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Abstract
Woodland salamanders are among the most abundant vertebrate animals in tem-
perate deciduous forests of eastern North America. Because of their abundance, 
woodland salamanders are responsible for the transformation of nutrients and 
translocation of energy between highly disparate levels of trophic organization: 
detrital food webs and high‐order predators. However, the spatial extent of wood-
land salamanders’ role in the ecosystem is likely contingent upon the distribution of 
their biomass throughout the forest. We sought to determine if natural environ-
mental gradients influence the fine‐scale distribution and density of Southern 
Ravine Salamanders (Plethodon richmondi) and Cumberland Plateau Salamanders (P. 
kentucki). We addressed this objective by constructing occupancy, co‐occurrence, 
and abundance models from temporally replicated surveys within an old‐growth 
forest in the Cumberland Plateau region of Kentucky. We found that Plethodon 
richmondi had a more restricted fine‐scale distribution than P. kentucki (mean oc-
cupancy probability [ ̂̄𝜓] = 0.737) and exhibited variable density, from <250 to >1000 
individuals per hectare, associated with increased soil moisture and reduced solar 
exposure due to slope face. While more ubiquitously distributed ( ̂̄𝜓 = 0.95), P. ken‐
tucki density varied from <400 to >1,000 individuals per hectare and was inversely 
related to increased solar exposure from canopy disturbance and landscape con-
vexity. Our data suggest co‐occurrence patterns of P. richmondi and P. kentucki are 
influenced primarily by abiotic conditions within the forest, and that populations 
likely occur independently and without evidence of biotic interaction. Given the 
critical role that woodland salamanders play in the maintenance of forest health, 
regions that support large populations of woodland salamanders, such as those 
highlighted in this study—mesic forest stands on north‐to‐east facing slopes with 
dense canopy and abundant natural cover, may provide enhanced ecosystem ser-
vices and support the stability of the total forest.
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1  | INTRODUC TION

Analyzing the distribution and abundance of species along envi-
ronmental gradients yields invaluable information about their niche 
requirements (Costa, Wolfe, Shepard, Caldwell, & Vitt, 2008), pop-
ulation dynamics (Peterman & Semlitsch, 2013), and biotic interac-
tions (Maestre et al., 2010) and can even inform decisions about the 
management and restoration of landscapes for species conservation 
(Peterson, 2006). In unaltered landscapes, the distribution of species 
is a function of natural environmental gradients, which include abi-
otic factors (e.g., surface temperature, moisture, topographic relief, 
water and soil chemistry, and solar radiation) and biotic factors (e.g., 
vegetative structure and the presence of predators, prey, and mates; 
Van der Putten, Macel, & Visser, 2010). Taxa likely to exhibit strong 
responses to such natural gradients are those with limited disper-
sal capabilities (Cushman, 2006), low reproductive success (Elton, 
1958), and acute sensitivity to environmental conditions (Buckley & 
Jetz, 2007).

One such group, amphibians, is particularly responsive to en-
vironmental gradients (Araújo et al., 2007; Semlitsch, Peterman, 
Anderson, Drake, & Ousterhout, 2015; Werner, Skelly, Relyea, & 
Yurewicz, 2007). Because of their highly permeable skin, amphib-
ians are acutely sensitive to the chemical environment (Boone, 
Semlitsch, Little, & Doyle, 2007; Willson, Hopkins, Bergeron, & 
Todd, 2012), thermal and hydrologic regimes (Semlitsch et al., 2015; 
Walls, Barachivich, & Brown, 2013), and the microbiome (i.e., emerg-
ing pathogenic diseases; Carey et al., 2003; Collins et al., 2003). 
Amphibian population dynamics are closely tied to landscape struc-
ture (Hecnar & M’Closkey, 1996; Rothermel & Semlitsch, 2002) and 
prey availability (Greene, Lowe, & Likens, 2008), making them es-
pecially sensitive to habitat destruction and degradation (Brooks 
et al., 2002). These characteristics likely explain why amphibians 
are currently experiencing unprecedented and precipitous popula-
tion declines on a global scale (Alford, Dixon, & Pechmann, 2001; 
Houlahan, Findlay, Benedikt, Meyer, & Kuzim, 2000; Stuart et al., 
2004). Nevertheless, amphibians’ hypersensitivity to environmental 
conditions translates into an effective taxonomic indicator of eco-
system integrity (Welsh & Droege, 2001; Welsh & Ollivier, 1998).

Despite this sensitivity, amphibians represent a major compo-
nent of biomass in aquatic (Gibbons et al., 2006), terrestrial (Burton 
& Likens, 1975b; Petranka & Murray, 2001), and riparian (Peterman, 
Crawford, & Semlitsch, 2008) ecosystems. Because the life history 
of many amphibians involves movement between and among aquatic 
and terrestrial ecosystems (Regester, Whiles, & Taylor, 2006), they 
are responsible for the transformation (Burton & Likens, 1975a) and 
translocation (Capps, Berven, & Tiegs, 2014; Luhring, DeLong, & 
Semlitsch, 2017) of substantial quantities of energy throughout the 

landscape. However, the role of energy transformation is not unique 
to biphasic organisms. Terrestrial woodland salamanders (Caudata: 
Plethodontidae: Plethodon), which lack aquatic larval stages (i.e., 
have direct development), are among the most abundant vertebrate 
animals in eastern deciduous forests of North America (Petranka & 
Murray, 2001; Semlitsch, O’Donnell, & Thompson, 2014), reaching 
densities between 0.73 and 18.46 individuals per m2 (O’Donnell & 
Semlitsch, 2015; Semlitsch et al., 2014). They also act as predators 
of detrital food webs (Best & Welsh, 2014; Davic & Welsh, 2004; 
Hutton, Price, & Richter, 2017) and represent a prey resource for 
a wealth of vertebrate and invertebrate predators (for a taxonomic 
review of Plethodon predators, see Semlitsch et al., 2014). As such, 
woodland salamanders are hypothesized to serve as a key energetic 
intermediary between highly disparate levels of trophic organization 
in terrestrial ecosystems (detrital communities and high‐order ver-
tebrate predators; Burton & Likens, 1975b) and exert a significant, 
top‐down, regulatory force upon detrital food webs, leaf litter de-
composition, and organic material retention (Burton & Likens, 1975a; 
Hairston, 1987). Therefore, woodland salamanders may significantly 
influence the direction and magnitude of energy flow through eco-
systems (Davic & Welsh, 2004).

Wyman (1998) suggested that, through predation of detrital 
food webs, woodland salamanders (Plethodon cinereus, eastern red‐
backed salamander) can indirectly reduce leaf litter processing rates, 
aiding in the retention of organic carbon in forests. However, addi-
tional studies have found that the significance, strength, and direc-
tion of top‐down effects on leaf litter decomposition and detrital 
communities is subject to variation (Best & Welsh, 2014; Hocking & 
Babbitt, 2014; Homyack, Sucre, Haas, & Fox, 2010; Walton, 2005; 
Walton & Steckler, 2005; Walton, Tsatiris, & Rivera‐Sostre, 2006). 
Recent evidence suggests that variation in the effects of woodland 
salamanders on forest floor dynamics is likely correlated with spa-
tiotemporal variability in environmental conditions (Walton, 2013) 
and the abundance of salamander predators (Hickerson, Anthony, 
& Walton, 2017). Therefore, the nature of woodland salamanders’ 
role in terrestrial ecosystem nutrient cycling is likely contingent 
upon the spatial distribution of their biomass within the ecosystem 
(Hickerson et al., 2017; Semlitsch et al., 2014), which is influenced 
by spatial patterns in environmental conditions and resource avail-
ability (Milanovich & Peterman, 2016; Peterman & Semlitsch, 2013; 
Walton, 2013).

Numerous studies have found the distribution of woodland 
salamanders to be influenced chiefly by terrestrial ecosystem fea-
tures such as soil moisture (Jaeger, 1971a; Peterman & Semlitsch, 
2013; Wyman, 1988), availability of natural cover (i.e., coarse woody 
debris, rocky cover, and leaf litter; McKenny, Keeton, & Donovan, 
2006; O’Donnell, Thompson, & Semlitsch, 2014), and forest 
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composition/canopy structure (Gibbs, 1998; Peterman & Semlitsch, 
2013). Furthermore, the presence of heterospecifics has been found 
to influence microhabitat usage (Farallo & Miles, 2016; Keen, 1982), 
distribution (Hairston, 1950; Jaeger, 1970, 1971a, b), and abundance 
(Hairston, 1951) of individual species. Thus, the species‐specific 
contribution of woodland salamanders to terrestrial ecosystem 
processes may be modified through population‐level effects of 
interspecific competition. Due to the diversity and endemism of 
woodland salamanders, particularly in Appalachian forests where 
their diversity is greatest (Dodd, 2004), community structure varies 
dramatically across physiographic regions. Therefore, community 
interactions are likely geographically nuanced and not easily gener-
alizable from any single region.

Studies of the spatial population dynamics of woodland salaman-
der species occurring in syntopy are needed to further understand 
the role of these animals in terrestrial ecosystems. Furthermore, 
woodland salamander populations in lower elevation Appalachian 
forests, like those of central Appalachia, have not been studied as 
thoroughly as in regions with greater topographic relief and higher 
proportions of land allocated for conservation. This study examines 
the population dynamics of Southern Ravine Salamander (Plethodon 
richmondi) and Cumberland Plateau Salamander (P. kentucki) 
within an old‐growth forest in the Cumberland Plateau region of 
Appalachia. In old‐growth forests of this region, variation in environ-
mental conditions of the forest floor (e.g., soil moisture, availability 
of woody debris, and solar exposure) is largely influenced by canopy 
dynamics (Runkle, 1982). Tree mortality supplies woody debris to 
the forest floor (Harmon et al., 1986) and provides habitat for wood-
land salamanders (McKenny et al., 2006; Petranka, Brannon, Hopey, 
& Smith, 1994); however, resultant canopy gaps increase solar ex-
posure, accelerating evapotranspiration. The size and persistence of 
canopy gaps represent a natural disturbance regime, which greatly 
modifies local environmental conditions (Schaetzl, Johnson, Burns, 
& Small, 1989; Scharenbroch & Bockheim, 2007). The objectives of 
this study were to determine if environmental gradients associated 
with the natural disturbance regime of an Appalachian old‐growth 
forest influence the fine‐scale distribution and density of P. rich‐
mondi and P. kentucki. Furthermore, this study sought to determine 
if patterns of salamander co‐occurrence vary along natural environ-
mental gradients, and if those patterns are modified behaviorally 
through interspecific competition and territoriality. These objectives 
are addressed by constructing hierarchical models, which incorpo-
rate imperfect detection from temporally replicated surveys within 
an old‐growth forest.

2  | MATERIAL S AND METHODS

2.1 | Study site

This study was conducted at Lilley Cornett Woods Appalachian 
Ecological Research Station (LCW), which contains 102 ha of old‐
growth forest. Lilley Cornett Woods is a stable mixed mesophytic 
forest in the Cumberland Plateau region of southeastern Kentucky. 

With no history of timber harvest, the old‐growth forest at LCW 
has experienced no substantial anthropogenic disturbance with the 
exception of understory livestock grazing, which ended in the 1950s 
(Martin, 1975). Canopy disturbances in LCW are primarily stochastic 
(Davis, Chapman, Wu, & McEwan, 2015), and therefore, the distribu-
tion of canopy gaps is predicted to be uniform and resultant from 
endogenous processes. Of the three tracts of old‐growth forest 
at LCW, one tract, “Shop Hollow,” currently experiences little dis-
turbance from human recreation (only guided hiking on a narrow, 
established trail) and features minimal understory vegetation. Shop 
Hollow features 57 permanent circular sample plots with a diam-
eter of 32 m (800 m2), which were originally established by Martin 
(1975). Sample plots were stratified by elevation (lower [<345 m], 
middle [345–410 m], upper [411–467 m], and ridge [>467 m]). Data 
collection occurred at all sample plots free of intersecting streams 
(N = 40).

2.2 | Amphibian sampling

This study relied upon visual encounter surveys (VES) to detect spe-
cies, and therefore, all observations resulted from hand captures 
during standardized searching.

Each of the N = 40 sample plots was visited four times between 
15 October 2016 and 13 November 2016 from 0800–2000 EST, 
with no less than five days occurring between visits. Locally, ob-
servations of Plethodon salamander activity in the fall season can 
rival, if not exceed, those of the spring (Baecher & Richter pers. obs., 
MacGregor pers. comm.), and therefore, this sample period was cho-
sen as the most representative of true patterns in occurrence and 
abundance. VES were conducted along a linear 3‐m × 32‐m transect 
(96 m2), which intersected the center of each 800‐m2 circular sample 
plot at a randomly chosen bearing between 0° and 180°. The bearing 
of each transect was also randomized during each sequential visit, 
making the likelihood of sampling the same microhabitat at a given 
sample plot negligible. In LCW, woodland salamanders are found pri-
marily by searching under natural cover (coarse woody debris [CWD] 
and rocks) on the forest floor. During VES, all CWD and rocky cover 
within the 96‐m2 transects were flipped, and microhabitats beneath 
were examined for the presence of salamanders before replacing 
cover items to their exact position.

2.3 | Site covariates

During each visit, soil moisture was measured with a Pro Check 
moisture probe (Decagon Devices, Inc.) at five equidistant points 
along the transect within each sample plot, and therefore, estimates 
were obtained by averaging across transect (N = 5) and visit (N = 4). 
Quantification of forest canopy openness was achieved using hemi-
spherical canopy photography (Baldwin, Calhoun, & DeMaynadier, 
2006; Frazer, Lertzman, & Trofymow, 1997; Herbert, 1987). A single 
photograph of canopy structure was captured prior to leaf off with a 
24‐megapixel digital single‐lens reflex camera (Nikon D7100) on au-
tomatic settings, fitted with a 180° lens (Nikon AF DX Fisheye‐Nikkor 
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10.5 mm f/2.8G ED; Nikon Instruments, Melville, NY, USA). Percent 
canopy openness was calculated by converting images into binary 
color (black pixels = closed canopy, white pixels = open canopy) 
using a binarization algorithm provided by the Auto Threshold Plugin 
for ImageJ software (Abramoff, Magalhaes, & Ram, 2004; Rasband, 
2014), and then calculating the percent of white pixels in each frame.

A 1.11‐m2 digital elevation model was used to derive the follow-
ing layers: aspect, slope, Topographic Position Index, and direct solar 
radiation. Aspect was scaled into a linear variable ranging from 0 
(xeric, southwest‐facing slopes) to 2 (mesic, northeast‐facing slopes) 
using the Beers transformation (Beers, Dress, & Wensel, 1966; 
O’Donnell, Thompson, & Semlitsch, 2015). Topographic Position 
Index (TPI) is a measure of landscape convexity which was calculated 
by comparing the slope position of individual sample plots relative to 
a 150‐m2 surrounding landscape area using a neighborhood function 
(Guisan, Weiss, & Weiss, 1999). During the calculation of TPI, a suite 
of additional neighborhood scales was considered, beginning with a 
circular area of 50 m2 and increasing incrementally by 50–1,500 m2. 
The most appropriate TPI scale was selected by correlating each TPI 
calculation with plot averages of raw salamander counts and identi-
fying the scale with the highest correlation coefficient. Direct Solar 
Radiation—a component of the total solar radiation—represents the 
quantity of solar radiation remaining after a fraction is absorbed by 
the atmosphere (diffuse solar radiation) or reflected off of the earth’s 
surface (reflected solar radiation). Normalized Difference Vegetation 

Index (NDVI) is a measure of vegetative cover (range: −1.0 [barren] 
to 1.0 [heavily vegetated]) and was derived using imagery from the 
2016 National Agriculture Imagery Program. All data were gathered 
with ArcGIS 10.3 (ESRI, 2011). See Table 1 for a description of all 
sampling and site covariates.

2.4 | Sampling covariates

The quantity of fallen coarse woody debris larger than 20 cm in di-
ameter (Muller & Liu, 1991) and rocky cover within each VES tran-
sect were counted. Leaf litter depth was measured with a metric 
ruler at five equidistant points within each survey transect. Solar 
conditions during surveys were quantified by measuring the ambi-
ent luminous flux (perceived power of light) at breast height with a 
digital illuminance light meter (TekPower, model: LX1330B). Finally, 
date and time of day of each survey were recorded. See Table 1 for a 
description of all sampling covariates.

2.5 | Occupancy, co‐occurrence, and 
abundance modeling

Because detection probabilities of salamanders were assumed <1, 
hierarchical models were used to approximate woodland salaman-
der distributions and density from repeated surveys of unmarked 
animals (MacKenzie & Royle, 2005). Occupancy models (MacKenzie, 

TA B L E  1   Description and summary statistics of covariates used in hierarchical models of Southern Ravine Salamander (Plethodon 
richmondi) and Cumberland Plateau Salamander (P. kentucki) occupancy and abundance

Parameter Abbr. Covariate description Unit Mean Interquartile range

Sampling

Conditional capture probability, pψ; 
effective detection probability, pλ

CWD Abundance of coarse woody 
debrisa

qty. 3 1 4

DAY Day of the year survey 
occurred

Julian date 306.50 300.80 312.20

LLD Leaf litter deptha cm 5.45 4.45 6.75

LUX Luminous fluxa lumen/m2 510.40 175.00 740.00

ROC Abundance of rocky covera qty. 5 1 7

TOD Time of day survey occurred 24 hr time 1,310 1,102 1518

Site

Occupancy probability, ψ; estimated 
abundance, λ

ASP Beers‐transformed aspectb range (0,2) 1.19 0.33 1.87

CAN Canopy opennessa % 26 20 28

ELV Elevationb m 407.40 375.40 436.40

MST Soil moisturea % 14 11 17

RAD Direct Solar Radiationb Kilowatts hr−1 m−2 746.12 677.92 846.91

TPI Topographic Position Indexb c 14.20 4.05 23.55

VEG Normalized Difference 
Vegetation Indexb

d 126.60 123.80 130.40

Note. Data collected in 2016 at Lilley Cornett Woods Appalachian Ecological Research Station (Letcher Co., Kentucky, USA). Covariates quantify two 
processes: “sampling” (detectability parameters) and “site” (species occupancy and abundance).
aCollected in situ. bSpatially derived metric. cMeasure of slope position relative to surroundings (“+”=ridges, “−” = valleys, “0” = flat). dMeasure of vege-
tative density (−1.0 = barren, 1.0 = heavily vegetated). 
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Nichols, Hines, Knutson, & Franklin, ) were used to estimate the 
probability that a species occupied a given site (ψ), while N‐mixture 
models (Royle, 2004) were used to estimate species true population 
size (λ). Fitting occupancy and N‐mixture models followed a stepwise 
procedure: (a) models were constructed to estimate detection pa-
rameters, p, by holding the state parameters, occupancy and abun-
dance, constant; (b) the model‐averaged estimated effect size ( ̂̄𝛽 ) of 
each detection covariate was calculated using multi‐model inference 
(Burnham & Anderson, 2002; Mazerolle, 2006) to determine impor-
tance; (c) models were then constructed to estimate occupancy and 
abundance using covariates of detection selected from the previous 
step; (d) from the resulting models, ̂̄𝛽  was calculated for each site 
covariate to determine which was important in explaining occupancy 
and abundance; and (e) multi‐model inference was used to make pre-
dictions across all models. See Appendix S1–S5 for a complete list of 
models fitted. For examples of studies using similar stepwise pro-
cedures, see Govindan, Kéry, and Swihart (2012), Scherer, Muths, 
and Noon (2012), Kéry Guillera‐Arroita and Lahoz‐Monfort (2013), 
Peterman, Crawford, and Kuhns (2013), Peterman and Semlitsch 
(2013), and Jachowski, Millspaugh, and Hopkins (2016).

Prior to statistical analyses, all site and sampling covariates were 
standardized to a mean of zero and unit variance by subtracting 
the arithmetic mean and dividing by the standard deviation (as rec-
ommended by Fiske & Chandler, 2011, 2017). Models were fitted 
using a maximum‐likelihood approach with package “unmarked” 
(Fiske & Chandler, 2011) in the R programing environment (v. 3.4.1; 
R Core Team, 2017). Goodness‐of‐fit tests with 10,000 parametric 
bootstrap iterations were performed on the most highly parameter-
ized (global) occupancy and N‐mixture models of each species and 
confirmed that empirical distributions did not significantly deviate 
from the theoretical distributions (occupancy: zero‐inflated bino-
mial; N‐mixture: Poisson) used in each model (p > 0.05, ĉ≈1; Kéry 
& Royle, 2016). Goodness‐of‐fit tests and multi‐model inference to 
obtain predictions of occupancy, abundance, and detection were 
performed using R package “AICcmodavg” (Mazerolle, 2017).

Although occupancy and N‐mixture models both require an es-
timate of detectability to compute state parameters, the specific 
components of detection used by each are different (O’Donnell & 
Semlitsch, 2015). Most single‐season occupancy models, includ-
ing the model used in this study, estimate the “conditional capture 
probability” (p̂𝜓), defined as the probability of capture, given the in-
dividual is present (capture probability|availability). For these terms, 
availability is defined as 1—(temporary emigration). Single‐season 
N‐mixture models estimate a form of detection which combines a 
term for the ability of the observer to capture an individual that is 
present (conditional capture probability) with a term for the individ-
ual’s availability for capture (expressed as: availability × conditional 
capture probability) and is thus referred to as an “effective detection 
probability” (pλ). By exploiting the relationship between effective 
detection probability and conditional capture probability, estimates 
of population capture availability and temporary emigration (proba-
bility an animal is alive, but unavailable for capture) can be obtained 
from single‐season models mathematically.

Two‐species single‐season occupancy models (MacKenzie, 
Bailey, & Nichols, 2004) were used to estimate the probability that 
P. richmondi occupies a site or sites wherein P. kentucki is known to 
be present. Under the null hypothesis, the pattern and frequency of 
co‐occurrence does not vary across environmental gradients. This 
hypothesis was tested by comparing a null model of co‐occurrence, 
wherein the pattern in which species co‐occur at sites is unrelated 
to environmental conditions (essentially random), to models of co‐
occurrence, which predict co‐occurrence patterns relating to envi-
ronmental gradients. Using the co‐occurrence probability (ψAB), a 
“Species Interaction Factor”, or φ, can also be obtained (MacKenzie 
et al., 2004; Richmond, Hines, & Beissinger, 2010). For species A and 
B, φ is defined as:

where ψA and ψB are the occupancy probabilities of species A 
and B, and ψAB represents the co‐occurrence probability of spe-
cies A and B. Under the null hypothesis, φ = 1, species populations 
exist independently and the pattern and frequency of species co‐
occurrence are assumed to be random. If φ > 1, species co‐occur 
more frequently than expected from chance; likewise, φ < 1 in-
dicates species co‐occur less frequently than chance. Using the 
same modeling procedure as with single‐species occupancy mod-
els, two‐species candidate models were fitted within the maxi-
mum‐likelihood framework provided by program PRESENCE (v. 
11.7) under a ψBa‐parameterization (Richmond et al., 2010) and 
ranked using AIC. Predictions were obtained from the highest‐
ranking models.

3  | RESULTS

Repeated surveys of woodland salamanders at LCW resulted in the 
capture of 55 P. richmondi and 46 P. kentucki. Plethodon richmondi 
were detected at 25 of the total 40 sites surveyed (naïve propor-
tion of area occupied [POA] = 0.63), and P. kentucki were detected at 
26/40 sites (POA = 0.65).

3.1 | Detection, Availability, and 
Temporary Emigration

The conditional capture probabilities of P. richmondi and P. kentucki 
were moderately low ( ̂̄p𝜓 = 0.36 and 0.24), while effective detec-
tion probabilities were much lower ( ̂̄p𝜆 = 0.06 and 0.05; Table 2). 
For P. richmondi, time of day (“TOD”) in which the survey occurred 
was the most important covariate for estimating ̂̄p𝜓 ( ̂̄𝛽p𝜓 = −0.42 
[95% unconditional CI: −0.83, −0.01]) and ̂̄p𝜆 ( ̂̄𝛽p𝜆 = −0.43 [−0.75, 
−0.12]), and both components of detection decreased gradually 
from morning until evening (Figure 1). Availability of coarse woody 
debris (“CWD”) was the most important covariate in explain-
ing both detectability parameters of P. kentucki ( ̂̄𝛽p𝜓 = 0.74 [0.34, 

�=

�AB

�A ⋅�B

;
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1.15], ̂̄𝛽p𝜆 = 0.53 [0.21, 0.84]; Table 2). The conditional capture 
probability of P. kentucki increased sharply with rising quantities 
of fallen CWD, while the effective detection probability increased 
only gradually (Figure 1).

The probability that salamanders were alive, on the soil sur-
face, and available for surveys (Availability probability) was low due 
to frequent vertical temporary emigration into the soil by both P. 
richmondi and P. kentucki (Table 2). The probability of temporary 
emigration by P. richmondi varied slightly with time of day, moder-
ately increasing, linearly, from morning until evening. The temporary 
emigration probability of P. kentucki did not vary substantially, but 
exhibited a hump‐shaped relationship with the abundance of coarse 
woody debris (Figure 1).

3.2 | Occupancy

Plethodon richmondi was predicted to have a moderately restricted 
distribution within LCW, with a model‐averaged occupancy esti-
mate, ̂̄𝜓, of 0.738 (95% CI: 0.35, 0.89). Comparatively, P. kentucki 
was likely distributed more ubiquitously ( ̂̄𝜓 = 0.947 [0.11, 1.0]; 
Table 2), although large confidence intervals provide considerable 
uncertainty in our assessment. Percent soil moisture (“MST”), NDVI 
(“VEG”), and canopy openness (“CAN”) were all important covariates 
in estimating occupancy of P. richmondi (Figure 2). Like P. richmondi, 
P. kentucki occupancy was also correlated with percent soil moisture 
and NDVI (Figure 3), but the directions of the covariates’ effects 
were heterogeneous (Figure 2). The remaining covariates included 
in models of occupancy produced heterogeneous effects and were 
therefore not considered to be reliable predictors of woodland sala-
mander distributions in LCW.

3.3 | Co‐occurrence

The overall probability of P. richmondi co‐occurring with P. kentucki, 
̂̄𝜓ric|ken was 0.72 (95% CI: 0.53, 0.86). Models of co‐occurrence featur-
ing covariates that represent environmental gradients were better 
at predicting patterns of co‐occurrence (cumulative Akaike model 
weight [Σωij] = 0.971) than null models (Σωij = 0.029). Co‐occur-
rence probabilities were positively influenced by percent soil mois-
ture and NDVI (Figure 4). The relationship of ̂̄𝜓ric|ken with NDVI was 

TA B L E  2   Model‐averaged estimates of site and sampling 
parameters from hierarchical models of Southern Ravine 
Salamander (Plethodon richmondi) and Cumberland Plateau 
Salamander (P. kentucki)

Parameter

P. richmondi P. kentucki

95% CI 95% CI

Site

Occupancy Probability, 0.74 (0.35, 0.89) 0.94 (0.12, 1.00)

Estimated Density (N/m) 0.06 (0.02, 0.15) 0.06 (0.02, 0.20)

Sampling

Conditional Capture 
Probability, ̂̄p𝜓

0.36 (0.25, 0.49) 0.24 (0.16, 0.35)

Effective Detection 
Probability, ̂̄p𝜆

0.06 (0.02, 0.14) 0.05 (0.02, 0.15)

Availabilitya 0.16 0.21

Emigration Probabilityb 0.84 0.79

Note. Data were collected from repeated (N = 4) surveys in 2016 at Lilley 
Cornett Woods Appalachian Ecological Research Station (Letcher Co., 
Kentucky, USA). Estimates are averages of N = 40 sites (95% CI).
aDefined as: 1—(Effective Detection Probability/Conditional Capture 
Probability). bDefined as: 1—(Availability). 

F I G U R E  1   Estimates of Southern Ravine Salamander (Plethodon 
richmondi; top) and Cumberland Plateau Salamander (P. kentucki; 
bottom) temporary emigration probability (dotted lines) and two 
components of detection: conditional capture probability (light gray 
95% CI) and effective detection probability (dark gray 95% CI) in 
relation to time of survey (top) and quantity of fallen CWD (coarse 
woody debris; bottom) in an old‐growth forest at Lilley Cornett 
Woods Appalachian Ecological Research Station, Letcher County, 
Kentucky, USA in Fall 2016



12946  |     BAECHER and RICHTER

nearly linear, with a gradual positive slope. Co‐occurrence exhibited 
a steep positive slope where percent soil moisture <15%, plateau-
ing at approximately 20%. These results provide evidence that spe-
cies co‐occurrence patterns are nonrandom and vary along natural 
environmental gradients. However, the Species Interaction Factor, 
or φ, of P. richmondi and P. kentucki was equal to 1 (𝜑̂ = 1.00; 95% 
CI = 0.984, 1.016), providing no evidence that competition affects 
co‐occurrence of P. kentucki and P. richmondi or that their distribu-
tions are spatially segregated.

3.4 | Density

Density estimates obtained from N‐mixture models were substan-
tially greater than counts uncorrected for imperfect detection, such 
that counts only represented 1.43%–7.22% (interquartile range) of 
the total estimated density of each species. When extrapolated to 
the total extent of the study area (44.25 ha), densities of P. richmondi 
and P. kentucki were estimated at 26,570 (95% CI: 10,895, 66,897) 
and 26,848 (95% CI: 8,552, 91,098), respectively.

Percent soil moisture (“MST”) and Beers‐transformed aspect 
(“ASP”) were the most important covariates when estimating density 
of P. richmondi (Figures 2 and 5). Plethodon richmondi density exhib-
ited marked, positive curvilinear responses to percent soil mois-
ture and aspect. Plethodon kentucki density was influenced most by 
Topographic Position Index (“TPI”) and percent canopy openness 
(“CAN”; Figure 2). The density of P. kentucki exhibited gradually 
dampened negative responses to both Topographic Position Index 
and percent canopy openness, with inflated upper limits (Figure 5).

4  | DISCUSSION

We found that natural environmental gradients created by dynamic 
ecosystem processes inherent in old‐growth forest influence the 
fine‐scale distribution, co‐occurrence, and density of P. richmondi 
and P. kentucki. Species‐specific responses to gradients of soil mois-
ture and temperature, solar exposure from canopy structure, and 
slope position likely reflect physiological restraints associated with 
desiccation vulnerability and thermal avoidance. Although patterns 
in co‐occurrence of P. richmondi and P. kentucki do vary along gradi-
ents of canopy density and soil moisture, little evidence was found 
to support the hypothesis that populations of woodland salaman-
ders experience interspecific competition.

4.1 | Plethodon richmondi

Plethodon richmondi density in LCW was positively related to forest 
soil moisture and reduced solar radiation due to slope face, and their 
fine‐scale distribution (i.e., occupancy) was restricted to mesic for-
est stands with minimal canopy disturbance. In LCW, canopy distur-
bance can be caused by natural, endogenous processes, such as (a) 
windthrow, which results either in mechanical removal of leaves and 
branches, or, in rare circumstances, complete root upheaval and (b) 
senescence or indirect damage from adjacent fallen trees, resulting 
in minor canopy disturbance. However, exogenous processes, such 
as the arrival of Hemlock Woolly Adelgid (Adelges tsugae), an invasive 
pest to Hemlock trees in eastern deciduous forests, have caused ac-
celerated mortality of eastern Hemlock (Tsuga canadensis) in LCW. 
Tree mortality associated with A. tsugae is predicted to result in 
declines of black‐throated green warbler (Setophaga virens) in LCW 
and surrounding Appalachian forests in southeast Kentucky (Brown 
& Weinkam, 2014). Although T. canadensis stands in LCW are cur-
rently being treated for A. tsugae, tree mortality associated with this 

F I G U R E  2   Model‐averaged estimates of effect sizes, ̂̄𝛽 , of 
covariates used in occupancy (ψ, light gray) and N‐mixture models 
(λ, dark gray) of Southern Ravine Salamander (Plethodon richmondi; 
top) and Cumberland Plateau Salamander (P. kentucki; bottom) 
surveyed at Lilley Cornett Woods Appalachian Ecological Research 
Station, Letcher County, Kentucky, USA in Fall 2016. Thick lines 
around ̂̄𝛽  estimates represent a 50% unconditional confidence 
interval (CI), and thin lines represent a 95% CI. Asterisks represent 
̂̄𝛽  estimates with 95% CI not containing “0.” “VEG” = Normalized 
Difference Vegetation Index, “ASP” = Beers‐transformed aspect, 
“TPI” = Topographic Position Index, “ELV” = Digital Elevation Model, 
“RAD” = direct solar radiation, “MST” = volumetric soil moisture, 
“CAN” = percent canopy openness. See Table 1 for a description 
of covariates. Covariates with ̂̄𝛽  values centered at zero were not 
estimated due to non‐convergent models or model instability and 
are therefore represented as having “zero” effect sizes
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pest is presumed to continue. It follows that through alterations to 
canopy characteristics, A. tsugae, and other invasive pests in LCW 
(e.g., emerald ash borer, Agrilus planipennis) could negatively impact 
Plethodon salamanders, which lack the vagility to evacuate habitats 
that have undergone dramatic transformation (Welsh & Droege, 
2001). Further research into the mechanisms responsible for canopy 
loss in LCW may provide a more meaningful interpretation of P. rich‐
mondi occupancy and density dynamics. Future surveys and analy-
ses should incorporate data pertaining to tree age, diameter, canopy 
density, and prevalence of pest‐related damage.

4.2 | Plethodon kentucki

Density of P. kentucki was negatively impacted by the presence of 
canopy disturbance on exposed slope faces. Furthermore, canopy 
disturbance influenced the density of P. kentucki with a greater 
magnitude than soil moisture and aspect—gradients which both bol-
stered densities of P. richmondi. Perhaps the response of P. kentucki 
density to altered canopy structure was so great because canopy 
disturbance directly erodes environmental conditions which typi-
cally promote local Plethodon salamander population viability (e.g., 
moist soil and low solar exposure; Ford, Menzel, and Odom (), 
Peterman & Semlitsch, 2013; Semlitsch et al., 2014).

Factors affecting local density of P. kentucki did not necessarily 
affect their distribution. Specifically, canopy disturbance and land-
scape convexity (exposure) were found to be key determinants of 
density at a given site, but did not necessarily influence the likeli-
hood of that site being occupied. These results suggest that within 
LCW P. kentucki respond with greater consequence to environmen-
tal processes which govern population size (i.e., productivity, re-
cruitment) than those which perhaps govern their occurrence (i.e., 
colonization, extinction).

It is possible that aspects of environmental gradients assessed in 
this study were not important in explaining population dynamics of P. 
kentucki or P. richmondi due to the coarse scale with which they were 
evaluated. For instance, environmental variables and salamander 
counts were aggregated to the extent of the sampling area (800 m2), a 
scale which could obscure relevant information about the relationship 
of salamanders with micro‐scale variation in environmental conditions.

4.3 | Co‐occurrence

The degree of overlap in the fine‐scale distributions of P. richmondi 
and P. kentucki within LCW corresponded strongly with natural en-
vironmental gradients. The probability of P. richmondi and P. ken‐
tucki co‐occurring in a given forest stand at LCW was positively 

F I G U R E  3   Occupancy probability ( ̂̄𝜓) 
of Southern Ravine Salamander (Plethodon 
richmondi; top) and Cumberland Plateau 
Salamander (P. kentucki; bottom) in 
relation to NDVI (Normalized Difference 
Vegetation Index), a measure of vegetative 
cover, and percent soil moisture in an 
old‐growth forest at Lilley Cornett Woods 
Appalachian Ecological Research Station, 
Letcher County, Kentucky, USA in Fall 
2016
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correlated with soil moisture and canopy density. More specifi-
cally, co‐occurrence was more common between P. richmondi and 
P. kentucki in mesic habitats, where stress associated with desic-
cation avoidance and thermoregulation is minimal; co‐occurrence 
was much less common in xeric habitats with dry, clay‐dominated 
soils, and sparse canopy coverage, where physical stress is likely 
most apparent. However, there is no evidence to suggest that the 
occurrence of one species is influenced by the presence of an-
other; their populations likely occur independently. There is also 
little evidence to suggest that microhabitat usage (i.e., coarse 
woody debris, rocky cover, leaf litter) differs between these spe-
cies (Baecher & Richter unpubl. data). Perhaps observed patterns 
in co‐occurrence of P. richmondi and P. kentucki are artifacts of the 
individual occurrence pattern of P. richmondi, given P. kentucki was 
so ubiquitously distributed.

If P. richmondi and P. kentucki populations do in fact experience 
interspecific competition and are not independent, it is possible that 
the methods applied in this study were insufficient to detect such 
phenomena. For instance, if Plethodon salamanders ameliorate com-
petitive pressure through spatial reorganization of territories, which 
can occur on scales equivalent to the cumulative area of the focal 

individuals’ home ranges (Marvin, 1998), it is possible that the spatial 
scale of this study was too coarse to quantify such fine‐scale interac-
tions. Another potential explanation of the observed patterns of co‐
occurrence may be related to mating behavior of P. kentucki. Marvin 
(1998) found that populations of P. kentucki in this region exhibit 
territoriality associated with mate pairing. In southeast Kentucky, 
the breeding period of P. kentucki begins late June to mid‐August 
and lasts until mid‐to‐late October (Baecher pers. obs., Marvin & 
Hutchison, 1996). Although unrelated to interspecific competition, 
it is possible that territoriality associated with P. kentucki breeding 
behavior was not observed during the timeframe of this study (15 
October 2016 to 13 November 2016).

4.4 | Detection, Availability, and 
Temporary Emigration

Unless all individuals in a population are available for capture dur-
ing a survey (availability = 1), it is important to distinguish between 
conditional capture probability (probability of capturing an animal 
given availability = 1) and effective detection probability (probability 
of capturing an animal given availability ≤1). Given that Plethodon 
are known to migrate between surface and subsurface refugia fre-
quently (Bailey, Simons, & Pollock, 2004), their availability—the 
probability of an individual being alive and present on the soil sur-
face during a survey—should be much <1 (availability = 1 – [tempo-
rary emigration]; O’Donnell et al., 2015), and therefore, estimates 
of effective detection probability should be much less than that 
of the conditional capture probability. Corroborating the assertion 
that surface inactivity confounds studies of Plethodon salamanders 
(Bailey et al., 2004; O’Donnell et al., 2015), this study showed that 
more than half of the individuals in populations of P. richmondi and P. 
kentucki had emigrated into subterranean refugia and were unavail-
able for surveying.

5  | CONCLUSIONS

This study found that the pattern of distribution and the abundance 
of woodland salamanders throughout the landscape can be nonran-
dom. Given that the nature of woodland salamanders’ effects on forest 
floor dynamics (e.g., detrital food webs, organic material retention) can 
change due to variation in environmental conditions (Walton, 2005, 
2013), it is likely that the spatial extent of woodland salamander’s influ-
ence on the ecosystem is nonrandom and varies dramatically across 
natural environmental gradients (Semlitsch et al., 2014). Thus, the role 
that woodland salamanders play in the maintenance of forest health, 
biodiversity, and ecosystem services (Davic & Welsh, 2004) is likely 
contingent upon the inherent inhabitability of the system. Therefore, 
regions within a forest that support large populations of woodland 
salamanders, such as those highlighted in this study—mesic forest 
stands on north‐to‐east facing slopes with dense canopy—may provide 
enhanced ecosystem services and support stability in the total forest 
ecosystem (Davic & Welsh, 2004). This study took place in a stable 

F I G U R E  4   Co‐occurrence of Southern Ravine Salamander 
(Plethodon richmondi) and Cumberland Plateau Salamander (P. 
kentucki) in relation to NDVI (Normalized Difference Vegetation 
Index), a measure of vegetative cover, and percent soil moisture 
in an old‐growth forest at Lilley Cornett Woods Appalachian 
Ecological Research Station, Letcher County, Kentucky, USA in Fall 
2016
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old‐growth forest (Martin, 1975), virtually undisturbed by human activ-
ity (with the exception of light recreation from guided hiking). Because 
woodland salamanders in this study exhibited such marked responses 
to natural disturbances associated with forested ecosystems (e.g., iso-
lated canopy perforation and soil desiccation due to solar exposure), 
population‐level responses to nonnatural disturbances (e.g., timber 
harvest and residential/commercial development) are hypothesized to 
be much more substantial.
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