα
0+u+ λ1p(t)u = 0, 0 < t < 1,

Dα
0+u+ λ2q(t)u = 0, 0 < t < 1;

the first, for 1 < α ≤ 2 with boundary conditions u(0) = Dβ
0+u(1) = 0; the second,

for n−1 < α ≤ n where n is a natural number, with boundary conditions u(i)(0) =

0, i = 0, 1, . . . , n− 2, Dβ
0+u(1) = 0; and the last, also for n− 1 < α ≤ n, satisfying

the boundary conditions u(i)(0) = 0, i = 0, . . . , n − 2, u(1) = 0. Boundary value

problems are unique in that they may have no solutions, infinitely many solutions,

or a unique solution. The real numbers λ1 and λ2 such that these boundary value

problems yield a nontrivial solution are called eigenvalues.

The purpose of this paper is to show the existence of smallest eigenvalues

by using the theory of u0-positive operators with respect to a cone in a Banach

space. Then, a comparison of those eigenvalues can be made. The technique for

showing the existence and then comparing these smallest eigenvalues involves the

application of sign properties of the Green’s function for the specified boundary

value problem, followed by the application of u0-positive operators with respect
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to a cone in a Banach space. These applications are presented in books by Kras-

nosel’skii [29] and by Krein and Rutman [30].

These cone-theoretic techniques have been used by many authors to study

the existence of smallest eigenvalues of ordinary boundary value problems. See

[2, 4, 5, 11, 12, 13, 14, 18, 19, 20, 21, 23, 24, 25, 26, 34, 36, 37, 40, 41]. Re-

cently, Eloe and Neugebauer [15] developed a method for showing the existence of

and comparing smallest eigenvalues for fractional boundary value problems. This

method has been used in a few papers [7, 8, 9, 10, 22, 28, 42]. Here, we look to ex-

tend the results to a fractional boundary value problem with fractional boundary

conditions.
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Chapter 2

Smallest Eigenvalues of a Fractional

Boundary Value Problem

2.1 Introduction to Problem

Let α and β be real numbers with 1 < α ≤ 2 and 0 < β < 1. We will

consider the eigenvalue problems

Dα
0+u+ λ1p(t)u = 0, 0 < t < 1, (2.1)

Dα
0+u+ λ2q(t)u = 0, 0 < t < 1, (2.2)

satisfying the boundary conditions

u(0) = Dβ
0+u(1) = 0, (2.3)

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville fractional derivatives, and

p(t) and q(t) are continuous nonnegative functions on [0, 1], where neither p(t) nor

q(t) vanishes identically on any nondegenerate compact subinterval of [0, 1]. In this

paper, we will show the existence of smallest eigenvalues (2.1),(2.3) and (2.2),(2.3).

Assuming p(t) ≤ q(t), we will then compare these smallest eigenvalues.
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2.2 Preliminary Definitions and Theorems

Definition 2.1. For 0 < t <∞, the Gamma Function is defined as

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Notice that Γ satisfies the following properties:

(i) Γ(x+ 1) = xΓ(x),

(ii) Γ(n+ 1) = n!.

Definition 2.2. The α-th Riemann-Liouville fractional derivative of the function

u : [0, 1]→ R, denoted Dα
0+u, is defined as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds,

provided the right-hand side exists.

For 1 < α ≤ 2, the Riemann-Liouville fractional derivative we consider

Dα
0+u(t) =

1

Γ(2− α)

d2

dt2

∫ t

0

(t− s)2−α−1u(s)ds

=
1

Γ(2− α)

d2

dt2

∫ t

0

(t− s)1−αu(s)ds.

Definition 2.3. Let B be a Banach space over R. A closed nonempty subset P

of B is said to be a cone provided the following:

(i) αu+ βv ∈ P , for all u, v ∈ P and all α, β ≥ 0, and

(ii) u ∈ P and −u ∈ P implies u = 0.

Definition 2.4. A cone P is solid if the interior, P◦ of P is nonempty. A cone

P is reproducing if B = P − P ; i.e., given w ∈ B, there exist u, v ∈ P such that

w = u− v.

Remark 2.1. Krasnosel’skii [29] proved that every solid cone is reproducing.
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Cones generate a natural partial ordering on a Banach space.

Definition 2.5. Let P be a cone in a real Banach space B. If u, v ∈ B, say that

u ≤ v with respect to P if v − u ∈ P . If both M,N : B → B are bounded linear

operators, say M ≤ N with respect to P if Mu ≤ Nu for all u ∈ P .

Definition 2.6. A bounded linear operator M : B → B is u0-positive with respect

to P if there exists u0 ∈ P\{0} such that for each u ∈ P\{0}, there exist k1(u) > 0

and k2(u) > 0 such that k1u0 ≤Mu ≤ k2u0 with respect to P .

The following two results are fundamental to our existence and comparison

results and are attributed to Krasnosel’skii [29]. The proof of Theorem 2.1 can be

found in [29], and the proof of Theorem 2.2 is provided by Keener and Travis [27]

as an extension of Krasonel’skii’s results.

Theorem 2.1. Let B be a real Banach space, and let P ⊂ B be a reproducing

cone. Let L : B → B be a compact, u0-positive, linear operator. Then L has an

essentially unique eigenvector in P, and the corresponding eigenvalue is simple,

positive, and larger than the absolute value of any other eigenvalue.

Theorem 2.2. Let B be a real Banach space, and P ⊂ B be a cone. Let both

M,N : B → B be bounded linear operators, and assume that at least one of the

operators is u0-positive. If M ≤ N , then

(1) Mu1 ≥ λ1u1 for some u1 ∈ P and some λ1 > 0;

(2) Nu2 ≤ λ2u2 for some u2 ∈ P and some λ2 > 0, thus λ1 ≤ λ2; and

(3) if λ1 = λ2, then u1 is a scalar multiple of u2.

2.3 Comparison of Smallest Eigenvalues

The Green’s function for −Dα
0+u = 0, (2.3) is given by

G(β; t, s) =


tα−1(1−s)α−1−β−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−1−β

Γ(α)
, 0 ≤ t ≤ s < 1.

(2.4)

10



Therefore, u(t) = λ1

∫ 1

0
G(β; t, s)p(s)u(s)ds if and only if u(t) solves (2.1),(2.3).

Similarly, u(t) = λ2

∫ 1

0
G(β; t, s)q(s)u(s)ds if and only if u(t) solves (2.2),(2.3).

Notice that G(β; t, s) ≥ 0 on [0, 1]× [0, 1) and G(β; t, s) > 0 on (0, 1]× (0, 1).

Define the Banach Space

B = {u : u = tα−1v, v ∈ C[0, 1]},

with the norm

‖u‖ = |v|0,

where |v|0 = sup
t∈[0,1]

|v(t)| denotes the usual supremum norm. Notice that for u ∈ B,

|u|0 = |tα−1v|0 ≤ tα−1‖u‖,

implying

|u|0 ≤ ‖u‖.

Define the linear operators

Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds (2.5)

and

Nu(t) =

∫ 1

0

G(β; t, s)q(s)u(s)ds. (2.6)

Now,

Mu(t) =

∫ 1

0

tα−1(1− s)α−1−β

Γ(α)
p(s)u(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds

−t1−α
∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.
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Notice that, since α > 1 and β < 1,

∣∣∣∣∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds

∣∣∣∣ ≤ |p|0|v|0Γ(α)

∣∣∣∣∫ 1

0

sα−1(1− s)α−1−βds

∣∣∣∣
=
|p|0|v|0
Γ(α)

|B(α, α− β)|

=
|p|0|v|0
Γ(α)

∣∣∣∣Γ(α)Γ(α− β)

Γ(α + β)

∣∣∣∣
=
|p|0|v|0Γ(α− β)

Γ(α + β)

<∞,

where B(a, b) is the Beta Function, defined by

B(a, b) =

∫ 1

0

ua−1(1− u)b−1 =
Γ(a)Γ(b)

Γ(a+ b)
.

Therefore, the first term inside the parentheses is well-defined.

Set

g(t) =


0, t = 0,

t1−α
∫ t

0
(t−s)α−1

Γ(α)
p(s)u(s)ds, 0 < t ≤ 1.

(2.7)

Then, for |p|0 = P and ‖u‖ = L we have,

|g(t)| =
∣∣∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
≤ PLt1−α

∫ t

0

(t− s)α−1sα−1ds

≤ PLt1−αtα−1

∫ t

0

(t− s)α−1ds

=
PLtα

α
,

where
PL

α
≥ 0. So, lim

t→0+
g(t) = g(0) = 0. Thus, g ∈ C[0, 1].

12



Therefore, M : B → B. An argument similar to the one made by Eloe and

Neugebauer in [15] shows that M is compact, and the same can be said for N .

Thus, we have the following result.

Theorem 2.3. The operators M,N : B → B are compact.

Next, we define the cone

P = {u ∈ B | u(t) ≥ 0 for t ∈ [0, 1]}.

Lemma 2.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω := {u = tα−1v ∈ B : u(t) > 0 for t ∈ (0, 1], v(0) > 0}. (2.8)

We will show Ω ⊂ P◦. Let u ∈ β such that u = tα−1v. Since v(0) > 0,

there exists an ε1 > 0 such that v(0) − ε1 > 0. Since v ∈ C[0, 1], there exists an

a ∈ (0, 1) such that v(t) > ε1 for all t ∈ (0, a). So u(t) = tα−1v(t) > ε1t
α−1 for all

t ∈ (0, a). Also, since u(t) > 0 on [a, 1], there exists an ε2 > 0 with u(t)− ε2 > 0

for all t ∈ [a, 1].

Let ε = min{ ε1
2
, ε2

2
}. Define Bε(u) = {û ∈ B : ‖u− û‖ < ε}. Let û ∈ Bε(u).

Then, û = tα−1v̂, where v̂ ∈ C[0, 1]. Now, |û(t) − u(t)| ≤ tα−1‖û − u‖ < εtα−1.

So for t ∈ (0, a), û(t) > u(t) − tα−1ε > tα−1ε1 − tα−1ε1/2 = tα−1ε1/2. Thus,

û(t) > 0 for t ∈ (0, a). Also, |û(t) − u(t)| ≤ ‖û − u‖ < ε. So for t ∈ [a, 1],

û(t) > u(t) − ε > ε2 − ε2/2 > 0. So û(t) > 0 for all t ∈ [a, 1]. Hence, û ∈ P

implying Bε(u) ⊂ P . Therefore, Ω ⊂ P◦.

Lemma 2.2. The bounded linear operators M and N are u0-positive with respect

to P.

Proof. First, we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(t) ≥ 0. Then,
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since G(β; t, s) ≥ 0 on [0, 1]× [0, 1) and p(t) ≥ 0 on [0, 1],

Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds ≥ 0,

for 0 ≤ t ≤ 1. So M : P → P .

Now, let u ∈ P\{0}. There exists a compact interval [a, b] ⊂ [0, 1] such that

u(t) > 0 and p(t) > 0 for all t ∈ [a, b]. Then, since G(β; t, s) > 0 on (0, 1]× (0, 1),

Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds

≥
∫ b

a

G(β; t, s)p(s)u(s)ds

> 0

for 0 < t ≤ 1.

Now,

Mu(t)

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Let

v(t) =

∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Thus, v(0) =
∫ 1

0
(1−s)α−1−β

Γ(α)
p(s)u(s)ds − g(0) > 0, where g(t) was defined as an

equation previously in (2.7). So M : P\{0} → Ω ⊂ P◦.

Now, choose u0 ∈ P\{0}, and let u ∈ P\{0}. So Mu ∈ Ω ⊂ P◦. Choose

k1 > 0 sufficiently small and k2 sufficiently large so that Mu − k1u0 ∈ P◦ and

u0 − 1
k2
Mu ∈ P◦. So k1u0 ≤Mu with respect to P , and Mu ≤ k2u0 with respect

to P . Thus k1u0 ≤ Mu ≤ k2u0 with respect to P and so M is u0-positive with

respect to P . A similar argument shows N is u0-positive.
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Theorem 2.4. Let B, P, M , and N be defined as earlier. Then M (respectively,

N) has an eigenvalue that is simple, positive, and larger than the absolute value

of any other eigenvalue, with an essentially unique eigenvector that can be chosen

to be in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to

P , by Theorem 2.1, M has an essentially unique eigenvector, say u ∈ P , and

eigenvalue Λ with the above properties. Since u 6= 0, we have that Mu ∈ Ω ⊂ P◦

and u = M
(

1
Λ
u
)
∈ P◦.

Theorem 2.5. Let B, P, M , and N be defined as earlier. Let p(t) ≤ q(t) on

[0, 1]. Let Λ1 and Λ2 be the eigenvalues defined in Theorem 2.4 associated with

M and N , respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦.

Then Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if p(t) = q(t) on [0, 1].

Proof. Let p(t) ≤ q(t) on [0, 1]. So, for any u ∈ P and t ∈ [0, 1],

(Nu−Mu)(t) =

∫ 1

0

G(t, s)(q(s)− p(s))u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
(q(s)− p(s))u(s)ds

−t1−α
∫ t

0

(t− s)α−1

Γ(α)
(q(s)− p(s))u(s)ds

)
≥ 0.

So Nu − Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then, by

Theorem 2.2, Λ1 ≤ Λ2.

If p(t) = q(t), then Λ1 = Λ2. Now suppose p(t) 6= q(t). So p(t) < q(t) on

some subinterval [a, b] ⊂ [0, 1].

Let

v(t) =

∫ 1

0

(1− s)α−1−β

Γ(α)
(q(s)−p(s))u(s)ds−t1−α

∫ t

0

(t− s)α−1

Γ(α)
(q(s)−p(s))u(s)ds.

Since p(t) < q(t), then v(0) > 0. So, (N −M)u1 ∈ Ω ⊆ P◦. So there exists ε > 0

15



such that (N −M)u1 − εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.2, Λ1 + ε ≤ Λ2,

or Λ1 < Λ2.

Lemma 2.3. The eigenvalues of (2.1),(2.3) are reciprocals of eigenvalues of M ,

and conversely. Similarly, eigenvalues of (2.2),(2.3) are reciprocals of eigenvalues

of N , and conversely.

Proof. Let Λ be an eigenvalue of M with corresponding eigenvector u(t). Notice

that

Λu(t) = Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds,

if and only if

u(t) =
1

Λ

∫ 1

0

G(β; t, s)p(s)u(s)ds,

if and only if

Dα
0+u(t) +

1

Λ
p(t)u(t) = 0, 0 < t < 1,

with

u(0) = Dβ
0+u(1) = 0.

So,
1

Λ
is an eigenvalue of (2.1),(2.3), if and only if Λ is an eigenvalue of M .

A similar argument can be made that the reciprocals of eigenvalues of N are

eigenvalues of (2.2),(2.3) and vice versa.

Since the eigenvalues of (2.1),(2.3) are reciprocals of eigenvalues of M and

conversely, and the eigenvalues of (2.2),(2.3) are reciprocals of eigenvalues of N

and conversely, the following theorem is an immediate consequence of Theorems

2.4 and 2.5.

Theorem 2.6. Assume the hypotheses of Theorem 2.5. Then there exists smallest

positive eigenvalues λ1 and λ2 of (2.1),(2.3) and (2.2),(2.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue

of the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2

16



may be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if

p(t) = q(t) for all t ∈ [0, 1].
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Chapter 3

An Extension to a Higher Order

Problem

3.1 The Extension

Now, we will consider the arbitrary case for all fractional derivatives and

show the existence and comparison of these smallest eigenvalues. Since we are

showing the arbitrary case of the case we presented in Chapter 2, we will again

use the techniques Eloe and Neugebauer developed to show the existence and

comparison of smallest eigenvalues for fractional boundary value problems. Thus,

the proofs will be similar to those in Chapter 2.

Let n ∈ N, n ≥ 2. Let α, β be real numbers such that n − 1 < α ≤ n and

0 < β < n− 1. Consider the eigenvalue problems

Dα
0+u+ λ1p(t)u = 0, 0 < t < 1, (3.1)

Dα
0+u+ λ2q(t)u = 0, 0 < t < 1, (3.2)

which satisfy the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . , n− 2, Dβ
0+u(1) = 0, (3.3)

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville derivatives, and p(t) and

q(t) are continuous nonnegative functions on [0, 1], where neither p(t) nor q(t)
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vanishes identically on any nondegenerate compact subinterval of [0, 1]. Using

the preliminary definitions and Theorem 2.1 and Theorem 2.2, we will show the

existence of smallest eigenvalues (3.1),(3.3) and (3.2),(3.3). We will then compare

these smallest eigenvalues under the assumption that p(t) ≤ q(t).

Now, for n− 1 < α ≤ n, the α-th Riemann-Liouville fractional derivative of

the function u : [0, 1]→ R will be defined as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds, (3.4)

provided the right-hand side exists.

3.2 Comparison of Smallest Eigenvalues

The Green’s function for −Dα
0+u = 0, (3.3) is given by

G(β; t, s) =


tα−1(1−s)α−1−β−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−1−β

Γ(α)
, 0 ≤ t ≤ s < 1.

(3.5)

Therefore, u(t) = λ1

∫ 1

(0)
G(β; t, s)p(s)u(s)ds if and only if u(t) solves (3.1),(3.3).

Similarly, u(t) = λ2

∫ 1

0
G(β; t, s)q(s)u(s)ds if u(t) solves (3.2),(3.3). Notice that

G(β; t, s) ≥ 0 on [0, 1]× [0, 1) and G(β; t, s) > 0 on (0, 1]× (0, 1).

Now, define the Banach Space

B = {u : u = tα−1v, v ∈ C[0, 1]},

with the norm

‖u‖ = |v|0,

where |v|0 = sup
t∈[0,1]

|v(t)| denotes the usual supremum norm. Notice that for u ∈ B,

|u|0 = |tα−1v|0 ≤ tα−1‖u‖,
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implying

|u|0 ≤ ‖u‖.

Define the linear operators

Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds (3.6)

and

Nu(t) =

∫ 1

0

G(β; t, s)q(s)u(s)ds. (3.7)

Now,

Mu(t) =

∫ 1

0

tα−1(1− s)α−1−β

Γ(α)
p(s)u(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds

−t1−α
∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.

Notice that, since n− 1 < α ≤ n and 0 < β < n− 1,

∣∣∣∣∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds

∣∣∣∣ ≤ |p|0|v|0Γ(α)

∣∣∣∣∫ 1

0

sα−1(1− s)α−1−βds

∣∣∣∣
=
|p|0|v|0
Γ(α)

|B(α, α− β)|

=
|p|0|v|0
Γ(α)

∣∣∣∣Γ(α)Γ(α− β)

Γ(α + β)

∣∣∣∣
=
|p|0|v|0Γ(α− β)

Γ(α + β)

<∞

since Γ(α− β) ≤ (n− 1)! and Γ(α + β) > (n− 1)!.

Therefore, the first term inside the parentheses is well-defined.
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Set

g(t) =


0, t = 0,

t1−α
∫ t

0
(t−s)α−1

Γ(α)
p(s)u(s)ds, 0 < t ≤ 1.

Then, for |p0| = P , ‖u‖ = L,

|g(t)| =
∣∣∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
≤ PLt1−α

∫ t

0

(t− s)α−1sα−1ds

≤ PLt1−αtα−1

∫ t

0

(t− s)α−1ds

=
PLtα

α
,

where
PL

α
≥ 0. So, lim

t→0+
g(t) = g(0) = 0. Thus, g ∈ C[0, 1]. Therefore, M : B → B.

A similar argument to [15] shows that M is compact. This can also be

applied to N , to show that N is compact.

Theorem 3.1. The operators M,N : B → B are compact.

Next, we define the cone

P = {u ∈ B | u(t) ≥ 0 for t ∈ [0, 1]}.

Lemma 3.1. The cone P is solid in B and hence reproducing.

Proof. Define

Ω := {u = tα−1v ∈ B : u(t) > 0 for t ∈ (0, 1], v(0) > 0} (3.8)

We will show that Ω ⊂ P◦. Since v(0) > 0, there exists an ε1 > 0 such that

v(0) − ε1 > 0. Since v ∈ C[0, 1], there exists an a ∈ (0, 1) such that v(t) > ε1 for
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all t ∈ (0, a). So u(t) = tα−1v(t) > ε1t
α−1 for all t ∈ (0, a). Now, on the interval

[a, 1], u(t) > 0. Thus there exists an ε2 > 0 with u(t)− ε2 > 0 for all t ∈ [a, 1].

Let ε = min{ ε1
2
, ε2

2
}. Define Bε(u) = {û ∈ B : ‖u− û‖ < ε}. Let û ∈ Bε(u).

Then, û = tα−1v̂, where v̂ ∈ C[0, 1]. Now, |û(t) − u(t)| ≤ tα−1‖û − u‖ < εtα−1.

So for t ∈ (0, a), û(t) > u(t) − tα−1ε > tα−1ε1 − tα−1ε1/2 = tα−1ε1/2. Thus,

û(t) > 0 for t ∈ (0, a). Also, |û(t) − u(t)| ≤ ‖û − u‖ < ε. So for t ∈ [a, 1],

û(t) > u(t) − ε > ε2 − ε2/2 > 0. Thus, û(t) > 0 for all t ∈ [a, 1]. Hence, û ∈ P

and thus Bε(u) ⊂ P . Therefore, Ω ⊂ P◦.

Lemma 3.2. The bounded linear operators M and N are u0-positive with respect

to P.

Proof. First, we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(t) ≥ 0. Then since

G(β; t, s) ≥ 0 on [0, 1] × [0, 1) and p(t) ≥ 0 and from the definition u(t) ≥ 0 on

[0, 1],

Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds ≥ 0,

for 0 ≤ t ≤ 1. So M : P → P .

Now, let u ∈ P\{0}. So there exists a compact interval [a, b] ⊂ [0, 1] such

that u(t) > 0 and p(t) > 0 for all t ∈ [a, b]. Then, since G(β; t, s) > 0 on

(0, 1]× (0, 1),

Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds

≥
∫ b

a

G(β; t, s)p(s)u(s)ds

> 0,

for 0 < t ≤ 1.

Now,

Mu(t)

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.
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Let

v(t) =

∫ 1

0

(1− s)α−1−β

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Thus, v(0) =
∫ 1

0
(1−s)α−1−β

Γ(α)
p(s)u(s)ds−g(0) > 0 where g(t) was defined previously.

So M : P\{0} → Ω ⊂ P◦.

Now, choose u0 ∈ P\{0}, and let u ∈ P\{0}. So Mu ∈ Ω ⊂ P◦. Choose

k1 > 0 sufficiently small and k2 sufficiently large so that Mu − k1u0 ∈ P◦ and

u0 − 1
k2
Mu ∈ P◦. So k1u0 ≤ Mu with respect to P and Mu ≤ k2u0 with respect

to P . Thus k1u0 ≤ Mu ≤ k2u0 with respect to P and so M is u0-positive with

respect to P . A similar argument shows N is u0-positive.

Theorem 3.2. Let B, P, M , and N be defined as earlier. Then M (and N) has

an eigenvalue that is simple, positive, and larger than the absolute value of any

other eigenvalue, with an essentially unique eigenvector that can be chosen to be

in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to

P , by Theorem 2.1, M has an essentially unique eigenvector, say u ∈ P , and

eigenvalue Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u =

M
(

1
Λ
u
)
∈ P◦.

Theorem 3.3. Let B, P, M , and N be defined as earlier. Let p(t) ≤ q(t) on

[0, 1]. Let Λ1 and Λ2 be the eigenvalues defined in Theorem 3.2 associated with

M and N , respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦.

Then Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if p(t) = q(t) on [0, 1].

Proof. Let p(t) ≤ q(t) on [0, 1]. So for any u ∈ P and t ∈ [0, 1],

(Nu−Mu)(t) =

∫ 1

0

G(β; t, s)(q(s)− p(s))u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
(q(s)− p(s))u(s)ds

−t1−α
∫ t

0

(t− s)α−1

Γ(α)
(q(s)− p(s))u(s)ds

)
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≥ 0

So Nu−Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then, by Theorem

2.2, Λ1 ≤ Λ2.

If p(t) = q(t), then Λ1 = Λ2. Now suppose p(t) 6= q(t). So p(t) < q(t) on

some subinterval [a, b] ⊂ [0, 1]. Let

v(t) =

∫ 1

0

(1− s)α−1−β

Γ(α)
(q(s)−p(s))u(s)ds−t1−α

∫ t

0

(t− s)α−1

Γ(α)
(q(s)−p(s))u(s)ds.

Since p(t) < q(t), then v(0) > 0. So, (N −M)u1 ∈ Ω ⊆ P◦. So there exists ε > 0

such that (N −M)u1 − εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1, implying

Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.2, Λ1 + ε ≤ Λ2,

or Λ1 < Λ2.

Lemma 3.3. The eigenvalues of (3.1),(3.3) are reciprocals of eigenvalues of M ,

and conversely. Similarly, eigenvalues of (3.2),(3.3) are reciprocals of eigenvalues

of N , and conversely.

Proof. Let Λ be an eigenvalue of M with corresponding eigenvector u(t). Notice

that

Λu(t) = Mu(t) =

∫ 1

0

G(β; t, s)p(s)u(s)ds,

if and only if

u(t) =
1

Λ

∫ 1

0

G(β; t, s)p(s)u(s)ds,

if and only if

Dα
0+u(t) +

1

Λ
p(t)u(t) = 0, 0 < t < 1,

with

u(0) = Dβ
0+u(1) = 0.
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So
1

Λ
is an eigenvalue of (3.1), (3.3), if and only if Λ is an eigenvalue of

M . A similar argument can be made that the reciprocals of eigenvalues of N are

eigenvalues of (3.2), (3.3) and vice versa.

Since the eigenvalues of (3.1), (3.3) are reciprocals of eigenvalues of M and

conversely, and the eigenvalues of (3.2), (3.3) are reciprocals of eigenvalues of

N and conversely, the following theorem is an immediate consequence of Theo-

rems 3.2 and 3.3.

Theorem 3.4. Assume the hypotheses of Theorem 3.3. Then there exist smallest

positive eigenvalues λ1 and λ2 of (3.1), (3.3) and (3.2),(3.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue

of the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2

may be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if

p(t) = q(t) for all t ∈ [0, 1].
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Chapter 4

The Case when β = 0

4.1 A Conjugate Problem

Now, let n−1 < α ≤ n denote a real number. We will consider the eigenvalue

problems

Dα
0+u+ λ1p(t)u = 0, 0 < t < 1, (4.1)

Dα
0+u+ λ2q(t)u = 0, 0 < t < 1, (4.2)

satisfying the boundary conditions

u(i)(0) = 0, i = 0, . . . , n− 2, u(1) = 0, (4.3)

where Dα
0+ and Dβ

0+ are the standard Riemann-Liouville fractional derivatives,

and p(t) and q(t) are continuous nonnegative functions on [0, 1] where neither p(t)

nor q(t) vanishes identically on any nondegenerate compact subinterval of [0, 1].

We will show the existence of smallest eigenvalues (4.1), (4.3) and (4.2), (4.3).

Assuming p(t) ≤ q(t), we will then compare these smallest eigenvalues.

Notice the boundary conditions we consider are different than the previous

two chapters. Here, we examine when β = 0. Thus, the techniques used, although

similar, will differ when looking at the boundary condition when t = 1 since the

Green’s function equals zero at that point.
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4.2 Comparison of Smallest Eigenvalues

The Green’s function for the eigenvalue problem (4.1), (4.3) and (4.2), (4.3)

is given by

G(t, s) =


tα−1(1−s)α−1−(t−s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1−s)α−1

Γ(α)
, 0 ≤ t ≤ s < 1.

(4.4)

Therefore, u(t) = λ1

∫ 1

0
G(t, s)p(s)u(s)ds if and only if u(t) solves (4.1),(4.3).

Similarly, u(t) = λ2

∫ 1

0
G(t, s)q(s)u(s)ds if u(t) solves (4.2),(4.3). Notice that

G(t, s) ≥ 0 on [0, 1]× [0, 1) and G(t, s) > 0 on (0, 1)× (0, 1).

Define the Banach Space

B = {u : u = tα−1v, v ∈ C(1)[0, 1], v(1) = 0},

with the norm

‖u‖ = |v′|0.

Notice that for v ∈ C(1)[0, 1], v(1) = 0, 0 ≤ t ≤ 1, we have that

|v(t)| = |v(t)− v(1)| =
∣∣∣∣∫ t

1

v′(s)ds

∣∣∣∣ ≤ (1− t)|v′|0 ≤ ‖u‖.

Therefore, |v|0 ≤ ‖u‖ = |v′|0, and

|u|0 = |tα−1v|0 ≤ tα−1‖u‖,

implying

|u|0 ≤ ‖u‖.
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Define the linear operators

Mu(t) =

∫ 1

0

G(t, s)p(s)u(s)ds, (4.5)

and

Nu(t) =

∫ 1

0

G(t, s)q(s)u(s)ds. (4.6)

Theorem 4.1. The operators M,N : B → B are compact.

Proof. First, we show M : B → B. Let u ∈ B. So there is a v ∈ C(1)[0, 1] such

that u = tα−1v. Since v ∈ C(1)[0, 1] and p ∈ C[0, 1], let L = |v|0 and P = |p|0.

Now,

Mu(t) =

∫ 1

0

tα−1(1− s)α−1

Γ(α)
p(s)u(s)ds−

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(alpha)
p(s)u(s)ds

)
.

Define

g(t) =


0, t = 0,

t1−α
∫ t

0
(t−s)α−1

Γ(α)
p(s)u(s)ds, 0 < t ≤ 1.

Notice g ∈ C(1)(0, 1]. Now,

|g(t)| =
∣∣∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

∣∣∣∣
=

∣∣∣∣t1−α ∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
≤ PLt1−α

∫ t

0

(t− s)α−1sα−1ds

≤ PLt1−αtα−1

∫ t

0

(t− s)α−1ds

=
PLtα

α
,
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where
PL

α
≥ 0. Thus, lim

t→0+
g(t) = g(0) = 0 and g ∈ C[0, 1]. Also, for t > 0,

|g′(t)| =
∣∣∣∣(1− α)t−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds+ (α− 1)t1−α

∫ t

0

(t− s)α−2

Γ(α)
p(s)u(s)ds

∣∣∣∣
≤
∣∣∣∣(1− α)t−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)sα−1v(s)ds

∣∣∣∣
+

∣∣∣∣(α− 1)t1−α
∫ t

0

(t− s)α−2

Γ(α)
p(s)sα−1v(s)(s)ds

∣∣∣∣
≤ (α− 1)PLt−αtα−1

∫ t

0

(t− s)α−1ds+ (α− 1)PLt1−αtα−1

∫ t

0

(t− s)α−2ds

= (α− 1)PL

(
t−1

∫ t

0

(t− s)α−1ds+

∫ t

0

(t− s)α−2ds

)
= (α− 1)PL

(
tα−1

α
+

tα−1

α− 1

)
=

(
α− 1

α
+ 1

)
PLtα−1.

So, lim
t→0+

g′(t) = 0. Moreover, using the definition of derivative and L’Hôpital’s

rule,

g′(0) = lim
t→0+

g(t)− g(0)

t
= lim

t→0+

g(t)

t
= lim

t→0+
g′(t) = 0.

So g′ ∈ C[0, 1].

Now let

v̂(t) =

∫ t

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Then, v̂(1) = 0. Thus, Mu ∈ B. So, M : B → B. A similar argument can be

made that N : B → B.

Next, we define the cone

P = {u ∈ B | u(t) ≥ 0 for t ∈ [0, 1]}.

Lemma 4.1. The cone P is solid in B and hence reproducing.
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Proof. Define

Ω := {u = tα−1v ∈ B| u(t) > 0, for t ∈ (0, 1), v′(1) < 0} (4.7)

We will show Ω ⊂ P◦. Let u ∈ Ω. Since v(0) > 0, there exists an ε1 > 0 such

that v(0)− ε1 > 0. Since v ∈ C[0, 1], there exists an a ∈ (0, 1) such that v(t) > ε1

for all t ∈ (0, a). Thus, u(t) = tα−1v(t) > ε1t
α−1 for all t ∈ (0, a). Now, since

v′(1) < 0, there exists an ε2 > 0 such that v′(1)+ε2 < 0, implying that −v′(1) > ε2.

Then, by the definition of derivative, lim
t→1−

−v(t) + v(1)

t− 1
> ε2. Since v(1) = 0, then

lim
t→1−

v(t)

1− t
> ε2. Thus, there exists a b ∈ (a, 1) such that for t ∈ (b, 1),

v(t)

1− t
> ε2.

Implying, v(t) > (1− t)ε2. Therefore, u(t) > bα−1(1− t)ε2 for all t ∈ (b, 1). Also,

since u(t) > 0 on [a, b], there exists an ε3 > 0 such that u(t) − ε3 > 0 for all

t ∈ [a, b].

Let ε = min

{
ε1
2
,
bα−1ε2

2
,
ε3
2

}
. Define Bε(u) = {û ∈ B : ‖u − û‖ < ε}. Let

û ∈ Bε(u). Thus, û = tα−1v̂, where v̂ ∈ C(1)[0, 1] with v̂(1) = 0. Now

|û(t)− u(t)| ≤ tα−1‖û− u‖ < εtα−1.

So, for t ∈ (0, a), û(t) > u(t)− tα−1ε > tα−1ε1 − tα−1ε1/2 = tα−1ε1/2. So, û(t) > 0

for t ∈ (0, a). By the Mean Value Theorem, there exists c ∈ (t, 1) such that

v̂(1)− v(1)− v̂(t) + v(t)

1− t
= v̂′(c)− v′(c).

Since v̂(1) = 0 and v(1) = 0, then

∣∣∣∣v(t)− v̂(t)

1− t

∣∣∣∣ = |v̂′(c)− v′(c)| ≤ |v̂′ − v′|0 .

However, ∣∣∣∣u(t)− û(t)

1− t

∣∣∣∣ ≤ ∣∣∣∣v(t)− v̂(t)

1− t

∣∣∣∣ .
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So, |u(t)− û(t)| ≤ (1− t)‖û− u‖ < (1− t)ε, for t ∈ (b, 1). Thus,

û(t) > u(t)− (1− t)ε > bα−1(1− t)ε2 − (1− t)bα−1ε− 2/2 = (1− t)bα−1 > 0.

Therefore, for t ∈ (b, 1), û(t) > 0. Also, |û(t) − u(t)| ≤ ||û − u|| < ε. So for

t ∈ [a, b], û(t) > u(t)− ε > ε3− ε3/2 > 0. So, û(t) > 0 for all t ∈ [a, b]. So, û ∈ P ,

and therefore Bε(u) ⊂ P . Thus, Ω ⊂ P◦.

Lemma 4.2. The bounded linear operators M and N are u0-positive with respect

to P.

Proof. First, we show M : P\{0} → Ω ⊂ P◦. Let u ∈ P . So u(t) ≥ 0. Then since

G(t, s) ≥ 0 on [0, 1]× [0, 1) and p(t) ≥ 0 on [0, 1],

Mu(t) =

∫ 1

0

G(t, s)p(s)u(s)ds ≥ 0,

for 0 ≤ t ≤ 1. So M : P → P .

Now, let u ∈ P\{0}. So there exists a compact interval [a, b] ⊂ [0, 1] such

that u(t) > 0 and p(t) > 0 for all t ∈ [a, b]. Then, since G(t, s) > 0 on (0, 1]×(0, 1),

Mu(t) =

∫ 1

0

G(t, s)p(s)u(s)ds

≥
∫ b

a

G(t, s)p(s)u(s)ds

> 0,

for 0 < t ≤ 1. Now,

Mu(t)

= tα−1

(∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds

)
.
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Let

v(t) =

∫ 1

0

(1− s)α−1

Γ(α)
p(s)u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
p(s)u(s)ds.

Thus, v(0) =
∫ 1

0
(1−s)α−1

Γ(α)
p(s)u(s)ds − g(0) > 0 where g(t) was defined previously

and

v′(1) = (1− α)

(∫ 1

0

(1− s)α−2

Γ(α)
p(s)u(s)ds−

∫ t

0

(1− s)α−1

Γ(α)
p(s)u(s)ds

)
= (1− α)

∫ 1

0

(1− s)α−2

Γ(α)
p(s)u(s) (1− (1− s)) ds

≤ 0.

So M : P\{0} → Ω ⊂ P◦.

Now, choose u0 ∈ P\{0}, and let u ∈ P\{0}. So Mu ∈ Ω ⊂ P◦. Choose

k1 > 0 sufficiently small and k2 sufficiently large so that Mu − k1u0 ∈ P◦ and

u0 − 1
k2
Mu ∈ P◦. So k1u0 ≤ Mu with respect to P and Mu ≤ k2u0 with respect

to P . Thus k1u0 ≤ Mu ≤ k2u0 with respect to P and so M is u0-positive with

respect to P . A similar argument shows N is u0-positive.

Lemma 4.3. The eigenvalues of (4.1),(4.3) are reciprocals of eigenvalues of M ,

and conversely. Similarly, eigenvalues of (4.2),(4.3) are reciprocals of eigenvalues

of N , and conversely.

Proof. Let Λ be an eigenvalue of M with corresponding eigenvector u(t). Notice

that

Λu(t) = Mu(t) =

∫ 1

0

G(t, s)p(s)u(s)ds,

if and only if

u(t) =
1

Λ

∫ 1

0

G(t, s)p(s)u(s)ds,

if and only if

Dα
0+u(t) +

1

Λ
p(t)u(t) = 0, 0 < t < 1,

with

u(i)(0) = u(1) = 0 i = 0, 1, . . . , n− 2.

32



So,
1

Λ
is an eigenvalue of (4.1),(4.3), if and only if Λ is an eigenvalue. A similar

argument can be made that the reciprocals of eigenvalues of N are eigenvalues of

(4.2),(4.3) and vice versa.

Theorem 4.2. Let B, P, M , and N be defined as earlier. Then M (and N) has

an eigenvalue that is simple, positive, and larger than the absolute value of any

other eigenvalue, with an essentially unique eigenvector that can be chosen to be

in P◦.

Proof. Since M is a compact linear operator that is u0-positive with respect to

P , by Theorem 2.1, M has an essentially unique eigenvector, say u ∈ P , and

eigenvalue Λ with the above properties. Since u 6= 0, Mu ∈ Ω ⊂ P◦ and u =

M
(

1
Λ
u
)
∈ P◦.

Theorem 4.3. Let B, P, M , and N be defined as earlier. Let p(t) ≤ q(t) on

[0, 1]. Let Λ1 and Λ2 be the eigenvalues defined in Theorem 4.2 associated with

M and N , respectively, with the essentially unique eigenvectors u1 and u2 ∈ P◦.

Then Λ1 ≤ Λ2, and Λ1 = Λ2 if and only if p(t) = q(t) on [0, 1].

Proof. Let p(t) ≤ q(t) on [0, 1]. So for any u ∈ P and t ∈ [0, 1],

(Nu−Mu)(t) =

∫ 1

0

G(t, s)(q(s)− p(s))u(s)ds

= tα−1

(∫ 1

0

(1− s)α−1−β

Γ(α)
(q(s)− p(s))u(s)ds

−t1−α
∫ t

0

(t− s)α−1

Γ(α)
(q(s)− p(s))u(s)ds

)
≥ 0.

So Nu−Mu ∈ P for all u ∈ P , or M ≤ N with respect to P . Then, by Theorem

2.2, Λ1 ≤ Λ2.

If p(t) = q(t), then Λ1 = Λ2. Now suppose p(t) 6= q(t). So p(t) < q(t) on

some subinterval [a, b] ⊂ [0, 1]. Let
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v(t) =

∫ 1

0

(1− s)α−1

Γ(α)
(q(s)− p(s))u(s)ds− t1−α

∫ t

0

(t− s)α−1

Γ(α)
(q(s)− p(s))u(s)ds.

Then,

v′(1) = (1− α)

∫ 1

0

(1− s)α−2

Γ(α)
(q(s)− p(s))u(s)ds−

∫ 1

0

(1− s)α−1

Γ(α)
.

Since p(t) < q(t), then v(0) > 0 and v′(1) < 0. So, (N−M)u1 ∈ Ω ⊆ P◦. So there

exists ε > 0 such that (N −M)u1 − εu1 ∈ P . So Λ1u1 + εu1 = Mu1 + εu1 ≤ Nu1,

implying Nu1 ≥ (Λ1 + ε)u1. Since N ≤ N and Nu2 = Λ2u2, by Theorem 2.2,

Λ1 + ε ≤ Λ2, or Λ1 < Λ2.

Since the eigenvalues of (4.1), (4.3) are reciprocals of eigenvalues of M and

conversely, and the eigenvalues of (4.2), (4.3) are reciprocals of eigenvalues of N

and conversely, the following theorem is an immediate consequence of Theorems

4.2 and 4.3.

Theorem 4.4. Assume the hypotheses of Theorem 4.3. Then there exist smallest

positive eigenvalues λ1 and λ2 of (4.1), (4.3) and (4.2), (4.3), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue

of the corresponding problems. Also, eigenfunctions corresponding to λ1 and λ2

may be chosen to belong to P◦. Finally, λ1 ≥ λ2, and λ1 = λ2 if and only if

p(t) = q(t) for all t ∈ [0, 1].
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[32] PS Laplace. Théorie analytique des probabilités 3rd edn (paris: Veuve

courcier). 1820.
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3:240–252, 1884.

[34] BA Lawrence and DT Reid. Comparison of eigenvalues for sturm-liouville

boundary value problems on a measure chain. Computers & Mathematics

with Applications, 45(6):1319–1326, 2003.

[35] Kenneth S. Miller and Bertram Ross. An introduction to the fractional cal-

culus and fractional differential equations. A Wiley-Interscience Publication.

John Wiley & Sons, Inc., New York, 1993.

38



[36] Jeffrey T Neugebauer. Methods of extending lower order problems to higher

order problems in the context of smallest eigenvalue comparisons. Electron.

J. Qual. Theory Differ. Equ, 99:1–16, 2011.

[37] JT Neugebauer. Existence and comparison of smallest eigenvalue and ex-

tremal points for a three point boundary value problem. Math. Sci. Res. J,

16:222–233, 2012.

[38] Bernhard Riemann. Versuch einer allgemeinen auffassung der integration und

differentiation. Gesammelte Werke, 62:331–334, 1876.

[39] N Ya Sonin. On differentiation with arbitrary index. Moscow Matem. Sbornik,

6(1):1–38, 1869.

[40] EC Tomastik. Comparison theorems for second order nonselfadjoint differen-

tial systems. SIAM Journal on Mathematical Analysis, 14(1):60–65, 1983.

[41] CC Travis. Comparison of eigenvalues for linear differential equations. In

Proc. Amer. Math. Soc, volume 96, pages 437–442, 1986.

[42] Aijun Yang, Johnny Henderson, and Charles Nelms Jr. Extremal points

for a higher-order fractional boundary-value problem. Electronic Journal of

Differential Equations, 2015(161):1–12, 2015.

39


	Eastern Kentucky University
	Encompass
	January 2016

	Smallest Eigenvalues For A Fractional Boundary Value Problem With A Fractional Boundary Condition
	Angela Koester
	Recommended Citation


	tmp.1487100612.pdf.IxNl5

