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ABSTRACT

The Erdő-Kac Theorem states that, as n tends to infinity, the distribution

of ω(n), the number of distinct prime divisors of n, becomes normally distributed

with mean and variance log log n. Granville and Soundararajan gave a proof of

the Erdős-Kac Theorem that avoided many of the specialized techniques present

in several earlier approaches. This thesis includes considerable detail, prerequisite

theorems, and instructive background in order to provide a self-contained exposi-

tion of the proof of Granville and Soundararajan.
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Chapter 1

Introduction

1.1 An Introduction To The Erdős-Kac Theo-

rem

The Erdős-Kac Theorem is a prime example of the surprising beauty in our

world that only mathematics can discover. The theorem is simple enough that

anyone with a basic understanding of the normal distribution can understand

what the theorem states. However, the Erdős-Kac Theorem is also completely

unintuitive. Its implications are profound and even bizarre in nature. The main

purpose of this thesis is to present a highly accessible and reasonably self-contained

proof of the Erdős-Kac Theorem. By including prerequisite theorems and proofs

and significant detail in the proof of the Erdős-Kac Theorem, this thesis is designed

to be instructive in nature.

Let ω(n) represent the number of unique prime divisors of the natural number

n. For example,

ω(150) = ω(2 · 3 · 52) = 3, and

ω(5148) = ω(22 · 32 · 11 · 13) = 4.

The Erdős-Kac Theorem says that, as n becomes sufficiently large, the distribution
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of ω(n) is closely approximated by the normal distribution. Loosely speaking, the

expected value of ω(n) is given by E [ω(n)] = log log n, and the variance of ω(n) is

given by V [ω(n)] = log log n. Theorem 1.1 below is the Erdős-Kac Theorem [5].

Theorem 1.1. (The Erdős-Kac Theorem)

Let τ, x ∈ R. Let n ∈ N. Let ω(n) be the number of unique prime divisors of n.

Then,

lim
x→∞

1

x
·#

{
n : 3 ≤ n ≤ x, and

ω(n)− log log n√
log log n

≤ τ

}
=

1√
2π

∫ τ

−∞
exp−t2/2 dt.

(1.1)

1.2 The Erdős-Kac Theorem In Action

To best appreciate the implications of the Erdős-Kac Theorem, we consider

some concrete examples. The data for these examples were generated by SAGE

[13], and the graphs and tables were created using Microsoft Excel 2013. The

variances in this section were calculated using the “var.p” command in Microsoft

Excel 2013.

Example 1.1. This first example analyzes the distribution of ω(n) for n satisfying

1000 ≤ n ≤ 1500. The values for ω(n) were generated by entering the code

n = 10^3

while n <= 10^3 + 500:

len(prime_divisors(n))

n += 1

on cloud.sagemath.org [13]. Table 1.1 and Figure 1.1 below summarize the

results. Table 1.2 compares the mean and variance to the values predicted by the

Erdős-Kac Theorem (EKT).

2



Table 1.1: The distribution of ω(n) for 1000 ≤ n ≤ 1500

ω(n) Frequency Relative Frequency

1 74 0.148

2 224 0.448

3 176 0.352

4 26 0.052

Figure 1.1: The distribution of ω(n) for 1000 ≤ n ≤ 1500

Table 1.2: Comparing the mean and variance of ω(n) to the EKT predictions for

1000 ≤ n ≤ 1500

Mean 2.308

Variance 0.613

log log 1500 1.990

As seen in Figure 1.1, the distribution doesn’t look normal, but the relative

frequency is highest for the two central values of ω(n). The EKT claims the normal

distribution more accurately models the distribution of ω(n) as n increases. For

this example, small n were used so the large relative discrepancies between the

mean and variance to log log 1500 are not surprising.
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Example 1.2. This example analyzes the distribution of ω(n) for n satisfying

106 ≤ n ≤ (106 + 103). The values for ω(n) were generated by entering the code

n = 10^6

while n <= 10^6 + 10^3:

len(prime_divisors(n))

n += 1

on cloud.sagemath.org [13]. Table 1.3 and Figure 1.2 below summarize the

results. Table 1.4 compares the mean and variance to the values predicted by the

EKT.

Table 1.3: The distribution of ω(n) for 106 ≤ n ≤ (106 + 103)

ω(n) Frequency Relative Frequency

1 75 0.075

2 268 0.268

3 371 0.371

4 227 0.227

5 58 0.058

6 2 0.002

Figure 1.2: The distribution of ω(n) for 106 ≤ n ≤ (106 + 103)

4



Table 1.4: Comparing the mean and variance of ω(n) to the EKT predictions for

106 ≤ n ≤ (106 + 103)

Mean 2.931

Variance 1.039

log log (106 + 103) 2.626

Figure 1.2 is more representative of the signature “bell curve” of the normal

distribution. Notice that the discrepancy between the mean and log log (106 + 103)

is smaller than in the previous example. However, the variance discrepancy is still

somewhat large.

The following examples demonstrate how the distribution of ω(n) becomes

“more normal” as n increases. Due to computational difficulties, the sample sizes

for the two largest n are somewhat small. Subsequent commentary is not included

in these examples.

Example 1.3. This example analyzes the distribution of ω(n) for n satisfying

1.5× 1012 ≤ n ≤ 1.5× 1012 +104. The values for ω(n) were generated by entering

the code

n = 1.5*10^12

while n <= 1.5*10^12+ 10^4:

len(prime_divisors(n))

n += 1

on cloud.sagemath.org [13]. Table 1.5 and Figure 1.3 below summarize the

results. Table 1.6 compares the mean and variance to the values predicted by the

EKT.

5



Table 1.5: The distribution of ω(n) for 1.5× 1012 ≤ n ≤ 1.5× 1012 + 104

ω(n) Frequency Relative Frequency

1 373 0.0373

2 1648 0.1648

3 3034 0.3034

4 2817 0.2817

5 1578 0.1578

6 458 0.0458

7 83 0.0083

8 9 0.0009

9 1 0.0001

Figure 1.3: The distribution of ω(n) for 1.5× 1012 ≤ n ≤ 1.5× 1012 + 104

Table 1.6: Comparing the mean and variance of ω(n) to the EKT predictions for

1.5× 1012 ≤ n ≤ 1.5× 1012 + 104

Mean 3.534

Variance 1.513

log log (1012 + 104) 3.333

6



Example 1.4. This example analyzes the distribution of ω(n) for n satisfying

2× 1018 ≤ n ≤ 2× 1018+5× 104. The values for ω(n) were generated by entering

the code

n = 2*10^18

while n <= 2*10^18 + 5*10^4:

len(prime_divisors(n))

n += 1

on cloud.sagemath.org [13]. Table 1.7 and Figure 1.4 below summarize the

results. Table 1.8 compares the mean and variance to the values predicted by the

EKT.

Table 1.7: The distribution of ω(n) for 2× 1018 ≤ n ≤ (2× 1018 + 5× 104)

ω(n) Frequency Relative Frequency

1 1191 0.02382

2 5756 0.11512

3 11594 0.23188

4 13880 0.27760

5 10331 0.20662

6 5098 0.10196

7 1668 0.03376

8 394 0.00788

9 63 0.00126

10 6 0.00012

7



Figure 1.4: The distribution of ω(n) for 2× 1018 ≤ n ≤ (2× 1018 + 5× 104)

Table 1.8: Comparing the mean and variance of ω(n) to the EKT predictions for

2× 1018 ≤ n ≤ (2× 1018 + 5× 104)

Mean 4.017

Variance 1.987

log log(2× 1018 + 5× 104) 3.741

Example 1.5. This example analyzes the distribution of ω(n) for n satisfying

1050 ≤ n ≤ (1050 + 5× 103). The values for ω(n) were generated by entering the

code

n = 10^50

while n <= 10^50 + 5*10^3:

len(prime_divisors(n))

n += 1

on cloud.sagemath.org [13]. Due to the computations timing out, the data for

this example were generated 250 points at a time. Table 1.9 and Figure 1.5 below

summarize the results. Table 1.10 compares the mean and variance to the values

predicted by the EKT.

8



Table 1.9: The distribution of ω(n) for 1050 ≤ n ≤ (1050 + 5× 103)

ω(n) Frequency Relative Frequency

1 50 0.0100

2 241 0.0482

3 646 0.1292

4 1061 0.2122

5 1177 0.2354

6 892 0.1784

7 538 0.1076

8 250 0.0500

9 107 0.0214

10 33 0.0066

11 6 0.0012

Figure 1.5: The distribution of ω(n) for 1050 ≤ n ≤ (1050 + 5× 103)

9



Table 1.10: Comparing the mean and variance of ω(n) to the EKT predictions for

for 1050 ≤ n ≤ (1050 + 5× 103)

Mean 5.014

Variance 2.931

log log (1050 + 5× 103) 4.746

It is the hope of the author that the reader better appreciates what the

EKT states. The fact that the distribution of ω(n) can be closely modeled by the

normal distribution with a mean and variance that are calculated with relative

ease is not intuitive. What is perhaps more bizarre is that, for large n, ω(n) is

normally distributed regardless of n, and the methods used to calculated the mean

and variance do not change.

1.3 The Structure Of The Remainder Of This

Thesis

The main result of this thesis is a proof of the Erdős-Kac Theorem that

follows Granville and Soundararajan [6]. Chapter 2 establishes theorems and

lemmas that are needed in proving key results in the following chapters. The

material in Chapter 2 is more broad in nature when compared to Chapters 3

and 4. Chapter 3 focuses on the normal distribution. Understanding the normal

distribution and some of its key properties is necessary to understand the EKT.

Chapter 4 is similar in nature to Chapter 2, except that its scope is more narrow in

nature, focusing on lemmas and theorems typically attributed to number theory.

The two main results in Chapter 4 used in the main proofs of this thesis are

Mertens’ Second Theorem and the gcd-restricted sum lemma. Finally, Chapter 5

provides a proof of the EKT that follows Granville and Soundararajan [6], which

hinges on a proposition. A proof of this proposition, which also follows Granville

and Soundararajan [6], is also included.

10



1.4 Final Introductory Remarks

In 1939, the original proof of the Erdős-Kac Theorem (EKT) utilized sieve

methods, which are difficult and not accessible to a relatively broad audience

(see [5]). For a similar result that also employs sieve methods, see Djanković [4].

In 1953, Delange [3], who was unaware of Erdős and Kac’s discovery, proved the

EKT using moments. In 1955, Halberstam [7], [8] also used moments to generalize

Delange’s work to include a larger set of functions. As mentioned in Granville and

Soundararajan [6], Halberstam’s and others’ works involving moments utilized

the binomial expansion of (ω(n)− log log x)k. Once expanded, several main terms

had to be collected and carefully canceled out. This process was long and tedious,

creating a drudgery of technical calculations.

What makes Granville and Soundararajan’s proof [6] unique is the introduc-

tion of the function fr(n) (see equations (5.3) and (5.52)). By the way fr(n) is

defined, the sum
∑
n≤x

fr(n) is small unless r is square-full. The arising novelty is

that the main term is found without the tedious nature of previous work using

moments.

In comparing Chapter 5 of this thesis to Granville and Soundararajan [6], it

becomes readily apparent that Granville and Soundararajan omitted an immense

amount of detail. The MathSciNet review of Granville and Soundararajan [6]

highlights this lack of detail and their seemingly incorrect handling of the prob-

lem’s history as concerns (for more information, see the review of [6] by Y.-F.S.

Pétermann in Mathematical Reviews). On the other hand, not every paper can be

a full treatise on a topic. In championing brevity, Granville and Soundararajan [6]

possibly made some mistakes in the handling of error terms. This thesis provides

the background necessary and the missing detail needed to follow Granville and

Soundararajan’s proof of the EKT. While the proof is considered easy in a relative

sense when compared to sieve methods and previous works involving moments, it

is still highly involved and technical in nature.

11



Chapter 2

Technical Lemmata

The purpose of this chapter is to state and prove various lemmas and the-

orems that are used in subsequent intermediate proofs and in the proof of the

Erdős-Kac Theorem (EKT).

2.1 The Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality exists in various forms and is one of the

most powerful and useful inequalities in mathematics. Lemma 2.1 is vital in the

proof of Proposition 5.1. Since the EKT only involves real numbers, the proof of

Lemma 2.1 only considers real numbers.

Lemma 2.1. Let {a1, a2, . . . , an} and {b1, b2, . . . , bn} each be finite sequences of

real numbers. Then the Cauchy-Schwarz inequality states

a1b1 + a2b2 + ...+ anbn ≤
√

a21 + a22 + ...+ a2n

√
b21 + b22 + ...+ b2n. (2.1)

Proof. This proof is adapted from Chapter 1 of Steele [12]. The proof proceeds

by induction.

12



Let n = 1. Then,

a1b1 ≤ a1b1. (2.2)

This result is trivial and does not satisfactorily establish the basis step.

Let n = 2. By the non-negativity of the square function, it holds that

0 ≤ (a1b2 − a2b1)
2. (2.3)

Expanding the right-hand side along with algebraic manipulation results in

0 ≤ (a1b2 − a2b1)
2 (2.4)

0 ≤ a21b
2
2 − 2a1b1a2b2 + a22 + b21 (2.5)

2a1b1a2b2 ≤ a21b
2
2 + a22 + b21 (2.6)

a21b
2
1 + 2a1b1a2b2 + a22b

2
2 ≤ a21b

2
1 + a21b

2
2 + a22b

2
1 + a22b

2
2 (2.7)

(a1b1 + a2b2)
2 ≤ (

a21 + a22
) (

b21 + b22
)

(2.8)

a1b1 + a2b2 ≤
√

a21 + a22

√
b21 + b22. (2.9)

Thus the Cauchy-Schwarz inequality is true for n = 2, establishing the basis step.

For the induction step, suppose that

a1b1 + a2b2 + ...+ ambm ≤
√

a21 + a22 + ...+ a2m

√
b21 + b22 + ...+ b2m. (2.10)

Consider n = m + 1. Grouping the first m terms in each sum and applying the

induction hypothesis yields

(a1b1 + a2b2 + ...+ ambm)+am+1bm+1 ≤
√

a21 + a22 + ...+ a2m

√
b21 + b22 + ...+ b2m

+ (am+1bm+1) . (2.11)

13



Define new variables αn and βn in order to apply the result from when n = 2

to inequality (2.11). Let αm and βm be defined by

αn =
√
a21 + a22 + ...+ a2m

βn =
√
b21 + b22 + ...+ b2m.

Inequality (2.11) now takes the form

(a1b1 + a2b2 + ...+ ambm) + am+1bm+1 ≤ αmβm + am+1bm+1. (2.12)

The case when n = 2 established that

αnβn + am+1bm+1 ≤
√

α2
m + a2m+1

√
β2
m + b2m+1. (2.13)

Combining inequalities (2.11) and (2.12) establishes that the Cauchy-Schwarz

Inequality for real numbers holds when n = m+ 1, concluding the proof.

2.2 Abel Partial Summation

Abel partial summation transforms a finite sum of products of two terms

by means of the partial sums of one of those terms. Abel summation is similar

to integration by parts and can be used for expressing a sum that is difficult to

calculate in terms of a more manageable sum. The proofs of the following lemma

and theorem are adapted from Chapter I.0 of Tenenbaum [14]. Abel summation

is employed in the proof of Mertens’ theorems and in steps of various other proofs.

2.2.1 Abel Summation For Discrete Sums

Lemma 2.2. Let {a1, a2, . . . , aN} and {b1, b2, . . . , bN} each be finite sequences of

real numbers. For n ≥ 1, let An =
∑n

m=1 am, where, by definition, A0 = a0 = 0 .

14



Then
N∑

n=1

anbn =
N−1∑
n=1

An (bn − bn+1) + ANbN . (2.14)

Proof. To begin, consider the difference An − An−1. Apply the definition of An

and expand the sums to obtain

An − An−1 =
n∑

m=1

am −
n∑

m=1

am−1 (2.15)

= (a1 − a0) + (a2 − a1) + (a3 − a2) + (a4 − a3) + · · ·+ (an − an−1)

(2.16)

= an − a0 (2.17)

= an. (2.18)

Now consider the sum
N∑

n=1

anbn. Substituting in (2.18) provides

N∑
n=1

anbn =
N∑

n=1

(An − An−1) bn

=
N∑

n=1

Anbn −
N∑

n=1

An−1bn

= ANbN +
N−1∑
n=1

Anbn −
N−1∑
n=1

Anbn+1

= ANbN +
N−1∑
n=1

An (bn − bn+1) .

2.2.2 Abel Summation Involving Continuous Functions

Abel Summation is not relegated strictly to discrete sums. It is applicable to

continuously differentiable functions as well. Abel summation involving continuous

functions is also employed in various proofs throughout the remainder of this

thesis.
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Theorem 2.1. Let {an}∞n=1 be a sequence of complex numbers. Let A(t) =∑
n≤t an, for t > 0. Let b(t) be a continuously differentiable function on the

interval [1, x], where x > 1 is a real number. Then

∑
1≤n≤x

anb(n) = A(x)b(x)−
∫ x

1

A(t)b′(t)dt.

Proof. Since b(t) is continuously differentiable, the sum
∑

1≤n≤x

anb(n) can be ex-

pressed as a Riemann-Stieltjes integral. That is,

∑
1≤n≤x

anb(n) =

∫ x

1−
b(t)dA(t). (2.19)

Therefore, we seek to evaluate the sum by evaluating the integral. Proceed with

integration by parts. Let u = b(t). Then du = b′(t)dt. Let dv = dA(t). Then

v = A(t). The integral in (2.19) can now be evaluated as

∫ x

1−
b(t)dA(t) = A(t)b(t)|x1− −

∫ x

1

A(t)b′(t)dt (2.20)

=

(
A(x)b(x)− lim

c→1−
A(c)b(c)

)
−
∫ x

1

A(t)b′(t)dt (2.21)

= A(x)b(x)−
∫ x

1

A(t)b′(t)dt. (2.22)

Here, lim
c→1−

A(c)b(c) = 0 because lim
c→1−

A(c) = lim
c→1−

∑
n≤c

an = 0. This concludes the

proof.
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2.3 The Binomial Theorem

The Binomial Theorem is used in a few subsequent prerequisite proofs and

heavily in Chapter 5.

Theorem 2.2. Let x, y ∈ R. For all positive integers n,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk,

where

(
n

k

)
denotes

n!

(n− k)!k!
.

Proof. This proof was done independently by the author and verified by consulting

Appendix A of Miller and Takloo-Bighash [9].

The proof proceeds by induction. For n = 1,

1∑
k=0

(
n

k

)
xn−kyk =

(
1

0

)
x1−0y0 +

(
1

1

)
x1−1y1

= x+ y = (x+ y)1.

Thus the Binomial Theorem holds for n = 1.

Suppose that

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

It is useful to note that

(x+ y)n+1 = (x+ y) (x+ y)n . (2.23)
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Applying the induction hypothesis to (2.23) and then distributing yields

(x+ y)n+1 = (x+ y) (x+ y)n (2.24)

= (x+ y)

[
n∑

k=0

(
n

k

)
xn−kyk

]
(2.25)

=
n∑

k=0

(
n

k

)
xn−k+1yk +

n∑
k=0

(
n

k

)
xn−kyk+1. (2.26)

Expanding the sums in (2.26) and factoring by grouping provides

(x+ y)n+1 =
(
n+1
0

)
xn+1 +

[(
n
1

)
+
(
n
0

)]
xny +

[(
n
2

)
+
(
n
1

)]
xn−1y2

+
[(

n
3

)
+
(
n
2

)]
xn−2y3 + ...+

[(
n
n

)
+
(

n
n−1

)]
xyn +

(
n+1
n+1

)
yn+1.

(2.27)

With the exception of the xn+1 and yn+1 terms, notice that all of the co-

efficients are of the form
(
n
k

)
+

(
n

k−1

)
. Expanding the sum and using algebraic

manipulation reveals that

(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!)(n− (k − 1))!
(2.28)

=
n!

k(k − 1)!(n− k)!
+

n!

(k − 1)!(n+ 1− k)(n− k)!
(2.29)

=
n!(n+ 1− k) + n!(k)

k(k − 1)!(n+ 1− k)(n− k)!
(2.30)

=
(n+ 1)n!

k!((n+ 1)− k)!
(2.31)

=
(n+ 1)!

k!((n+ 1)− k)!
(2.32)

=

(
n+ 1

k

)
. (2.33)
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Apply the result in (2.33) to the coefficients in (2.27) to get

(x+ y)n+1 =

(
n+ 1

0

)
xn+1 +

(
n+ 1

1

)
xny +

(
n+ 1

2

)
xn−1y2 + ...

+

(
n+ 1

n− 1

)
x2yn−1 +

(
n+ 1

n

)
xyn +

(
n+ 1

n+ 1

)
yn+1 (2.34)

=
n+1∑
k=0

(
n+ 1

k

)
xn+1−kyk. (2.35)

This completes the induction.

2.4 The Gamma Function

Lemmas 2.3 and 2.4 are used in linking the constant Ck in Proposition 5.1

to the moments of the normal distribution in Theorem 3.5.

Definition 2.1. Let λ be a non-negative real number. The Gamma function

Γ(λ) is defined as

Γ (λ) =

∫ ∞

0

xλ−1e−xdx. (2.36)

Lemma 2.3. For n ∈ N,

Γ (n) = (n− 1)!. (2.37)

Proof. Both proofs in this section are adapted from Appendix G of Arfken and

Hans [2].

If n ∈ N, then

Γ (n) =

∫ ∞

0

xn−1e−xdx. (2.38)

Use integration by parts to express Γ(n) as

Γ (n) =

lim
b→∞

(−1)n e−x
(−xn−1 + (n− 1)xn−2 − (n− 1)(n− 2)xn−3 + ...+ (n− 1)!

) ∣∣b
0
.

(2.39)
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Consider that e0 = 1 and that, for any n ∈ N, lim
x→∞

(
xne−x

)
= 0 to obtain

Γ (n) = (n− 1)!.

Lemma 2.4. For λ ∈ R+,

Γ (λ+ 1) = λΓ (λ) . (2.40)

Proof. For λ ∈ R+, using integration by parts results in

Γ (λ+ 1) =

∫ ∞

0

xλe−xdx

= lim
b→∞

−e−xxλ
∣∣b
0︸ ︷︷ ︸

=0

+λ

∫ ∞

0

xλ−1e−xdx︸ ︷︷ ︸
=Γ(λ)

= λΓ (λ) .

2.5 Big O Notation

A central theme of this thesis is the asymptotic equality of various functions.

The use of big O notation is used frequently. To ensure clarity, this section defines

what is meant by the use of big O notation.

The following definition of big O notation is quoted from the definition found

in section 3.2 of Apostol [1].

Definition 2.2. If g(x) > 0 for all x ≥ a, we write

f(x) = O(g(x)) (2.41)

to mean that the quotient
f(x)

g(x)
is bounded for x ≥ a; that is, there exists a
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constant M > 0 such that

|f(x)| ≤ Mg(x) for all x ≥ a. (2.42)

An equation of the form

f(x) = h(x) +O(g(x)) (2.43)

means that f(x) − h(x) = O(g(x)). Note that f(t) = O(g(t)), for t ≥ a, implies

that ∫ x

a

f(t) dt = O

(∫ x

a

g(t) dt

)
for x ≥ a. (2.44)

Remark 2.1. For clarity of notation, please note that f(x) � g(x) means f(x) =

O(g(x)).

21



Chapter 3

The Normal Distribution

It is not possible to understand the Erdős-Kac Theorem (EKT) without

understanding the normal distribution. This chapter establishes several key defi-

nitions, properties, and functions involving the normal distribution.

3.1 The Normal Distribution Density Function

Acknowledgment. The work in this section is adapted with permission from

Siegrist [11] and expounded upon by the author.

Definition 3.1. A random variable Z is said to have a normal distribution if

it has the probability density function f(z) given by

f(z) =
1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
, (3.1)

where z ∈ R, and σ and μ are both constant.

Remark 3.1. The expected value of Z, denoted as E (Z), is equal to μ, and

the variance of Z, denoted as V (Z), is equal to σ2. Proof that E (Z) = μ and

V (Z) = σ2 is included later in the next section.
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Lemma 3.1. The function f(z), as defined in Definition 3.1, satisfies the proper-

ties of a probability density function: f(z) ≥ 0 for all z such that −∞ ≤ z ≤ ∞,

and

∫ ∞

−∞
f(z)dz = 1.

Proof. Since 1
σ
√
2π

> 0 and exp
[
−1

2

(
z−μ
σ

)2]
> 0 for all z ∈ R, it follows that

f(z) ≥ 0 for all z such that −∞ < z < ∞.

It remains to prove that

∫ ∞

−∞
f(z) dz =

∫ ∞

−∞

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz = 1. (3.2)

In order to make evaluating the integral in (3.2) less cumbersome, let x =

z−μ
σ
. It follows that dx = 1

σ
dz. Note that x → ∞ as z → ∞, and x → −∞ as

z → −∞. The integral can now be rewritten as

∫ ∞

−∞

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz =

∫ ∞

−∞

1

σ
√
2π

exp

[
−1

2
(x)2

]
σdx.

Let

I =

∫ ∞

−∞

1

σ
√
2π

exp

[
−1

2
(x)2

]
σdx (3.3)

=
1√
2π

∫ ∞

−∞
e−

1
2
x2

dx. (3.4)

Then

I2 =

(
1√
2π

∫ ∞

−∞
e−

1
2
x2

dx

)(
1√
2π

∫ ∞

−∞
e−

1
2
x2

dx

)
(3.5)

=

(
1√
2π

∫ ∞

−∞
e−

1
2
x2

dx

)(
1√
2π

∫ ∞

−∞
e−

1
2
y2dy

)
(3.6)

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−

1
2(x2+y2)dxdy. (3.7)

Convert I2 to polar coordinates such that x = r cos θ and y = r sin θ, where
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r ∈ [0,∞) and θ ∈ [0, 2π). Then x2 + y2 = r2, and dxdy = rdrdθ, and

I2 =
1

2π

∫ 2π

0

∫ ∞

0

re−
1
2
r2drdθ. (3.8)

To finish evaluating I2, let u = r2

2
. Then du = rdr. Implementing these substitu-

tions yields

I2 =
1

2π

∫ 2π

0

∫ ∞

0

e−ududθ (3.9)

=
1

2π

∫ 2π

0

1dθ (3.10)

=
1

2π
2π (3.11)

= 1. (3.12)

Since I cannot be negative, and I2 = 1, it follows that I = 1 and the proof is

finished.

3.2 Properties Of The Normal Distribution

Density Function

Acknowledgment. The work in this section is adapted with permission from

Siegrist [11] and expounded upon by the author.

The normal density function, f(z), has some useful identifying properties

that are outlined in the following lemma.
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Lemma 3.2. The normal density function

f(z) =
1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
, z ∈ R,

has the following four properties.

I. f(z) is symmetric about z = μ.

II. f(z) increases and then decreases with its maximum value at z = μ.

III. f(z) has inflection points at z = μ± σ.

IV. lim
z→±∞

f(z) = 0.

Proof.

I. To demonstrate symmetry about z = μ, it must be shown that f(μ + z) =

f(μ− z), for all z ∈ R. Evaluating f(μ+ z) and f(μ− z) results in

f(μ+ z) =
1

σ
√
2π

exp

[
−1

2

(
μ+ z − μ

σ

)2
]
=

1

σ
√
2π

exp

[
−1

2

( z
σ

)2
]
,

and

f(μ− z) =
1

σ
√
2π

exp

[
−1

2

(
μ− z − μ

σ

)2
]
=

1

σ
√
2π

exp

[
−1

2

( z
σ

)2
]
.

II. f ′(z) = − (
z−μ
σ2

)
f(z). Note that f ′(z) > 0 only when z < μ, f ′(z) < 0 only

when z > μ, and f ′(z) = 0 only when z = μ. Therefore f(z) increases over

the interval (−∞, μ), reaches its maximum value at z = μ, and decreases

over the interval (μ,∞).

III. f ′′(z) = f(z)
(
− 1

σ2 +
(z−μ)2

σ4

)
. Note that f ′′(z) = 0 only when z = μ ± σ.

Note that f ′′(z) > 0 over (−∞, μ − σ) ∪ (μ + σ,∞), meaning that f(z) is

concave upward over this union of intervals. Similarly, note that f ′′(z) < 0
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over the interval (μ− σ, μ+ σ) meaning that f(z) is concave downward over

this interval. Therefore, f(z) changes concavity at the points z = μ± σ.

IV. Note that lim
z→−∞

−1

2

(
z − μ

σ

)2

= −∞, and lim
z→∞

−1

2

(
z − μ

σ

)2

= −∞. This

makes it easier to see that lim
z→−∞

exp

[
−1

2

(
z − μ

σ

)2
]
= 0, and

lim
z→∞

exp

[
−1

2

(
z − μ

σ

)2
]
= 0. Thus, lim

z→−∞
f(z) = 0, and lim

z→∞
f(z) = 0.

3.3 The Normal Distribution Function

Acknowledgment. The work in this section is adapted with permission from

Siegrist [11] with details expounded upon by the author.

As claimed in Section 3.1, the expected value of a continuous random variable

Z that has a normal probability distribution is μ, and the variance of Z is σ2. This

section formally defines the expected value and variance of Z and proves the claims

made in Section 3.1. Background definitions and theorems used in proving these

claims are provided.

Definition 3.2. For the continuous random variable Z with the probability den-

sity function f(z), the probability distribution function of Z, denoted as F (z),

is defined as

F (z) =

∫ z

−∞
f(t)dt. (3.13)

Definition 3.3. The expected value of a continuous random variable Z with

probability density function f(z) is

E (Z) =

∫ ∞

−∞
zf(z)dz, (3.14)

provided that the integral exists.
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Definition 3.4. The variance of a continuous random variable Z, with probability

density function f(z) and expected value E (Z) = μ, is

V (Z) = E
[
(Z − μ)2

]
. (3.15)

The following theorem and subsequent lemma are needed in order to prove

Theorem 3.3, which is the result-of-interest in this section.

Theorem 3.1. Let g1(Z), g2(Z), . . . , gk(Z) be functions of the continuous random

variable Z. Then

E (g1(Z) + g2(Z) + · · ·+ gk(Z)) = E (g1(Z)) +E (g2(Z)) + · · ·+E (gk(Z)). (3.16)

Proof. By Definition 3.3,

E (g1(Z)+ g2(Z)+ · · ·+ gk(Z)) =

∫ ∞

−∞
(g1(z)+ g2(z)+ · · ·+ gk(z))f(z) dz, (3.17)

where f(z) is the probability density function of Z. Distributing the f(z) term and

using the fact that
∫
(g1(z)f(z) + g2(z)f(z) + · · ·+ gk(z)) dz =

∫
g1(z)f(z) dz +∫

g2(z)f(z) dz + · · ·+ ∫
gk(z)f(z) dz results in

E (g1(Z) + g2(Z) + · · ·+ gk(Z)) =

∫ ∞

−∞
(g1(z) + g2(z) + · · ·+ gk(z))f(z) dz

=

∫ ∞

−∞
(g1(z)f(z) + g2(z)f(z) · · ·+ gk(z)f(z)) dz

=

∫ ∞

−∞
g1(z)f(z) dz +

∫ ∞

−∞
g2(z)f(z) dz

· · ·+
∫ ∞

−∞
gk(z)f(z) dz

= E (g1(Z)) + E (g2(Z)) + · · ·+ E (gk(Z)).

The following theorem is used briefly in the following corollary. Its brief use

has resulted in the omission of the proof.
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Theorem 3.2. Let Z be a continuous random variable with probability density

function f(z). Let g(Z) be a function of Z. Then the expected value of g(Z) is

E [g(Z)] =

∫ ∞

−∞
g(z)f(z) dz, (3.18)

provided that the integral exists.

Corollary 3.1. A corollary to Theorems 3.1 and 3.2 is that, for continuous ran-

dom variable Z, the variance can be expressed as

V (Z) = E(Z2)− (E(Z))2 . (3.19)

Proof. Begin with the definition of variance (see Definition 3.4) and apply Theorem

3.1 to obtain

V (Z) = E
[
(Z − μ)2

]
(3.20)

= E
[
Z2 − 2μZ + μ2

]
(3.21)

= E (Z2)− E (2μZ) + [E (Z)]2 (3.22)

Recall that μ = E(Z) in the definition of variance. By Theorem 3.2, the E (2μZ)

term equals −2(E(Z))2. This can be shown explicitly as

−E (2μZ) = −
∫ ∞

−∞
2μzf(z) (3.23)

= −2μ

∫ ∞

−∞
zf(z) (3.24)

= −2E (Z)E (Z) (3.25)

= −2(E (Z))2. (3.26)
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Substituting (3.26) into (3.22) results in

V (Z) = E (Z2)− 2[E (Z)]2 + [E (Z)]2 = E (Z2)− [E (Z)]2, (3.27)

which concludes the proof.

The normal distribution function can be utilized to prove the following the-

orem pertaining to the expected value of Z and the variance of Z.

Theorem 3.3. Let Z be a random variable with a normal probability distribution.

Then the expected value of Z is

E (Z) = μ. (3.28)

The variance of Z is

V (Z) = σ2. (3.29)

Proof. The expected value of Z is given by

E (Z) =

∫ ∞

−∞
zf(z) dz =

∫ ∞

−∞
z

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz. (3.30)

Let u = z−μ
σ
. Then du = 1

σ
dz and z = uσ + μ. The integral can now be rewritten

as

1√
2π

∫ ∞

−∞
(uσ + μ)e−

1
2
u2

du

=
1√
2π

(∫ ∞

−∞
uσe−

1
2
u2

du+

∫ ∞

−∞
μe−

1
2
u2

du

)
(3.31)

=
1√
2π

(∫ 0

−∞
uσe−

1
2
u2

du+

∫ ∞

0

uσe−
1
2
u2

du+

∫ ∞

−∞
μe−

1
2
u2

du

)
. (3.32)

In seeking to evaluate the integral in equation (3.3), the result in equation

(3.11) implies that
∫∞
−∞ e−

1
2
u2
du =

√
2π. In order to evaluate the first two inte-

grals, let v = −1
2
u2. Then v → −∞ as u → −∞, v → −∞ as u → ∞, and v → 0
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as u → 0. Further, dv = −u du. Make all of these substitutions to obtain

1√
2π

(∫ 0

−∞
uσe−

1
2
u2

du+

∫ ∞

0

uσe−
1
2
u2

du+

∫ ∞

−∞
μe−

1
2
u2

du

)

=
1√
2π

(
−
∫ 0

−∞
σe−v dv −

∫ −∞

0

σe−v dv + μ
√
2π

)
(3.33)

=
1√
2π

(
−
∫ 0

−∞
σe−v dv +

∫ 0

−∞
σe−v dv + μ

√
2π

)
(3.34)

=
1√
2π

(
0 + μ

√
2π

)
(3.35)

= μ. (3.36)

By Corollary 3.1 the variance V (Z) is given by

V (Z) = E (Z2)− [E (Z)]2 . (3.37)

Theorem 3.2 can be applied to the E (Z2) term, and the preceding result in this

proof, that E (Z) = μ, can be applied to the [E (Z)]2 term. Doing so provides

V (Z) =

∫ ∞

−∞
z2

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz − μ2. (3.38)

The task is to show that the above integral is equal to σ2 + μ2. As before,

let u = z−μ
σ
. Then du = 1

σ
dz and z = uσ + μ. As z → −∞, u → −∞, and as

z → ∞, u → ∞. The integral in (3.38) can now be rewritten as

∫ ∞

−∞
z2

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz

=
1

σ
√
2π

∫ ∞

−∞
(uσ + μ)2 e−

1
2
u2

du (3.39)

=
1

σ
√
2π

∫ ∞

−∞

(
u2σ2 + 2μσ + μ2

)
e−

1
2
u2

du (3.40)

=
1√
2π

(∫ ∞

−∞
u2σ2e−

1
2
u2

du+

∫ ∞

−∞
2μσe−

1
2
u2

du+

∫ ∞

−∞
μ2e−

1
2
u2

du

)
. (3.41)
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With techniques similar to those already used, it can be shown that

∫ ∞

−∞
u2e−

1
2
u2

du =
√
2π, (3.42)∫ ∞

−∞
ue−

1
2
u2

du = 0, (3.43)

and

∫ ∞

−∞
e−

1
2
u2

du =
√
2π. (3.44)

Substitute these three values into (3.41) to obtain

1√
2π

(∫ ∞

−∞
u2σ2e−

1
2
u2

du+

∫ ∞

−∞
2μσe−

1
2
u2

du+

∫ ∞

−∞
μ2e−

1
2
u2

du

)
=

1√
2π

(
σ2
√
2π + 0 + μ2

√
2π

)
(3.45)

= σ2 + μ2 (3.46)

Substitute this result into (3.38) to obtain V (Z) = σ2 + μ2 − μ2 = σ2.

3.4 Moments Of The Normal Distribution Func-

tion

The proofs outlined in Chapter 5 depend on computing moments and com-

paring the results to the moments of the normal distribution function. Theorems

3.5 and 3.6 are the main interest of this section. Subsections 3.4.1 and 3.4.2 com-

bine to provide the reader with an alternate means to establish Theorem 3.5 and

are optional for the reader to consider.

Acknowledgment. The work in this section is adapted with permission from

Siegrist [11] with details expounded on by the author.

Definition 3.5. The nth central moment of continuous random variable Z is

defined as

E [(Z − μ)n] =

∫ ∞

−∞
(z − μ)n f(z)dz. (3.47)

31



The purpose of this section is to establish two theorems involving the nth

central moment of continuous random variable Z.

Theorem 3.4. For n ∈ N,

E
[
(Z − μ)n+1] = nσ2E

[
(Z − μ)n−1] . (3.48)

Proof. Apply Definition 3.3 to E
[
(Z − μ)n+1] and use the fact that xn+1 = xn · x

to obtain

E
[
(Z − μ)n+1] = ∫ ∞

−∞
(z − μ)n+1 f(z)dz (3.49)

=

∫ ∞

−∞
(z − μ)n (z − μ) f(z)dz. (3.50)

Recall that f ′(z) = − (
z−μ
σ2

)
f(z), meaning −σ2f ′(z) = (z − μ)f(z). Making this

substitution provides

∫ ∞

−∞
(z − μ)n (z − μ) f(z)dz = −σ2

∫ ∞

−∞
(z − μ)n f ′(z)dz. (3.51)

Use integration by parts where u = (z− μ)n, du = n (z − μ)n−1 dz, dv = f ′(z) dz,

and v = f(z). The integral in (3.51) can be evaluated as

− σ2

∫ ∞

−∞
(z − μ)n f ′(z) dz = −σ2(z − μ)nf(z)|∞−∞

+ σ2

∫ ∞

−∞
n (z − μ)n−1 f(z) dz. (3.52)

Since f(z) can be differentiated an unlimited number of times, L’Hôpital’s rule

can be applied (with some algebraic manipulation) n + 1 times to show that the

first term equals zero. The remaining integral can be rewritten to obtain

σ2

∫ ∞

−∞
n (z − μ)n−1 f(z)dz = nσ2

∫ ∞

−∞
(z − μ)n−1 f(z)dz (3.53)

= nσ2E
[
(Z − μ)n−1] . (3.54)
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Theorem 3.5. Let Z be a continuous random variable that has a normal proba-

bility distribution. Let E (Z − μ)n represent the nth central moment of Z. Then,

for n ∈ N,

E
[
(Z − μ)2n+1] = 0, (3.55)

and

E
[
(Z − μ)2n

]
= (1 · 3 · · · (2n− 1)) σ2n =

(2n)!σ2n

n!2n
. (3.56)

Remark 3.2. Theorem 3.5 says that all odd-valued central moments of Z are

zero and all even-valued central moments of Z are equal to the right-hand side of

(3.56). This theorem is vital in seeing that the proof of Theorem 5.1 is indeed a

proof of the Erdős-Kac Theorem.

Proof. To prove (3.55) begin with the definition of the central moment of Z.

Replacing n with 2n+ 1 results in

E
[
(Z − μ)2n+1] = ∫ ∞

−∞
(z − μ)2n+1 f(z) dz. (3.57)

Rewrite (3.57) as

E
[
(Z − μ)2n+1] = ∫ μ

−∞
(z − μ)2n+1 f(z) dz +

∫ ∞

μ

(z − μ)2n+1 f(z) dz. (3.58)

By property I of Lemma 3.2, f(z) is symmetric about μ. Therefore,

(−(z − μ))2n+1 = − (z − μ)2n+1 , (3.59)

and ∫ μ

−∞
(z − μ)2n+1 f(z) dz = −

∫ ∞

μ

(z − μ)2n+1 f(z) dz. (3.60)

Thus, E
[
(Z − μ)2n+1] = 0, for n ∈ N.
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To prove (3.56), proceed using induction. Let n = 1. Then (3.55) yields

E
[
(Z − μ)2

]
=

∫ ∞

−∞
(z − μ)2

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz. (3.61)

Let u = z−μ
σ
. Then (z − μ) = σu ,and du = 1

σ
dz. As z → −∞, u → −∞, and as

z → ∞, u → ∞. Make these substitutions into (3.61) to obtain

E
[
(Z − μ)2n

]
=

∫ ∞

−∞
(z − μ)2

1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz (3.62)

=

∫ ∞

−∞
u2σ3 1

σ
√
2π

e−
1
2
u2

du (3.63)

= σ2

∫ ∞

−∞
u2

(
σ

1

σ
√
2π

e−
1
2
u2

)
du (3.64)

= σ2

∫ ∞

−∞
u2Φ(u) du. (3.65)

Here Φ(u) is the standard normal distribution function for the variable u. Thus,∫ ∞

−∞
u2Φ(u)du = E (U2) = V (U)− (E (U))2 = 1− 02 = 1, leaving

E
[
(Z − μ)2

]
= σ2. (3.66)

Noting that 1 =
(2(1))!

(1!)(2!)
allows E

[
(Z − μ)2n

]
to be expressed as

E
[
(Z − μ)2n

]
= σ2 (3.67)

=
(2 (1))!σ2(1)

(1!)(2!)
(3.68)

=
(2n)!σ2n

(n!)(2n)
. (3.69)

Thus, (3.56) holds true for n = 1, which establishes the basis step.
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Now suppose that E
[
(Z − μ)2n

]
=

(2n)!σ2n

(n!)2n
. Let n = k + 1, where k ∈ N.

Applying (3.48) from Theorem 3.4 provides

E
[
(Z − μ)2(k+1)

]
= (2k + 1)σ2E

[
(Z − μ)2k

]
(3.70)

= (2k + 1)σ2 (2k)!σ
2k

(k!)2k
(3.71)

=
(2k + 1)!σ2(k+1)

(k!)2k
· 2(k + 1)

2(k + 1)
(3.72)

=
(2(k + 1))!σ2(k+1)

(k + 1)!2k+1
, (3.73)

which completes the induction.

The following theorem highlights an extremely important property of all

moment-generating functions and is found in section 6.5 of Wackerly et. al [15].

Theorem 3.6. Let mX(t) and mY (t) denote the respective moment-generating

functions of continuous random variables X and Y . If mX(t) and mY (t) both exist

and mX(t) = mY (t) for all values of t, then X and Y have the same probability

distribution.

The key idea in Theorem 3.6 is that each probability distribution has one

and only one unique moment-generating function. The proof of Theorem 3.6 is

extensive and beyond the scope of this thesis; therefore, it is omitted.

3.4.1 Moment-Generating Functions

The following definition and proceeding explanation originate from section

3.9 of Wackerly et. al [15] and are expounded upon by the author.

Definition 3.6. Let Z be a continuous random variable with probability density

function f(z). The moment-generating function m(t) of Z is

m(t) = E (etZ). (3.74)
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Applying Theorem 3.2 to this definition results in

m(t) = E
(
etZ

)
=

∫ ∞

−∞
etzf(z) dz. (3.75)

To gain further insight into the moment-generating function, write the series

expansion of etz. That is,

etz = 1 + tz +
(tz)2

2!
+

(tz)2

3!
+ · · ·+ (tz)n

n!
+ . . . (3.76)

Substitute (3.76) into the integrand in (3.75) to get

m(t) =

∫ ∞

−∞

(
1 + tz +

(tz)2

2!
+

(tz)3

3!
+ · · ·+ (tz)n

n!
+ . . .

)
f(z) dz (3.77)

=

∫ ∞

−∞
f(z) dz +

∫ ∞

−∞
tzf(z) dz +

∫ ∞

−∞

(tz)2

2!
f(z) dz (3.78)

+

∫ ∞

−∞

(tz)3

3!
f(z) dz + · · ·+

∫ ∞

−∞

(tz)n

n!
f(z) dz + . . .

=

∫ ∞

−∞
f(z) dz + t

∫ ∞

−∞
zf(z) dz + t2

∫ ∞

−∞

z2

2!
f(z) dz (3.79)

+ t3
∫ ∞

−∞

z3

3!
f(z) dz + · · ·+ tn

∫ ∞

−∞

zn

n!
f(z) dz + . . .

= 1 + tE (Z) + t2E (Z2) + t3E (Z3) + · · ·+ tnE (Zn) + . . . (3.80)

Each E (Zn) factor is the nth central moment of Z about the origin. Therefore, in

the series expansion of m(t), the nth term has the nth central moment of Z in its

coefficient (starting at n = 0). In other words, m(t) is a function that “contains”

all of the central moments of Z about the origin. The reader may notice that the

nth central moment is equal to the nth derivative of m(t) with respect to t at t = 0.

3.4.2 The Moment-Generating Function Of The Normal

Distribution

Theorem 3.7. Let Z be a continuous random variable with a normal probability

distribution, and with E (Z) = μ and V (Z) = σ2. Then the moment-generating
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function m(t) of Z is

m(t) = exp

[
2

σ2
t2
]
. (3.81)

Proof. The following proof is adapted from section 4.9 of Wackerly et. al [15].

Since Z is a normally distributed continuous random variable, its correspond-

ing probability density function is (see Definition 3.1)

f(z) =
1

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
, (3.82)

where z ∈ R, and μ and σ are both constant.

Substituting (3.82) into the definition of the moment-generating function

(3.74) yields

m(t) = E
(
etZ

)
(3.83)

=

∫ ∞

−∞

etz

σ
√
2π

exp

[
−1

2

(
z − μ

σ

)2
]
dz. (3.84)

=
1

σ
√
2π

∫ ∞

−∞
exp

[
tz − 1

2

(
z − μ

σ

)2
]
dz (3.85)

=
1

σ
√
2π

∫ ∞

−∞
exp

[
2σ2tz

2σ2
− 1

2σ2
(z − μ)2

]
dz (3.86)

=
1

σ
√
2π

∫ ∞

−∞
exp

[
− 1

2σ2

(
(z − μ)2 − 2σ2tz

)]
dz. (3.87)

Let u = z − μ. Then du = dz, and

m(t) =
1

σ
√
2π

∫ ∞

−∞
exp

[
− 1

2σ2

(
u2 − 2σ2t(u+ μ)

)]
du (3.88)

=
1

σ
√
2π

∫ ∞

−∞
exp

[
− 1

2σ2

(
u2 − 2σ2tu− 2σ2μ

)]
du. (3.89)

Next, complete the square of (u2 − 2σ2tu− 2σ2μ) to get

u2 − 2σ2tu− 2σ2μ = u2 − 2σ2tu− 2σ2μ+ σ4t2 − σ4t2 (3.90)

=
(
u− σ2t

)2 − σ4t2. (3.91)

37



Now, (3.89) can be rewritten as

m(t) =
1

σ
√
2π

∫ ∞

−∞
exp

[
− 1

2σ2

((
u− σ2t

)2 − σ4t2
)]

du. (3.92)

Use of some algebraic manipulation and the fact that e−x+y = e−xey provides

m(t) =
1

σ
√
2π

∫ ∞

−∞
exp

[
−(u− σ2t)

2

2σ2
+

σ4t2

2σ2

]
du (3.93)

=
1

σ
√
2π

∫ ∞

−∞
exp

[
−(u− σ2t)

2

2σ2

]
exp

[
σ4t2

2σ2

]
du (3.94)

=
1

σ
√
2π

∫ ∞

−∞
exp

[
−(u− σ2t)

2

2σ2

]
exp

[
σ2t2

2

]
du (3.95)

= exp

[
σ2t2

2

](
1

σ
√
2π

∫ ∞

−∞
exp

[
−(u− σ2t)

2

2σ2

]
du

)
. (3.96)

The portion of (3.96) enclosed in parentheses is the integral of the normal density

function for random variable U (with E (U) = σ2t and V (U) = σ2) over all possible

u, and it is thus equal to 1. Therefore,

m(t) = exp

[
σ2t2

2

]
. (3.97)
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Chapter 4

Number-theoretic Tools

The Erdős-Kac Theorem (EKT) is truly a blend of statistics and number

theory. The two main points of interest in this chapter are Theorem 4.5 and

Lemma 4.1. Theorem 4.5 and Lemma 4.1 are so vital in proving the EKT that

all of the number-theoretic background necessary in their proofs is established

first. The results in the initial sections are needed to prove Mertens’ theorems.

The results immediately following Mertens’ theorems are used to prove the gcd-

restricted sum lemma.

4.1 The p-adic Valuation Of n!

Definition 4.1. For each prime number p, the p-adic valuation vp is defined as

the arithmetic function that associates to each integer n the exponent of p in the

canonical factorization of n.

The following theorem and its corollary are taken from Chapter I.0 of Tenen-

baum [14].
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Theorem 4.1. Let n ≥ 1. For each prime p,

vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
. (4.1)

Proof. This proof was done independently by the author and verified by consulting

Tenenbaum [14].

For n ∈ N, write n! as

n! = n(n− 1)(n− 2)(n− 3)(n− 4) · · · (3)(2)(1). (4.2)

For prime p such that p ≤ n, then at least one term is divisible by p in the

expansion of n! because at least one term must equal p. If the expansion of n! is

written in sequential order as in (4.2) above, then p will divide every pth factor

counting up from 1. That is, every successive pth factor in the expansion of n!

will contain one higher power of p in its respective canonical factorization. The

expression
⌊
n
p

⌋
thus provides the number of terms in the expansion of n! that are

divisible by p.

Similar reasoning can be extended to pk to observe that the expression
⌊

n
pk

⌋
provides the number of terms in the sequential expansion of n! that are divisible

by pk. As k increases, eventually pk will be greater than n and
⌊

n
pk

⌋
= 0.

In the case where p is greater than n,
∞∑
k=1

⌊
n

pk

⌋
= 0, because n/pk will be

less than one, making
⌊

n
pk

⌋
= 0 for all k ∈ N.

The sum
∞∑
k=1

⌊
n

pk

⌋
thus counts the largest value of m (m ∈ N) such that pm

divides n!. In other words,
∞∑
k=1

⌊
n

pk

⌋
is the p-adic valuation of n!.

Example 4.1. A concrete example may prove instructive in this instance. Sup-

pose that we want to evaluate v5(100!). In other words, we are interested in finding

the largest possible α such that 5α divides 100!. We first proceed with a bit of a

brute force method. We know that 5 divides 20 terms in the expansion of 100!,

namely 5, 10, 15, . . . , 100. We also know that 52 divides 4 terms in the expansion
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of 100!, namely 25, 50, 75, 100. We know that 5k, k ≥ 3, divides 0 terms in the

expansion of 100! because 5k > 100. Thus v5(100!) = 20 + 4 = 24. Employing the

result in Theorem 4.1 gives us

v5(100!) =
∞∑
k=1

⌊
100

5k

⌋

=

⌊
100

5

⌋
+

⌊
100

52

⌋
+

⌊
100

53

⌋
+

⌊
100

54

⌋
+ · · ·

= 20 + 4 + 0 + 0 + · · ·

= 24.

Corollary 4.1. Let n ≥ 1. For each prime p,

n

p
− 1 < vp(n!) ≤ n

p
+

n

p(p− 1)
.

Proof. Let n ∈ N. By Theorem 4.1, for any prime p, the smallest possible value

that vp(n!) can take on is
⌊
n
p

⌋
. Using this fact along with �x� > x− 1 results in

⌊
n

p

⌋
>

n

p
− 1. (4.3)

By Theorem 4.1, vp(n!) can be expressed as

vp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+

⌊
n

p4

⌋
+

⌊
n

p5

⌋
+· · · ≤ n

p
+

n

p2
+

n

p3
+

n

p4
+

n

p5
+· · · (4.4)

. Here the the inequality holds because, �x� ≤ x for any positive real number x.

Note that

n

p
+

n

p2
+

n

p3
+

n

p4
+

n

p5
+ · · · = n

p
+

n

p

(
1

p
+

1

p2
+

1

p3
+

1

p4
+ ...

)
︸ ︷︷ ︸

Geometric Series

(4.5)

=
n

p
+

n

p

(
1

(p− 1)

)
. (4.6)
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Combining (4.4) with (4.6) results in

vp(n!) ≤ n

p
+

n

p (p− 1)
. (4.7)

Finally (4.3) and (4.7) can be combined to get that

n

p
− 1 < vp(n!) ≤ n

p
+

n

p (p− 1)
. (4.8)

4.2 A Comparison Of A Sum To An Integral

Before proving Mertens’ First Theorem, Theorem 4.2 below is used to derive

a weak Stirling approximation for log n!. This approximation of log n! plays a

pivotal role in proving Mertens’ First Theorem.

Theorem 4.2. Let f be a real monotonic function on the interval [a, b], with

a, b ∈ Z. Then there exists some real number θ = θ(a, b), 0 ≤ θ ≤ 1, such that

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+ θ(f(b)− f(a)). (4.9)

Proof. This proof is adapted from page 4 of Tenenbaum [14], with more details

explicitly provided by the author.
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Begin by noting that

∑
a<n≤b

f(n) =

∫ b

a

f(t)d�t�. (4.10)

This equation holds true because the sum only adds values of f = f(t) (over

the interval from a to b) when t is an integer. Likewise, the integral term is the

Riemann-Stieltjes integral equivalent of this sum. The integral is weighted against

the floor of t, meaning it will only pick up the integrand when �t� changes value,

which occurs at integer values of t.

Now apply (4.10) to the difference between the discrete sum and the integral,

obtaining ∑
a<n≤b

f(n)−
∫ b

a

f(t)dt =

∫ b

a

f(t)d�t� −
∫ b

a

f(t)dt. (4.11)

Since the integrands are identical, the right-hand side of (4.11) it can be written

∫ b

a

f(t)d�t� −
∫ b

a

f(t)dt =

∫ b

a

f(t)d (�t� − t) . (4.12)

Note that �t� − t = −{t}, where {t} denotes the fractional part of t. Then,

∫ b

a

f(t)d (�t� − t) = −
∫ b

a

f(t)d{t}. (4.13)

Use integration by parts with u = f(t), du = df(t), dv = d{t}, and v = {t} to

obtain

−
∫ b

a

f(t)d{t} = −f(b){b}+ f(a){a}+
∫ b

a

{t}df(t) (4.14)

= −f(b)(0) + f(a)(0) +

∫ b

a

{t}df(t) (4.15)

=

∫ b

a

{t}df(t). (4.16)

Recall that {a} = 0 = {b} because a and b are integers.
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Combining (4.11) and (4.16), we have

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+

∫ b

a

{t}df(t). (4.17)

In Theorem 4.2 f is required to be monotonic. For simplicity of reasoning,

suppose that f is monotonic increasing. Then df(t) is always positive. Consider

the sum that the Riemann-Stieltjes integral in (4.16) represents,

∫ b

a

{t}df(t) = lim
n→∞

n−1∑
i=0

{xi} (f(xi+1)− f(xi)) (4.18)

≤ lim
n→∞

n−1∑
i=0

1 (f(xi+1)− f(xi)) (4.19)

= f(b)− f(a). (4.20)

Remember that 0 ≤ {t} < 1. Combining this result with (4.17) yields

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+ θ (f(b)− f(a)) , (4.21)

where 0 ≤ θ ≤ 1. The result in (4.21) states that the sum and integral will not

differ by a value greater in magnitude than the difference between f(b) and f(a).

Therefore, the value of θ will depend on a and b. That is, θ = θ(a, b).

Corollary 4.2. For integer n ≥ 1,

log n! = n log n− n+ 1 + θ log n, (4.22)

with θ = θ(n) ∈ [0, 1].
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Proof. First, expand n! and use the fact that log(ab) = log a+ log b to get

log n! = log(n(n− 1)(n− 2) · · · 1) (4.23)

= log n+ log(n− 1) + log(n− 2) + · · ·+ log 1 (4.24)

=
∑

1<k≤n

log k. (4.25)

Now apply Theorem 4.2 to (4.25) to obtain

log n! =
∑

1<k≤n

log k (4.26)

=

∫ n

1

log tdt+ θ(log n− log 1) (4.27)

= (t log t− t)|n1 + θ log n (4.28)

= n log n− n− (1 log 1− 1) + θ log n (4.29)

= n log n− n+ 1 + θ log n, (4.30)

concluding the proof.

Example 4.2. To illustrate Corollary 4.2, consider a concrete example. Use of

the software package SAGE [13] confirms that

log(3000!) ≈ 21024.024853.

Further,

3000 log 3000− 3000 + 1 ≈ 21020.102703,

and

log(3000!)− (3000 log 3000− 3000 + 1) ≈ 3.92215

≈ 0.4898788 log 3000.
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4.3 An Upper Bound On The Product Of Primes

The upper bound established in Theorem 4.3 is employed in the proof of

Mertens’ First Theorem.

Theorem 4.3. Let
∏
p≤n

p represent the product of all primes p that are less than

or equal to n. Then, for n ≥ 1,

∏
p≤n

p ≤ 4n. (4.31)

Proof. This proof is adapted from Chapter I.0 of Tenenbaum [14] with details

added by the author.

The proof proceeds by induction on n. However, the proof treats the case

when n is even separately from when n is odd. Therefore, the basis step is estab-

lished for each case. For n = 2,

∏
p≤2

p = 2. (4.32)

Since 2 ≤ 42 = 16, the basis step is established for when n is even.

Because the smallest prime is 2, the product is empty and understood to

equal 1 for n = 1. This trivial case does not establish the basis step. Accordingly,

let n = 3. Then, ∏
p≤3

p = 3 · 2 = 6. (4.33)

Since 6 ≤ 43 = 64, the basis step is established for when n is odd.

Suppose that
∏
p≤n

p ≤ 4n.

Let n be odd, and write n = 2m + 1, where m ∈ N. By the Binomial

Theorem (Theorem 2.2),

22m+1 = (1 + 1)2m+1 =
2m+1∑
k=0

(
2m+ 1

k

)
1n−k1k =

2m+1∑
k=0

(
2m+ 1

k

)
. (4.34)
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Notice that

(
2m+ 1

m

)
=

(2m+ 1)!

m!(m+ 1)!
=

(2m+ 1)!

(m+ 1)!m!
=

(
2m+ 1

m+ 1

)
. (4.35)

In other words, the coefficient
(
2m+1
m

)
appears twice in the binomial expansion of

22m+1. This means that (
2m+ 1

m

)
≤ 1

2

(
22m+1

)
. (4.36)

Using the fact that (m+ 1)! = (m+ 1)m! allows
(
2m+1
m

)
to be expressed as

(
2m+ 1

m

)
=

(2m+ 1)!

(m+ 1)(m!)2
. (4.37)

All of the coefficients of the binomial expansion of 22m+1 are integers, meaning

(m + 1) divides (2m + 1)!. The smallest value that m can take on is 1. When

m = 1,

(2m+ 1)!

(m+ 1)
= 3 > m+ 1. (4.38)

This quotient only increases as m increases. In general, for m ≥ 1,

(2m+ 1)!

m+ 1
> m+ 1. (4.39)

Similarly,
(
2m+1
m

)
= 3 when m = 1, and it also strictly increases as m increases. All

integers greater than or equal to three are divisible by at least one prime number.

The results in (4.38) and (4.39) show that
(
2m+1
m

)
is divisible by a prime number

that is greater than m+ 1. The largest possible prime divisor of

(2m+ 1)! = (2m+ 1)(2m)(2m− 1) . . . (2)(1) (4.40)

is 2m + 1. Therefore,
∏

m+1<p≤2m+1

p divides
(
2m+1
m

)
. The smallest possible prime
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that could divide
(
2m+1
m

)
is 2. This fact and inequality (4.36) combine to give

( ∏
m+1<p≤2m+1

p

)∣∣∣∣∣
(
2m+ 1

m

)
≤ 1

2

(
22m+1

)
. (4.41)

Notice that 22m+1

2
= 22m = 4m. Therefore,

( ∏
m+1<p≤2m+1

p

)∣∣∣∣∣
(
2m+ 1

m

)
≤ 4m. (4.42)

Since
∏

m+1≤p≤2m+1

p divides
(
2m+1
m

)
, then

∏
m+1<p≤2m+1

p ≤ 4m (4.43)

holds as well.

Apply the induction hypothesis to the case n > m+ 1 to obtain

∏
p≤m+1

p ≤ 4m+1. (4.44)

Multiplying (4.43) by (4.44) yields

∏
p≤m+1

p
∏

m+1<p≤2m+1

p ≤ 4m+14m. (4.45)

Observe that ∏
p≤m+1

p
∏

m+1<p≤2m+1

p =
∏
p≤n

p, (4.46)

and

4m+14m = 42m+1 = 4n. (4.47)

Therefore, when n is odd, ∏
p≤n

p ≤ 4n. (4.48)

This concludes the proof for the case when n is odd.
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Let n be even. Let m = n+ 2. Then m is even. If n+ 2 is even, then n+ 2

is not prime and ∏
p≤m

p =
∏

p≤n+2

p =
∏

p≤n+1

p. (4.49)

Since n+ 2 is even, n+ 1 is odd. The theorem for odd numbers has already been

proven. Therefore, ∏
p≤n+2

p =
∏

p≤n+1

p ≤ 4n+1. (4.50)

For n ≥ 1, 4n+1 < 4n+2. Combining this observation along with (4.50) results in

∏
p≤n+2

p ≤ 4n+2. (4.51)

This completes the induction for when n is even and completes the proof.

4.4 Proof Of Mertens’ First Theorem

The prime number theorem asserts that the prime-counting function π(x),

which counts the number of primes less than or equal to x, has an asymptotic

behavior (see Tenenbaum [14], Chapter 1). However, π(x) is not easily analyzed.

Mertens allowed for this asymptotic behavior to be observed through functions

more accessible (easier to analyze efficiently) than π(x), as shown in his first and

second theorems below.

Mertens’ First Theorem establishes a weighted measure for counting prime

numbers. Similar sums, such as that in Mertens’ Second Theorem, are easier to

prove once Mertens’ First Theorem is established.

Theorem 4.4. (Mertens’ First Theorem) For x ≥ 2 and prime p,

∑
p≤x

log p

p
= log x+O(1), (4.52)

where O(1) lies in the open interval (−1− log 4, log 4).

Proof. This proof is adapted from Chapter I.0 of Tenebaum [14] with additional

49



details added by the author.

Let n = �x�. As shown in Corollary 4.2,

log n! = n log n− n+ 1− θ log n, (4.53)

where θ = θn ∈ [0, 1]. Rewrite n! as its corresponding prime factorization. That

is, rewrite n! as n! =
∏m

i=1 p
α1
i , where each unique prime pi divides n!, to obtain

log n! = log(pα1
1 pα2

2 pα3
3 . . . pαm

m ) (4.54)

= log(pα1
1 ) + log(pα2

2 ) + log(pα3
3 ) + · · ·+ log(pαm

m ) (4.55)

= α1 log p1 + α2 log p2 + α3 log p3 + · · ·+ αm log pm. (4.56)

Here, each αi is the pi-adic valuation of n!, denoted by vp(n!). Thus log n! can be

expressed as,

log n! =
∑
p≤n

vp(n!) log p. (4.57)

By Corollary 4.1, we have

log n! <
∑
p≤n

n

p
log p+

∑
p≤n

n

p

log p

(p− 1)
= n

∑
p≤n

log p

p
+ n

∑
p≤n

log p

p(p− 1)
, (4.58)

and

log n! >
∑
p≤n

n

p
log p−

∑
p≤n

1 log p = n
∑
p≤n

log p

p
−
∑
p≤n

log p. (4.59)

First analyze (4.59). By Theorem 4.3,
∏
p≤n

p ≤ 4n. Take the logarithm of

both sides, and use the two properties of logs that

log(p1p2 . . . pn) = log(p1) + log(p2) + . . . log(pn) and log xn = n log x to get

log

(∏
p≤n

p

)
≤ log 4n (4.60)

∑
p≤n

log p ≤ n log 4. (4.61)
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Therefore,

n
∑
p≤n

log p

p
− n log 4 < log(n!) (4.62)

n
∑
p≤n

log p

p
− n log 4 < n log n− n+ 1 + log n (4.63)

n
∑
p≤n

log p

p
− n log 4 < n log n, (4.64)

where (4.64) holds true because n > 1 + log n for all n > 1. Dividing both sides

of (4.64) by n and then adding log 4 provides

∑
p≤x

log p

p
=
∑
p≤n

log p

p
(4.65)

∑
p≤n

log p

p
< log n+ log 4 (4.66)

∑
p≤n

log p

p
≤ log x+ log 4. (4.67)

The result in (4.65) holds because n = �x�. Similarly, the fact that n = �x�
maintains the inequality in going from (4.66) to (4.67).

Since, for each prime p,

log p >
log p

p(p− 1)
and

∑
p≤n

log p ≤ n log 4, (4.68)

it follows that

n
∑
p≤n

log p

p(p− 1)
≤ log 4. (4.69)
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Then, from (4.53) and (4.58), it stands that

n
∑
p≤n

log p

p
+ log 4 ≥ n

∑
p≤n

log p

p
+ n

∑
p≤n

log p

p(p− 1)
> log n! (4.70)

n
∑
p≤n

log p

p
+ log 4 > n log n− n+ 1 (4.71)

∑
p≤n

log p

p
+

log 4

n
> log n− 1 +

1

n
. (4.72)

Since n = �x�, the sum
∑
p≤x

log p

p
is equal to the sum

∑
p≤n

log p

p
. Apply this

observation and further algebraic manipulation to obtain

∑
p≤x

log p

p
> log n+

1

n
− 1− log 4

n
(4.73)

∑
p≤x

log p

p
> log n+

1

n
− (1 + log 4) (4.74)

∑
p≤x

log p

p
≥ log x− (1 + log 4). (4.75)

Since both (4.67) and (4.75) hold true, the theorem follows, and the proof is

finished.

4.5 Proof Of Mertens’ Second Theorem

Mertens’ Second Theorem provides a means of counting primes by weight-

ing them against their own reciprocals. It is similar in nature to Mertens’ First

Theorem but much more useful in the proofs found in Chapter 5.

Theorem 4.5. (Mertens’ Second Theorem) There exists a constant c1 such

that, for x ≥ 2, ∑
p≤x

1

p
= log log x+ c1 +O

(
1

log x

)
. (4.76)

Proof. This proof follows Chapter I.0 of Tenenbaum [14] with the considerable

detail deduced and added by the author.
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First note that

∑
p≤x

1

p
=
∑
p≤x

(
1

p
· log p
log p

)
=
∑
p≤x

(
1

log p
· log p

p

)
. (4.77)

Use (4.77) and Riemann-Stieltjes integration to obtain

∑
p≤x

1

p
=

∫ x

2−

1

log t
d

(∑
p≤t

log p

p

)
. (4.78)

Before proceeding, it is useful to define R(t) by

R(t) ≡
∑
p≤t

log p

p
− log t. (4.79)

This definition of R(t) is convenient because Theorem 4.4 (Mertens’ First The-

orem) provides a good estimate of R(t). That is, according to Theorem 4.4,

R(t) = O(1). In other words, the discrete sum
∑
p≤x

log p

p
is “reasonably close” to

the smooth curve log t.

Employ the definition of R(t) along with the fact that

∑
p≤t

log p

p
=
∑
p≤t

log p

p
− log t+ log t

to evaluate (4.78). Doing so results in

∑
p≤x

1

p
=

∫ x

2−

1

log t
d

(∑
p≤t

log p

p

)
(4.80)

=

∫ x

2−

1

log t
d

(∑
p≤t

log p

p
− log t+ log t

)
(4.81)

=

∫ x

2−

1

log t
d(log t) +

∫ x

2−

1

log t
d

(∑
p≤t

log p

p
− log t

)
(4.82)

=

∫ x

2

1

t log t
dt+

∫ x

2−

1

log t
d(R(t)). (4.83)

Going from (4.81) to (4.82) is allowable since the integrands are the same. In

53



going from (4.82) to (4.83), the definition of R(t) and the fact that d(log t) = 1
t
dt

were used.

First, focus on

∫ x

2

1

t log t
dt. Using a standard u-substitution with u = log t

yields ∫ x

2

1

t log t
dt = log log x− log log 2. (4.84)

Now, focus on

∫ x

2−

1

log t
d(R(t)). Using integration by parts with u = 1

log t
,

du = − 1
t log2(t)

, dv = d(R(t)), and v = R(t) yields

∫ x

2−

1

log t
d(R(t)) =

R(x)

log x
− R(2−)

log 2
+

∫ x

2

R(t)

t log2(t)
dt (4.85)

=
R(x)

log x
− R(2−)

log 2
+

∫ ∞

2

R(t)

t log2(t)
dt−

∫ ∞

x

R(t)

t log2(t)
dt. (4.86)

Here, lim
t→2−

log t = log 2 and
∫ c

a
f(x)dx =

∫ b

a
f(x)dx+

∫ c

b
f(x)dx, (a < b < c), were

used.

In order to make the remainder of the proof easier to follow, proceed with

term-by-term analysis of (4.86). First, note that

R(2−)
log 2

=
1

log 2

(
lim
t→2−

[∑
p≤t

1

p
− log t

])
(4.87)

=
1

log 2
(0− log 2) (4.88)

= −1. (4.89)

Since there are no primes less than 2, lim
t→2−

∑
p≤t

1

p
= 0.
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Next, consider

∫ ∞

2

R(t)

t log2 t
dt. Since R(t) = O(1) is bounded, it’s true for a

positive constant K that |R(t)| ≤ K. Using the comparison test for convergence

results in ∫ ∞

2

|R(t)|
t log2 t

dt ≤ K

∫ ∞

2

1

t log2 t
dt =

K

log 2
< ∞. (4.90)

The integral involving K was evaluated using a u-substitution with u = log t. This

result shows that

∫ ∞

2

R(t)

t log2 t
dt is absolutely convergent and thus finite in value,

allowing it to be “absorbed” into c1 (as seen below).

Finally, consider the difference
R(x)

log x
−
∫ ∞

x

R(t)

t log2 t
dt. It is useful to define

R by R = sup
t≥2−

|R(t)|. Then

∣∣∣∣R(x)

log x
−
∫ ∞

x

R(t)

t log2 t
dt

∣∣∣∣ ≤ R

log x
+R

∫ ∞

x

1

t log2 t
dt (4.91)

≤ R

log x
+

R

log x
(4.92)

≤ 2R

log x
. (4.93)

The integral term was evaluated as before using a u-substitution. From the defi-

nition of R and the bounds on O(1) in (4.4), it follows that

2R

log x
<

2(1 + log 4)

log x
. (4.94)

This pins down the O
(

1
log x

)
term.

Combining the results in (4.84) through (4.94) with (4.83) provides

∫ x

2

1

t log t
dt+

∫ x

2−

1

log t
d(R(t)) = log log x− log log 2− (−1)

+

∫ ∞

2

R(t)

t log2 t
dt+O

(
1

log x

)
. (4.95)
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To finish the proof, let

c1 = 1− log log 2 +

∫ ∞

2

R(t)

t log2 t
dt. (4.96)

4.6 Definitions And Prerequisite Theorems For

A gcd-restricted Sum

Before introducing and proving the lemma of interest (see Lemma 4.1), the

reader is reminded of a few key definitions and necessary theorems.

Definition 4.2. For n ∈ N, The Mőbius function μ(n) is defined by μ(1) = 1

and

μ(n) =

⎧⎪⎪⎨
⎪⎪⎩
(−1)k , n = p1p2 . . . pk, pi distinct primes,

0 otherwise.

Remark 4.1. Notice by this definition that:

μ(n) = 0, if and only if n has one or more square factors,

μ(n) = −1, if n is a product of an odd number of distinct primes to the first power,

and

μ(n) = 1, if n is a product of an even number of distinct primes to the first power.

The following theorem involving μ(n) is needed in proving Theorem 4.7,

which is subsequently needed to prove Lemma 4.1. The proof of this theorem is

adapted from section 2.3 of Apostol [1].

Theorem 4.6. If n ≥ 1, then

∑
d|n

μ(d) =

⌊
1

n

⌋
=

⎧⎪⎪⎨
⎪⎪⎩
1 n = 1,

0 n > 1.

(4.97)
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Proof. If n = 1, then d = 1, and μ(d) = 1 = � 1
n
�. If n > 1, then write n =∏k

i=1 p
α1
i = pα1

1 pα2
2 . . . pαk

k , each pi being a distinct prime factor of n. The only d’s

that contribute a nonzero value to
∑
d|n

μ(d) are d = 1 and any product of distinct

primes present in the canonical factorization of n. The sum can thus be expressed

as ∑
d|n μ(d) = μ(1) + μ(p1) + μ(p2) + · · ·+ μ(pk)

+μ(p1p2) + μ(p2p3) + · · ·+ μ(pk−1pk)

+ · · ·+ μ(p1p2 . . . pk).

(4.98)

Recall that μ(1) = 1 by definition. Further, μ(n) = −1 when n is prime.

Thus, there are
(
k
1

)
terms equal to −1 in the sum. Similarly μ(n) = (−1)2 when

n is the product of two primes. There are
(
k
2

)
terms in the sum of this sort.

Extending this reasoning over the entire sum and applying the binomial theorem

(see Theorem 2.2) results in

∑
d|n

μ(d) = 1 +

(
k

1

)
(−1) +

(
k

2

)
(−1)2 + . . .

(
k

k − 1

)
(−1)k−1 +

(
k

k

)
(−1)k

= (1− 1)k

= 0,

which concludes the proof.

Definition 4.3. The totient function φ(n) counts the number of natural num-

bers a ∈ {1, . . . , n} such that gcd(a, n) = (a, n) = 1. In other words, the totient

function counts the number of natural numbers (up to n) that are relatively prime

to n.

4.6.1 Relating μ(n) And φ(n)

In proving Lemma 4.1, the following theorem is used. The theorem and

subsequent proof in this section are taken from section 2.4 of Apostol [1] with the

details expounded upon by the author.
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Theorem 4.7. If n ≥ 1, then

φ(n) =
∑
d|n

μ(d)
n

d
. (4.99)

Proof. By the definition of φ(n), it follows that

φ(n) =
n∑

k=1

⌊
1

(n, k)

⌋
. (4.100)

Here, (n, k) = gcd(n, k). If (n, k) = 1, then the summation “counts” k as being

relatively prime to n by adding one to the total sum. If (n, k) ≥ 1, then the sum

does not count k as being relatively prime to n and zero is added to the total sum

(because
⌊

1
(n,k)

⌋
= 0 in this case). Applying Theorem 4.6 with (n, k) in place of n

yields

φ(n) =
n∑

k=1

⎛
⎝ ∑

d|(n,k)
μ(d)

⎞
⎠ =

n∑
k=1

∑
d|n
d|k

μ(d). (4.101)

The fact that, provided d | (n, k), then d | n and d | k, was applied.
The stipulation on the second sum in (4.101) that d | n indicates that the

sum is taken over each fixed d that divides n. This sum includes all k in the range

1 ≤ k ≤ n that are multiples of d. Thus, write k = qd, where q is an integer. Then

1 ≤ k ≤ n if and only if 1 ≤ q ≤ n

d
. The result in (4.101) can thus be expressed

as
n∑

k=1

∑
d|n
d|k

μ(d) =
∑
d|n

n/d∑
q=1

μ(d) =
∑
d|n

μ(d)

n/d∑
q=1

1 =
∑
d|n

μ(d)
n

d
, (4.102)

concluding the proof.

4.7 A gcd-restricted Sum

Lemma 4.1 is used in the proof of Proposition 5.1. The result isn’t intu-

itive, and, as shown below, the proof isn’t very straightforward. Granville and

Soundararajan [6] use this lemma without any commentary or mention of it.
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Lemma 4.1. Let r =
∏s

i=1 p
αi
i be the prime factorization of r, and define R as

R ≡ ∏s
i=1 pi. That is, R is the product of all of the prime factors of r to the first

power. Let gcd(n,R) = (n,R) = d. Then

∑
n≤x

(n,R)=d

1 =
( x

R

)
φ

(
R

d

)
+O

(
τ

(
R

d

))
. (4.103)

Proof. Since d = gcd(n,R) = (n,R), there exists an integer m such that n = md.

Similarly, d | R, meaning that R =
(
R
d

)
d. Thus, the indices on the sum on the

left-hand side of (4.103) can be manipulated as

∑
n≤x

(n,R)=d

1 =
∑
md≤x

(md,R)=d

1 (4.104)

=
∑
md≤x

(md,(R/d)d)=d

1 (4.105)

=
∑

m≤x/d
d(m,R/d)=d

1 (4.106)

=
∑

m≤x/d
(m,R/d)=1

1 (4.107)

By similar reasoning used in developing (4.101), (4.107) can be written as

∑
m≤x/d

(m,R/d)=1

1 =
∑

m≤x/d

∑
k|(m,R/d)

μ(k). (4.108)

By the way R is defined, R is square-free, meaning that d must be as well.

If k | (m,R/d), then k must be square-free as well. Similarly, k | m, meaning m

≡ 0 mod k. Thus, the sum in (4.108) be written as

∑
m≤x/d

∑
k|gcd(m,R/d)

μ(k) =
∑

k|(R/d)

μ(k)
∑

m≤x/d
m≡0 mod k

1. (4.109)
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The sum
∑

m≤x/d
m≡0 mod k

1 counts the natural numbers up to
x

d
that are divisible

by k. The exact count of this inner sum is given by
⌊ x

dk

⌋
. Writing

x

dk
instead

of
⌊ x

dk

⌋
introduces an error no larger than

{ x

dk

}
. The inner sum can thus be

replaced by ( x
dk

+O(1)). There are m/k natural numbers divisible by k, going up

to n. Using the fact that m ≤ x

d
and the observations about the inner sum results

in

∑
k|(R/d)

μ(k)
∑

m≤x/d
m≡0 mod k

1 =
∑

k|(R/d)

μ(k)
( x

dk
+O(1)

)
(4.110)

=
x

d

∑
K|(R/d)

μ(k)

k
+

∑
k|(R/d)

μ(k)O(1) (4.111)

=
x

R
φ

(
R

d

)
+O

⎛
⎝ ∑

k|(R/d)

1

⎞
⎠ (4.112)

=
x

R
φ

(
R

d

)
+O

(
τ

(
R

d

))
. (4.113)

In going from (4.111) to (4.112), Theorem 4.7 was used. The error term in (4.111)

can be reduced to the error term in (4.112) because |μ(k)| ≤ 1. The sum in the

error term in (4.112) represents the number of divisors of R/d, which is τ
(
R
d

)
.
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Chapter 5

Proving The Erdős-Kac Theorem

This chapter begins with Theorem 5.1, which is the main result of this the-

sis. Proposition 5.1 is necessary in proving Theorem 5.1. Theorem 5.1 is first

proved while assuming that Proposition 5.1 is true. A proof of Proposition 5.1

follows. The statements of Theorem 5.1 and Proposition 5.1 are from Granville

and Soundararajan [6].

Theorem 5.1. For any natural number k let Ck =
Γ(k + 1)

2k/2Γ
(
k
2
+ 1

) . Then uniformly

for even natural numbers k ≤ (log log x)1/3

∑
n≤x

(ω(n)− log log x)k = Ckx (log log x)
k/2

(
1 +O

(
k3

log log x

))
, (5.1)

and uniformly for odd natural numbers k (log log x)1/3

∑
n≤x

(ω(n)− log log x)k � Ckx (log log x)
k/2 k3/2

√
log log x

. (5.2)

Remark 5.1. In analyzing Propositions 2 and 3 in Granville and Soundararajan

[6] and similar results in Rhoades [10] and Djanković [4], it is believed that the

exponents on the O-term in (5.1) should be adjusted to the values expressed above.

The details of proof of Proposition 5.1 agree with the adjusted exponents as well.

Remark 5.2. The sum in Theorem 5.1 represents the kth central moment of
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ω(n) (see Definition 3.5). The right-hand sides of (5.1) and (5.2) correspond

to kth central moments of the normal distribution (see Theorem 3.5) plus some

reasonably bounded error terms. By Theorem 3.6, probability distributions all

have unique moments. Therefore, (5.1) and (5.2) combine to give the same result

as the Erdős-Kac Theorem.

In proving Theorem 5.1, the following proposition is used. Granville and

Soundararajan [6] claim the novelty of their proof of Theorem 5.1 rests on the

defined function fp(n). This proposition will first be assumed true and used to

deduce Theorem 5.1. The proof of the proposition will then follow.

Proposition 5.1. Let p be prime. Let n ∈ N. Define fp(n) by

fp(n) =

⎧⎪⎪⎨
⎪⎪⎩
1− 1

p
if p | n

−1
p

if p � n.

(5.3)

Let z ≥ 106 be a real number. Then uniformly for even natural numbers k ≤
(log log z)1/3

∑
n≤x

(∑
p≤z

fp(n)

)k

= Ckx (log log z)
k/2

(
1 +O

(
k3

log log z

))
+O

(
3kπ(z)k

)
, (5.4)

and uniformly for odd natural numbers k ≤ (log log z)1/3

∑
n≤x

(∑
p≤z

fp(n)

)k

� Ckx (log log z)
k/2 k3/2

√
log log z

+ 3kπ(z)k. (5.5)

Remark 5.3. In deducing and explicitly writing the details of the proof of Propo-

sition 5.1, the author found that the terms O(2kπ(z)k) and 2kπ(z)k (as found in

Granville and Soundararajan [6]) should be O(3kπ(z)k) and 3kπ(z)k respectively.
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5.1 Proof Of The Erdős-Kac Theorem

Proof. The proof is given in Granville and Soundararajan [6] with several details

omitted. The proof is reproduced in this section with many of the details deduced

and added by the author. The objective is to evaluate
∑
n≤x

(ω(n)− log log x)k for

natural numbers k ≤ (log log)1/3.

First analyze Ck. Using Lemmas 2.3 and 2.4, observe that

Ck =
Γ(k + 1)

2k/2Γ
(
k
2
+ 1

) =
kΓ(k)

2k/2 k
2
Γ
(
k
2

) =
k(k − 1)!

2k/2 k
2

(
k
2
− 1

)
!
=

k!

2k/2
(
k
2

)
!
. (5.6)

The result in (5.6) matches the coefficient of σ2 in Theorem 3.5 for even moments

of the normal distribution by replacing 2n with k. In Theorem 5.1, equation (5.2)

indicates that the odd moments are zero within some reasonably bounded error

term. This matches the result of Theorem 3.5 for odd moments of the normal

distribution. Similarly, comparing (5.1) to Theorem 3.5 (replacing 2n with k)

shows that

E (ω(n)) = log log x, (5.7)

and

V (ω(n)) = log log x. (5.8)

Set z = x1/k, and begin by analyzing the difference ω(n)− log log x. By the

definition of fp(n), for p ≤ z,

∑
p≤z

(
fp(n) +

1

p

)
=

⎧⎪⎪⎨
⎪⎪⎩
1 if p | n

0 if p � n.

(5.9)

In other words, for p ≤ z,

∑
p≤z

(
fp(n) +

1

p

)
= ω(n). (5.10)
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However, it is possible that there are prime divisors of n that are larger than z.

In this case, for p > z,

ω(n) =
∑
p|n
p>z

1. (5.11)

Combining (5.10) and (5.11) gives

ω(n) =
∑
p≤z

(
fp(n) +

1

p

)
+
∑
p|n
p>z

1. (5.12)

Substituting the right-hand side of (5.12) for ω(n) in the difference ω(n) −
log log x and rearranging the terms results in

ω(n)− log log x =
∑
p≤z

(
fp(n) +

1

p

)
+
∑
p|n
p>z

1− log log x (5.13)

=
∑
p≤z

fp(n) +
∑
p|n
p>z

1 +

(∑
p≤z

1

p
− log log x

)
. (5.14)

By Mertens’ Second Theorem (see Theorem 4.5),

− log log x = −
∑
p≤x

1

p
+ c1 +O

(
1

log x

)
. (5.15)

Substituting (5.15) into the right-hand side of (5.12) yields

ω(n) − log log x =
∑
p≤z

fp(n) +
∑
p|n
p>z

1 +

(∑
p≤z

1

p
−
∑
p≤x

1

p
+ c1 +O

(
1

log x

))
.

(5.16)

The objective here is to consider how well
∑
p≤z

fp(n) estimates ω(n) − log log x.

The terms contributing the most significant error are
∑
p|n
p>z

1 and

(∑
p≤z

1

p
−
∑
p≤x

1

p

)
.

Since p > z = x1/k and n ≤ x, then there are at most k such primes p that divide
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n. This means that
∑
p|n
p>z

1 contributes error on the order of O(k). Next observe

that ∑
p≤z

1

p
−
∑
p≤x

1

p
= −

∑
z≤p≤x

1

p
. (5.17)

By Mertens’ Second Theorem, the error introduced by (5.17) is at most on the

order of O(1). Since O(1) � O(k), equation (5.15) can be expressed as

ω(n)− log log x =
∑
p≤z

fp(n) +O(k). (5.18)

Using the result in (5.18), now analyze (ω(n)− log log x)k. Begin with

(ω(n)− log log x)k =

(∑
p≤z

fp(n) +O(k)

)k

. (5.19)

Apply the Binomial Theorem (see Theorem 2.2) with x = ω(n) and y = O(k) to

obtain

(ω(n)− log log x)k =

(∑
p≤z

fp(n) +O(k)

)k

(5.20)

=
k∑

l=0

(
k

l

)(∑
p≤z

fp(n)

)l

(O(k))k−l (5.21)

=
∑
p≤z

(fp(n))
k +

k−1∑
l=0

(
k

l

)(∑
p≤z

fp(n)

)l

(O(k))k−l (5.22)

=
∑
p≤z

(fp(n))
k +O

⎛
⎝(ck)k−l

(
k

l

) ∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l
⎞
⎠ , (5.23)

where c is some positive constant associated with the O(k) term in (5.19). The

use of absolute value bars on the sum of fp(n) is necessary because fp(n) can take

on negative values.
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Sum (ω(n)− log log x)k over all integers n ≤ x to get

∑
n≤x

(
(ω(n)− log log x)k

)
=
∑
n≤x

(∑
p≤z

fp(n)

)k

+ (5.24)

∑
n≤x

⎛
⎝O

⎛
⎝(ck)k−l

(
k

l

) ∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l
⎞
⎠
⎞
⎠

=
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

⎛
⎝∑

n≤x

⎛
⎝(ck)k−l

(
k

l

) ∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l
⎞
⎠
⎞
⎠ . (5.25)

The first sum on the right-hand side of (5.25) is handled by Proposition 5.1.

The second sum on the right-hand side of (5.25) establishes the bound on

Theorem 5.1. For l ≤ k − 1, begin by estimating the expression

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

. (5.26)

If l is even, then equation (5.26) is estimated by (5.4).

If l is odd, then apply the Cauchy-Schwarz Inequality (see Lemma 2.1) to

get that

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

≤
⎛
⎝∑

n≤x

(∑
p≤z

fp(n)

)l−1
⎞
⎠1/2⎛⎝∑

n≤x

(∑
p≤z

fp(n)

)l+1
⎞
⎠1/2

. (5.27)

The exponents l − 1 and l + 1 are both even and (5.4) of Proposition 5.1 can be

used once again. Using equation (5.4) to evaluate each sum results in

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

≤
(
Cl−1x (log log z)

(l−1)/2

(
1 +O

(
(l − 1)3

log log z

))
+O

(
3l−1π(z)l−1

))1/2

(
Cl+1x (log log z)

(l+1)/2

(
1 +O

(
(l + 1)3

log log z

))
+O

(
3l+1π(z)l+1

))1/2

. (5.28)
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Notice that Cl−1x (log log z)
(l−1)/2 and Cl+1x (log log z)

(l+1)/2 are the domi-

nant terms in (5.28). This allows (5.28) to be used to deduce that

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
l

�
(
Cl−1x (log log z)

(l−1)/2
)1/2 (

Cl+1x (log log z)
(l+1)/2

)1/2

(5.29)

�
(
Cl−1Cl+1x

2 (log log x)l
)1/2

(5.30)

�
√
Cl−1Cl+1x (log log z)

l/2 . (5.31)

Applying the result obtained in (5.31) to (5.25) provides

∑
n≤x

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

( k−1∑
l=0

l≡0 mod 2

(ck)k−l

(
k

l

)
[
Clx (log log z)

l/2

(
1 +O

(
l3

log log z

))
+O

(
3lπ(z)l

)])
+

O

⎛
⎜⎝ k−1∑

l=0
l≡1 mod 2

(ck)k−l

(
k

l

)√
Cl−1Cl+1x (log log z)

l/2

⎞
⎟⎠ . (5.32)

The task now is to eliminate negligible error terms. Observe that, for

l ≤ k ≤ (log log x)1/3,

3lπ(z)l � 3k
(
x1/k

log z

)k

(5.33)

� 3k
(

x

(log z)k

)
(5.34)

� x, (5.35)

for z sufficiently large (as indicated in Proposition 5.1). The result in (5.35)

indicates that 3lπ(z)l is negligible in magnitude in comparison to the other terms
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in (5.32). Therefore, equation (5.32) can be reduced to

∑
n≤x

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

⎛
⎜⎝ k−1∑

l=0
l≡0 mod 2

(ck)k−l

(
k

l

)[
Clx (log log z)

l/2

(
1 +O

(
l3

log log z

))]⎞⎟⎠+

O

⎛
⎜⎝ k−1∑

l=0
l≡1 mod 2

(ck)k−l

(
k

l

)√
Cl−1Cl+1x (log log z)

l/2

⎞
⎟⎠ . (5.36)

Because l ≤ k, it is true that

l3

log log z
≤ k3

log log z
. (5.37)

Applying (5.37) to (5.36), distributing inside the brackets for the sum when l is

even, and rearranging the terms yields

∑
n≤

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

⎛
⎜⎝ k−1∑

l=0
l≡0 mod 2

(ck)k−l

(
k

l

)[
Clx (log log z)

l/2
]⎞⎟⎠+

O

⎛
⎜⎝ k−1∑

l=0
l≡ mod 2

(ck)k−l

(
k

l

)√
Cl−1Cl+1x (log log z)

l/2

⎞
⎟⎠+

O

⎛
⎜⎝ k3

log log z

k−1∑
l=0

l≡0 mod 2

(ck)k−l

(
k

l

)⎞⎟⎠ . (5.38)

Because of the constraint that k ≤ (log log z)1/3, the fourth term in (5.38) is

negligible in magnitude in comparison to the other three terms. This reduces
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(5.38) to

∑
n≤

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

⎛
⎜⎝ k−1∑

l=0
l≡0 mod 2

(ck)k−l

(
k

l

)[
Clx (log log z)

l/2
]⎞⎟⎠+

O

⎛
⎜⎝ k−1∑

l=0
l≡1 mod 2

(ck)k−l

(
k

l

)√
Cl−1Cl+1x (log log z)

l/2

⎞
⎟⎠ .

(5.39)

The error terms in (5.39) can now be expressed more concisely as

∑
n≤x

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

(
k−1∑
l=0

(ck)k−l

(
k

l

)
max(Cl,

√
Cl−1Cl+1)x

Ck

Ck

(log log z)l/2
)

(5.40)

=
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

(
Ckx

k−1∑
l=0

(
k

l

)
max(Cl,

√
Cl−1Cl+1)

Ck

(ck)k−l (log log z)l/2
)

(5.41)

=
∑
n≤x

(∑
p≤z

fp(n)

)k

+

O

⎛
⎝Ckx

k−1∑
l=0

(
k

l

)
max(Cl,

√
Cl−1Cl+1)

Ck

(
ck

(log log z)1/2

)k−l
⎞
⎠ .

(5.42)

To finish analyzing the error terms, use the fact that k ≤ (log log z)1/3 and apply

69



the laws of exponents to the (k − l) power obtaining

∑
n≤x

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+O (Ckx (log log z))
k/2−1/6 . (5.43)

Currently all of the results are expressed in terms of log log z, but Theorem

5.1 is in terms of log log x. To rectify this, observe that

z = x1/k (5.44)

log z = log x1/k (5.45)

log z =
log x

k
. (5.46)

Make this substitution for each instance of log log z to obtain

log log z = log

(
log x

k

)
(5.47)

= log log x− log k. (5.48)

Recall that k ≤ (log log x)1/3 to get

log log z ≤ log log x− log (log log x)1/3 (5.49)

log log z + log (log log x)1/3 ≤ log log x (5.50)

log log z +O(log k) = log log x. (5.51)

Compared to the other error terms, O(log k) is negligible, allowing log log x to be

substituted for log log z.

Applying (5.51) and Proposition 5.1 to (5.43) results in Theorem 1.
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5.2 Proof Of Proposition 5.1

The proof of Theorem 5.1 relies upon Proposition 5.1. The purpose of this

section is to prove Proposition 5.1. The following proof follows Granville and

Soundararajan [6] with the omitted details deduced and included by the author.

The author disagrees with Granville and Soundararajan on the handling of one of

the error terms (see Remark 5.3); however, this does not have a significant impact

on the proof of Proposition 5.1 or Theorem 5.1.

Proof. Let r =
∏

i p
αi
i be the prime factorization of r. Since fp(n) is multiplicative,

then

fr(n) =
∏
i

fpi(n)
αi . (5.52)

Let nx = �x�. Let pz be the largest prime such that pz ≤ z. Suppose

r =
∏s

i q
αi
i , where the qi are distinct primes and αi ≥ 1. Set R =

∏s
i qi. Then

∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑
n≤x

(fp1(n) + fp2(n) + · · ·+ fpz(n))
k (5.53)

= (fp1(n1) + fp2(n1) + · · ·+ fpz(n1))
k +

(fp1(n2) + fp2(n2) + · · ·+ fpz(n2))
k +

· · ·+

(fp1(nx) + fp2(nx) + · · ·+ fpz(nx))
k . (5.54)

Each grouped term raised to the kth power in (5.54) forms a multinomial that,

when expanded, will produce terms of the form fp1(n)fp2(n) . . . fpk(n). Applying

this observation, the multinomial theorem, and (5.52) to (5.54) results in

∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,p2,...,pk≤z

∑
n≤x

fp1 . . . fpk(n). (5.55)

For clarity of notation of the outer sum on the right-hand side of (5.55), note
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the following example. Suppose we want to evaluate
∑

p1,p2,...,pk≤z

p. Then,

∑
p1,p2,...,pk≤z

p =

(∑
p1≤z

p

)(∑
p2≤z

p

)
. . .

(∑
pk≤z

p

)
, (5.56)

where p1, p2, . . . , pk are not ordered and are not necessarily unique.

Now, focus shifts to the sum
∑
n≤x

fr(n). If d = gcd(n,R) = (n,R), then

fr(n) = fr(d). (5.57)

This is true because prime factor qi of r divides n if and only if qi divides d.

Applying (5.57) to the sum
∑
n≤x

fr(n) yields

∑
n≤x

fr(n) =
∑
d|R

fr(d)
∑
n≤x

(n,R)=d

1. (5.58)

The inner sum of (5.58) counts the number of times fr(d) is in the expansion of

fr(n). Applying the gcd-lemma (see Lemma 4.1) to the inner sum gives

∑
n≤x

fr(n) =
∑
d|R

fr(d)

[
x

R
φ

(
R

d

)
+O

(
τ

(
R

d

))]
(5.59)

=
x

R

∑
d|R

fr(d)φ

(
R

d

)
+O

⎛
⎝∑

d|R
fr(d)τ

(
R

d

)⎞⎠ . (5.60)

In order to ease further analysis, define G(r) by

G(r) ≡ 1

R

∑
d|R

fr(d)φ

(
R

d

)
. (5.61)

It follows that

∑
n≤x

fr(n) = xG(r) +O

⎛
⎝∑

d|R
fr(d)τ

(
R

d

)⎞⎠ . (5.62)
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The summand of G(r) is a convolution of two multiplicative functions. Sup-

pose that r = qα, where q is prime. Then R = q, and

G(r) =
1

R

∑
d|R

fr(d)φ

(
R

d

)
(5.63)

=
1

q

(
f1(q)

α(1)φ(q) + fα
q (q)φ(1)

)
(5.64)

=
1

q

([
−1

q

]α
q

[
1− 1

q

]
+

[
1− 1

q

]α
· 1
)

(5.65)

=

([
−1

q

]α [
1− 1

q

]
+

[
1

q

] [
1− 1

q

])
. (5.66)

Therefore,

G(r) =
∏
qα||r

(
1

q

(
1− 1

q

)α

+

(
−1

q

)α(
1− 1

q

))
, (5.67)

where r =
∏s

i q
αi
i as originally stated. For more details about establishing (5.67),

the reader may wish to examine Theorems 2.13 and 2.14 in Apostol [1].

Next, pare down the error term in (5.62). Since 0 < |fr(d)| < 1,

O

⎛
⎝∑

d|R
fr(d)τ

(
R

d

)⎞⎠ � O

⎛
⎝∑

d|R
τ

(
R

d

)⎞⎠ . (5.68)

Recall that R is defined to be square-free. Thus, there are 2s square-free divisors

of R, meaning τ(R) = 2s. Suppose a prime factor of R is fixed in d. Then there

are (s · 2s−1) factors of R/d, or τ(R/d) = (s · 22−1). Suppose a product of two

prime factors of R are fixed in d. There are
(
s
2

)
ways to choose such factors, and

τ(R/d) =
(
s
2

)
2s−2. Continuing this reasoning (keeping in mind there are at most
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s prime factors that can be fixed in d) provides

∑
d|R

τ

(
R

d

)
=

(
s

0

)
2s +

(
s

1

)
2s−1 +

(
s

2

)
2s−2 + . . .

(
s

s

)
2s−s (5.69)

=

(
s

0

)
2s10 +

(
s

1

)
2s−111 +

(
s

2

)
2s−212 + . . .

(
s

s

)
201s (5.70)

=
s∑

l=0

(
s

l

)
2l1s−l (5.71)

= (2 + 1)s (5.72)

= 3s. (5.73)

Here, the Binomial Theorem (see Theorem 2.2) was used in the last three lines.

Equation (5.66) can now be written as

∑
n≤x

fr(n) = xG(r) +O(3s). (5.74)

Observe that if qα || r and α = 1, then

G(r) = −1

q

(
1− 1

q

)
+

1

q

(
1− 1

q

)
= 0. (5.75)

In other words, G(r) = 0 unless r is square-full.

The focus now returns to analyzing equation (5.55). Applying the result in

(5.74) and the observation in (5.75) to the right-hand side of (5.55) yields

∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,...,pk≤z
p1...pk square-full

(
xG(p1 . . . pk) +O(3k)

)
(5.76)

= x
∑

p1,...,pk≤z
p1...pk square-full

G(p1 . . . pk) +
∑

p1,...,pk≤z
p1...pk square-full

O(3k) (5.77)

= x
∑

p1,...,pk≤z
p1...pk square-full

G(p1 . . . pk) +O

( ∑
p1,...,pk≤z

3k

)
(5.78)

= x
∑

p1,...,pk≤z
p1...pk square-full

G(p1 . . . pk) +O
(
3kπ(z)k

)
. (5.79)
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The error term in (5.79) comes from the fact that there are π(z) primes less than

or equal to z and thus there are π(z)k summands in the O-term.

The primes p1 . . . pk ≤ z are not necessarily unique or ordered. Suppose

q1 < q2 < · · · < qs are the distinct primes in p1 . . . pk ≤ z. Since p1 . . . pk is

square-full, then s ≤ k/2. Thus the main term in (5.79) can be expressed as

∑
p1,...,pk≤z

p1...pk square-full

G(p1 . . . pk) =
∑

s≤k/2

∑
q1<q2<···<qs≤z

∑
α1,...αs≥2∑

i αi=k

k!

α1! . . . αs!
G (qα1

1 . . . qαs
s ) .

(5.80)

The expression
k!

α1! . . . αs!
represents the multinomial coefficients on the expansion

of G (qα1
1 . . . gαs

s ). The multinomials must be summed over the distinct primes, of

which there are s ≤ k/2.

Suppose k is even. Then s = k/2, and there is a term in (5.80) with all

αi = 2. This term contributes

k!

2k/2(k/2)!

∑
q1,...,qk/2≤z
qi distinct

k/2∏
i=1

1

qi

(
1− 1

qi

)
. (5.81)

The fact that when α = 2, G(r) =
∏
qα||r

1

q

(
1− 1

q

)
, was used in place of

G (qα1
1 . . . qαs

s ). The 2k/2 arises from the fact that each αi! = 2! = 2 and that there

are k/2 αi-factors in the denominator. The distinct primes in the sum are not

ordered. There are s! = (k/2)! ways to order the k/2 distinct primes. Thus, sum

is (k/2)! factorial times the value that (5.80) indicates. This is accounted for with

the (k/2)! added to the denominator.

Upper and lower bounds on the sum in (5.81) are now sought. Each factor

in the product

k/2∏
i=1

1

qi

(
1− 1

qi

)
is less than 1. Therefore,

k/2∏
i=1

1

qi

(
1− 1

qi

)
≤ 1

p

(
1− 1

p

)
, (5.82)

where p could be any of the qi’s. To further maximize the sum, remove the
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condition that the q’s are unique. The sum in (5.81) is thus bounded above by

(∑
p≤z

1

p

(
1− 1

p

))k/2

, (5.83)

where p is prime.

In seeking a lower bound, consider the case when q1, . . . , qk/2−1 are given.

Then the sum over qk/2 (which is the inner-most sum in (5.81)) is at least

∑
πk/2≤p≤z

1

p

(
1− 1

p

)
, (5.84)

where πk/2 represents the (k/2)
th smallest prime number. This forms a lower bound

because p is restricted in its minimum value, and 1
p

(
1− 1

p

)
strictly decreases over

the primes. Repeating this reasoning over the remaining (k/2− 1) sums provides

a lower bound of ⎛
⎝ ∑

πk/2≤p≤z

1

p

(
1− 1

p

)⎞⎠k/2

. (5.85)

By Merten’s Second Theorem (see Theorem 4.5),

∑
p≤z

1

p

(
1− 1

p

)
=
∑
p≤z

1

p
−
∑
p≤z

1

p2
(5.86)

= log log z + c1 +O(1)−
∑
p≤z

1

p2
(5.87)

= log log z +O(1). (5.88)

Similarly,

∑
πk/2≤p≤z

1

p

(
1− 1

p

)
=
∑
p≤z

1

p

(
1− 1

p

)
−

∑
p≤πk/2

1

p

(
1− 1

p

)
(5.89)

= log log z +O(1)− (
log log πk/2 +O(1)

)
(5.90)

= log log z +O(1)− (log log k +O(1)) . (5.91)
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The upper and lower bounds in (5.82) and (5.84) establish that

⎛
⎝ ∑

πk/2≤p≤z

1

p

(
1− 1

p

)⎞⎠k/2

≤
∑

q1,...,qk/2≤z
qi distinct

k/2∏
i=1

1

qi

(
1− 1

qi

)
≤

(∑
p≤z

1

p

(
1− 1

p

))k/2

.

(5.92)

Apply the implications of Mertens’ Second Theorem in (5.88) and (5.91) to (5.92)

to get

∑
q1,...,qk/2≤z
qi distinct

k/2∏
i=1

1

qi

(
1− 1

qi

)
= (log log z +O(1 + log log k))k/2 . (5.93)

To estimate the terms s < k/2, first observe that

0 ≤ G (qα1
1 . . . qαs

s ) ≤ 1

q1 . . . qs
. (5.94)

In order to understand the validity of (5.94), recall that G(r) = 0 if r is not

square-full. If r is square-full, consider the expression

1

q

(
1− 1

q

)α

+

(
−1

q

)α(
1− 1

q

)
. (5.95)

In the current context, each α ≥ 2. Then, for a given prime, the expression in

(5.95) decreases as α increases. Therefore, for a given prime, (5.95) is a maximum

value when α = 2. Let α = 2 and observe that

1

q

(
1− 1

q

)2

+

(
−1

q

)2(
1− 1

q

)
=

1

q
− 1

q2
≤ 1

q
. (5.96)

For legibility, let A represent the right-hand side of (5.80). That is, let

A =
∑

s≤k/2

∑
q1<q2<···<qs≤z

∑
α1,...αs≥2∑

i αi=k

k!

α1! . . . αs!
G (qα1

1 . . . qαs
s ) .
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Apply (5.94) to the right-hand side of (5.80) to get

A ≤
∑

s<k/2

∑
q1<q2<···<qs≤z

∑
α1,...αs≥2∑

i αi=k

k!

α1! . . . αs!

1

q1 . . . qs
(5.97)

A ≤
∑

s<k/2

k!

s!

(∑
q≤z

1

q

)s ∑
α1,...αs≥2∑

i αi=k

1

α1! . . . αs!
. (5.98)

The introduction of s! in (5.99) follows for the same reason (k/2)! was introduced

in (5.81).

Use Mertens’ Second Theorem (see Theorem 4.5) to obtain

(∑
q≤z

1

q

)s

= (log log z +O(1))s . (5.99)

To evaluate the inner-most sum, the number of ways that k can be composed

as, k = α1 + · · · + αs with each αi ≥ 2, must be found. Subtract one from each

αi, of which there are s, to write

k − s = (α1 − 1) + (α2 − 1) + · · ·+ (αs − 1) (5.100)

k − s = β1 + β2 + · · ·+ βs, (5.101)

with each βi ≥ 1. There are
(
k−s−1
s−1

)
ways to compose k− s as

∑
i βi. Adding s to

each side of (5.101) only adds a set constant to both sides. This means that there

are also
(
k−s−1
s−1

)
ways to compose k as

∑
i α1. To ensure the inequality in (5.95)

holds, replace each αi with the minimum possible value of 2. There are s αi-terms,

introducing (2!)s = 2s in the denominator of the inner-most sum in (5.95). Apply

the observations about the number of compositions of k and using 2s along with

(5.95) to (5.99) to get

A ≤
∑
s<k/2

k!

s!2s

(
k − s− 1

s− 1

)
(log log z +O(1))s . (5.102)
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All that remains is to show that (5.79), (5.93), and (5.102) combine to give

Proposition 5.1. Begin with the sum in (5.79). For k even, the main term of (5.79)

is given by (5.93), which is

k!

(k/2)!2k/2
x(log log z +O(1 + log log k))k/2 = Ckx(log log z +O(1 + log log k))k/2,

(5.103)

where Ck =
k!

(k/2)!2k/2
. Factor the log log z term to obtain

Ckx(log log z +O(1 + log log k))k/2

= Ckx (log log z)
k/2

[
1 +O

(
1 + log log k

log log z

)]k/2
(5.104)

= Ckx (log log z)
k/2

⎡
⎣1 +O

⎛
⎝ k/2∑

s=1

(
k/2

s

)(
log log k

log log z

)s
⎞
⎠
⎤
⎦ . (5.105)

The Binomial Theorem (see Theorem 2.2) was used in going from (5.104) to

(5.105). Because k ≤ (log log z)1/3, the first term in the sum in (5.105) is the

largest. The sum is thus composed of k/2 terms, each of which is no larger than

k log log k

log log z
. Use the bound that log log k � k to get

k/2∑
s=1

(
k/2

s

)(
log log k

log log z

)s

≤ k

2

k log log k

log log z
(5.106)

≤ k

2

k · k
log log z

(5.107)

≤ k3

log log z
. (5.108)

Therefore, for k even, the main term in (5.79) is

(log log z)k/2
[
1 +O

(
k3

log log z

)]
. (5.109)
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For the remaining terms, those with s < k/2, equation (5.102) indicates

terms bounded by

∑
s<k/2

k!

s!2s

(
k − s

s

)
(log log z +O(1))s (5.110)

must be accounted for. Let T denote the largest integer less than k/2. Then,

multiply by
Ck

Ck

and extract the dominant power of log log z by writing

∑
s<k/2

k!

s!2s

(
k − s

s

)
(log log z +O(1))s

� Ck(log log z)
T
∑
s≤T

k!

Cks!2s

(
k − s

s

)
(log log z)s−T (5.111)

� Ck(log log z)
T
∑
s≤T

k!

Cks!2s

(
k − s

s

)(
1

log log z

)T−s

. (5.112)

Continue by using the facts that Ck =
Γ(k + 1)

2k/2Γ(k/2 + 1)
and k3 ≤ log log z to write

∑
s<k/2

k!

s!2s

(
k − s

s

)
(log log z +O(1))s

� Ck(log log z)
T
∑
s≤T

k!

Cks!2s

(
k − s

s

)(
1

k3

)T−s

(5.113)

� Ck(log log z)
T
∑
s≤T

k!

s!2s
2k/2Γ(k/2 + 1)

Γ(k + 1)

(
k − s

s

)(
1

k3

)T−s

(5.114)

� Ck(log log z)
T
∑
s≤T

2k/2

2s
Γ(k/2 + 1)

s!

(
k − s

s

)(
1

k3

)T−s

. (5.115)

If k is even, then T = k
2
− 1, and (5.115) becomes

Ck(log log z)
T
∑
s≤T

2k/2

2s
Γ(k/2 + 1)

s!

(
k − s

s

)(
1

k3

)T−s

� Ck
(log log z)k/2

log log z

∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

) k
2
−1−s

(5.116)

� Ck
(log log z)k/2

log log z
k3

∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

)k/2−s

. (5.117)
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If k is odd, then T = k−1
2
, and (5.115) becomes

Ck(log log z)
T
∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

)T−s

� Ck
(log log z)k/2√

log log z

∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

) (k−1)
2

−s

(5.118)

� Ck
(log log z)k/2√

log log z
k3/2

∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

)k/2−s

. (5.119)

The sum ∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

)k/2−s

(5.120)

is common to both (5.117) and (5.119). To obtain the desired result, observe that

∑
s≤T

2k/2

2s
Γ(k

2
+ 1)

s!

(
k − s

s

)(
1

k3

)k/2−s

� 1. (5.121)

Proposition 5.1 now immediately follows from (5.109), (5.119), and (5.121).
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Equidistribution in number theory, an introduction, NATO Sci. Ser. II Math.

Phys. Chem., vol. 237, Springer, Dordrecht, 2007, pp. 15–27. MR 2290492

(2008b:11103)

[7] H. Halberstam, On the distribution of additive number-theoretic functions, J.

London Math. Soc. 30 (1955), 43–53. MR 0066406 (16,569g)

82



[8] , On the distribution of additive number-theoretic functions. II, J. Lon-

don Math. Soc. 31 (1956), 1–14. MR 0073626 (17,461d)

[9] Steven J. Miller and Ramin Takloo-Bighash, An invitation to modern number

theory, Princeton University Press, Princeton, NJ, 2006, With a foreword by

Peter Sarnak. MR 2208019 (2006k:11002)

[10] Robert C. Rhoades, Statistics of prime divisors in function fields, Int. J.

Number Theory 5 (2009), no. 1, 141–152. MR 2499026 (2010c:11124)

[11] Kyle Siegrist, Virtual laboratories in probability and statistics, http://

www.math.uah.edu/stat/index.html, 1997-2014, Online; Last accessed

01192015.

[12] J. Michael Steele, The Cauchy-Schwarz master class, MAA Problem Books

Series, Mathematical Association of America, Washington, DC; Cambridge

University Press, Cambridge, 2004, An introduction to the art of mathemat-

ical inequalities. MR 2062704 (2005a:26035)

[13] W.A. Stein et al., Sage Mathematics Software (Version 6.8), 2015,

http://cloud.sagemath.org.
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