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Abstract

For a commutative ring R with non-zero zero divisor set Z∗(R), the zero divisor graph of R is Γ (R) with vertex set Z∗(R),
where two distinct vertices x and y are adjacent if and only if xy = 0. The upper dimension and the resolving number of a zero
divisor graph Γ (R) of some rings are determined. We provide certain classes of rings which have the same upper dimension and
metric dimension and give an example of a ring for which these values do not coincide. Further, we obtain some bounds for the
upper dimension in zero divisor graphs of commutative rings and provide a subset of vertices which cannot be excluded from any
resolving set.
c⃝ 2019 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Throughout this article, we will consider only commutative rings R with unity 1 ̸= 0, and we will let Z (R) be
the set of zero divisors of R. The zero divisor graph of R denoted by Γ (R) is the undirected graph having vertex set
V (Γ (R)) = Z∗(R) = Z (R)\{0}, with distinct vertices x and y being adjacent if and only if xy = 0. This definition
of the zero divisor graph is due to D.F. Anderson and Livingston [1], who extended the earlier work of Beck [2] and
D.D. Anderson and Naseer [3] which used all zero-divisors of the ring as vertices. The zero divisor graph translates
the algebraic properties of a ring to graph theoretical tools, and therefore it can help in exploring interesting results
in both graph theory and abstract algebra. The zero-divisor graph of a commutative ring has been studied by many
authors and has been extended to several other algebraic structures.

This paper is organized as follows. In Section 2, we analyze the relation between the upper dimension and the graph
structure of Γ (R) for a commutative ring R. Rings with finite metric dimension and those for which upper dimension
and resolving number are same are characterized. In Section 3, it is shown that the upper dimension and metric
dimension (lower dimension) are the same in zero divisor graphs for all finite commutative rings of odd characteristic
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and for rings of order 2k, where k is an odd integer. Finally, several examples are discussed, with methods to compute
the upper dimension.

2. Upper dimension and bases of Γ (R)

The concept of metric dimension of a graph was introduced in 1970s by Slater [4] and independently by Harary
and Melter [5]. The concept of upper dimension of graphs was introduced by Chartrand et al. [6].

Definition 2.1. Consider a connected graph G on n vertices. For a given vertex v ∈ V (G), the representation r (v | W )
for v with respect to an ordered set W = {w1, w2, . . . , wk} of vertices of G is a k-tuple defined as

r (v | W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)),

where d(x, y) represents the distance between the two vertices x and y of G. Clearly, the representation for the i th
vertex in W has 0 in the i th coordinate and all other coordinates are non-zero. So the vertices of W necessarily have
distinct representations. Thus the representations of only those vertices that are not in W need to be examined to
check if these representations are distinct. The set W is called a resolving set if all vertices of G have different
representations with respect to W . A resolving set W is called a minimal resolving set if no proper subset of W is a
resolving set of G. A minimal resolving set containing the minimum number of vertices is called a metric basis for G
and the cardinality of a metric basis is called the metric dimension of G, denoted by dim(G). A minimal resolving
set with the largest number of vertices is called an upper basis of G and its cardinality is called the upper dimension
which is denoted by dim+(G). It is obvious that for a graph on n vertices, every subset of (n−1) vertices is a resolving
set. Thus, for any connected graph G, dim+(G) ≤ n − 1.

The resolving number , denoted by res(G), of a connected graph G is the smallest positive integer k such that
every set of k vertices of G is a resolving set of G. Since the order of an upper basis is the largest minimal resolving
set and resolving number is the order of a resolving set (whether minimal or not) we have the following inequality on
metric dimension, upper dimension and the resolving number for a connected graph G of order n ≥ 2,

1 ≤ dim(G) ≤ dim+(G) ≤ res(G) ≤ n − 1

We begin by summarizing some results on metric dimension and upper dimension of graphs which will be used in
throughout this section. For undefined notations and terminology from graph theory, the readers are refered to [7].

Lemma 2.1 (Lemma 2.2 [8]). For a connected graph G of order n ≥ 1, dim+(G) = 1 if and only if G ∼= P2 or P3
and, for n ≥ 4, dim+(Pn) = 2, where Pn denotes the path on n vertices.

Lemma 2.2 (Lemma 2.4 [8]). A connected graph G of order n has upper dimension equal to n − 1 if and only if
G ∼= Kn .

Lemma 2.3 (Lemma 2.5 [8]). The upper dimension of a cycle Cn is 2, where n ≥ 3 is a positive integer.

Theorem 2.4 (Theorem 4.2 [8]). For a positive integer n ≥ 3, dim+(K1,n × K2) = dim+(K1,n) + 1 = n.

In this and later sections, we denote the ring of integers by Z, the ring of integers modulo n by Zn , and the field with
q elements by Fq . As we now begin to discuss zero-divisor graphs of commutative rings, we remind the reader of the
most fundamental characteristics of the structure of such graphs.

Theorem 2.5 (Theorem 2.3 [1]). Let R be a commutative ring. Then Γ (R) is connected and diam(Γ (R)) ≤ 3.

Lemma 2.6. If R is a commutative ring with unity such that Γ (R) is a path, then |Z∗(R)| ≤ 3.

Proof. By [Theorem 2.3 [1]], Γ (R) is connected and diam(Γ (R)) ≤ 3. Thus, Γ (R) cannot be a path of length greater
than 4.

If possible, let |Z∗(R)| = 4 for some ring R, where Γ (R) is a path, say a − b − c − d such that ab = bc = cd = 0
are the only zero divisor relations. Note that a + c ∈ Z (R) since b(a + c) = 0. Clearly, a + c ̸= a and a + c ̸= c.
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Also, a + c ̸= d since bd ̸= 0 and a + c ̸= 0 since d(a + c) = da + dc = da ̸= 0. Therefore, a + c = b. A similar
argument shows c = b +d. Hence, c −d = b = a +c. Thus a = −d. However, this is a contradiction, since −dc = 0
but ac ̸= 0. Thus, |Z∗(R)| = 4 is not possible. □

Theorem 2.7. Let R be a commutative ring with unity. Then dim+(Γ (R)) = 1 if and only if R is one of the following
rings.

(i) Z3[x]
(x2)

, Z2 × Z2, Z9.

(ii) Z6, Z8, Z2[x]
(x3)

, Z4[x]
(2x,x2−2)

.

Proof. The lists here give the only rings (up to isomorphism) whose zero-divisor graph is isomorphic to (i) P2 or (ii)
P3. Hence, the result follows by Lemmas 2.6 and 2.1. □

Notice that dim+(Γ (R)) = 1 if and only if Γ (R) is a path by Lemma 2.1. However, the same is not true for a graph
G in general, since dim+(G) ≥ 2 if G ̸= P2, P3. Further, if Γ (R) is a path, then Γ (R) has exactly two upper basis
sets, since only the end vertex forms a resolving set.

Theorem 2.8. Let R be a commutative ring with unity. Then dim+(Γ (R)) is finite if and only if R is finite (and not a
domain).

Proof. If R is finite, then |Z∗(R)| is finite and therefore dim+(Γ (R)) is finite. Now, suppose dim+(Γ (R)) is finite.
Let W be the upper basis set with |W | = k, where k is some positive integer. For any two vertices x and y of Γ (R),
d(x, y) ∈ {0, 1, 2, 3} by Theorem 2.5. Now, for each vertex x ∈ Z∗(R), the representation r (x | W ) is a k− coordinate
vector (d1, d2, . . . , dk), where each di ∈ {0, 1, 2, 3}, 1 ≤ i ≤ k. As each di has four possibilities, therefore the total
number of possibilities for r (x | W ) is 4k . Since W is a resolving set, therefore r (x | W ) is unique for each vertex
x ∈ Z∗(R) so that |Z∗(R)| ≤ 4k . This implies that Z∗(R) is finite and hence R is finite. □

Note that dim+(Γ (R)) is finite if and only if R is finite, let dim+(Γ (R)) = k and let W = {w1, w2, . . . , wk} be the
upper basis. Since each coordinate of r (x |W ) is non-zero whenever x ∈ V (Γ (R)) − W , we see that every coordinate
in r (x |W ) belongs to the set {1, 2, 3}, as diam(Γ (R)) ≤ 3. Therefore |Z∗(R)| ≤ 3k

+ k. We note that this is a better
bound than given in proof of Theorem 2.8 as 3k

+ k < 4k for all k ≥ 2.

Corollary 2.9. Let R be a commutative ring with unity 1 (and not a domain) such that dim+(Γ (R)) = k, where k is
any positive integer. Then |Z (R)| ≤ 4k

+ 1.

If R is a commutative ring (and not a domain), we also notice that |Z (R)| ≤ 4k
+ 1 gives k ≥ ⌈log4(|Z (R)| − 1)⌉ =

⌈log(|Z∗(R)|)⌉, thus we have a lower bound for the upper dimension of Γ (R). The equality holds when |Γ (R)| = 1,2.
For a ring R, dim+(Γ (R)) = res(Γ (R)) = 1 if and only if Γ (R) ∼= P2, that is, if and only if R ∼=

Z3[x]
(x2)

, Z2 × Z2, Z9.

Theorem 2.10. Let R be a commutative ring with unity.

(i) dim+(Γ (R)) = res(Γ (R)) = 2 if and only if R ∼=
F4[x]
(x2)

, Z4[x]
(x2+x+1)

, Z4[x]
(2,x)2 , Z2[x,y]

(x,y)2 .
(ii) dim+(Γ (R)) = res(Γ (R)) = |Z∗(R)| − 1 if and only if Γ (R) is complete

Proof. (i) To prove the result, we show if dim+(Γ (R)) = res(Γ (R)) = 2, then Γ (R) is either a path or a cycle. For
this, we first show that ∆(Γ (R)) = 2, where ∆(Γ (R)) = 2 denotes the largest degree of a vertex in Γ (R).

We claim that there does not exist a subset of vertices D = {x, a, b, c} in Γ (R) with the property ax = bx = cx =

0 and the restriction res(Γ (R)) = 2, for otherwise, we have the following cases as given in Fig. 1. In each of the four
graphs in Fig. 1, the bold vertices represent the set of two vertices that do not form a resolving set. Thus, the graphs
(a), (b), (c), (d) in Fig. 1 completely describe the situation that a graph having a vertex of degree 3 or more cannot
have resolving number equal to 2. Therefore, we must have ∆(Γ (R)) ≤ 2. Also, if ∆(Γ (R)) = 1, then Γ (R) = P2 and
res(P2) = 1. Thus, we have ∆(Γ (R)) = 2. Hence Γ (R) is either a path P3 or a cycle C3 or C4. Therefore, we must
have Γ (R) ∼= C3 or C4. Since the two non-adjacent vertices of C4 do not form a resolving set, therefore Γ (R) ∼= C3
and so R ∼=

F4[x]
(x2)

, Z4[x]
(x2+x+1)

, Z4[x]
(2,x)2 , Z2[x,y]

(x,y)2 .
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Fig. 1. Graphs with resolving number 2

(ii). Clearly dim+(Γ (R)) ≤ res(Γ (R)) ≤ n − 1 and any subset of n − 1 vertices of complete graph forms a
resolving set. Hence, the result follows by Lemma 2.2. □

Example 2.11. It is easily verified that if R ∼= Z2 × Z4, Z2 ×
Z2[x]
(x2)

, Z2 × F4, Z2 × Z2 × Z2, Z3 × Z3, then
dim+(Γ (R)) = 2. However, in each case, one can find a set of two distinct vertices of Γ (R) that do not form a
resolving set. Thus res(Γ (R)) > 2.

Recall that an element x in a ring R is said to be nilpotent if there exists a positive integer k such that xk
= 0.

Theorem 2.12. Let R be a ring where every zero-divisor is nilpotent.

(i) If |Z∗(R)| = 1 or 2, then dim+(Γ (R)) = 1.
(ii) If |Z∗(R)| ≥ 3, and Z (R)2

= {0}, then dim+(Γ (R)) = |Z∗(R)| − 1.
(iii) If |Z∗(R)| ≥ 3, and Z (R)2

̸= {0}, then dim+(Γ (R)) ≤ |Z∗(R)| − 2.

Proof. (i) If |Z∗(R)| = 1, then R ∼= Z4 or Z2
(x2)

and so Γ (R) = K1. If |Z∗(R)| = 2, then R ∼= Z9 or Z3[x]/(x2) or
Z2 × Z2 and so Γ (R) = K2. Therefore, in each case dim+(Γ (R)) = 1.

(ii) If |Z∗(R)| ≥ 3, and Z (R)2
= {0}, then xy = 0 for all x, y ∈ Z∗(R), by Theorem 2.8 [1]. Thus, Γ (R) is a

complete graph and so by Lemma 2.2, dim+(Γ (R)) = |Z∗(R)| − 1.
(iii) If |Z∗(R)| ≥ 3 and Z (R)2

̸= {0}, there exists some x ∈ Z∗(R) such that x2
̸= 0. So there exists y ∈ Z∗(R)

such that d(x, y) ≥ 2. Therefore, dim+(Γ (R)) ≤ |Z∗(R)| − 2 as Z∗(R) − {z, y} is a resolving set for any vertex z
adjacent to x . □

3. Characteristic of a Ring and Star Subsets

Resolving sets for zero-divisor graphs have previously been studied in [9] and [10]. In these articles, it was noted
that distance similarity was a key factor in determining resolving sets. Vertices x and y of a graph G are called
distance similar if d(x, a) = d(y, a) for all a ∈ V (G) − {x, y}. The following results illustrate this connection
between concepts.

Theorem 3.1 (Theorem 2.1 [9]). Let G be a connected graph. Suppose G is partitioned into k distinct distance similar
classes V1, V2, . . . , Vk (that is, x, y ∈ Vi if and only if d(x, a) = d(y, a) for all a ∈ V (G) − {x, y}).

(i) Any resolving set W for G contains all but at most one vertex from each Vi .
(ii) Each Vi induces a complete subgraph or a graph with no edges.

(iii) dim(G) ≥ |V (G)| − k.
(iv) There exists a minimal resolving set W for G such that if |Vi | > 1, at most |Vi | − 1 vertices of vi are elements of

W .
(v) If m is the number of distance similar classes that consist of a single vertex, then |V (G)| − k ≤ dim(G) ≤

|V (G)| − k + m.

The characteristic of a ring R is the least positive integer n such that nx = 0 for all x ∈ R, where 0 is the zero
element of R. If no such integer exists, we say that R has characteristic 0.

Theorem 3.2. Let R be a finite commutative ring that is not a field such that R has odd characteristic. Then
dim+(Γ (R)) = dim(Γ (R)).
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Proof. Since the characteristic of R is odd, x and −x are distance similar for any vertex x and x ̸= −x . Thus, by
Theorem 3.1, dim+(Γ (R)) = dim(Γ (R)). □

Theorem 3.3. Let S be a finite commutative ring of order 2k, where k is an odd integer. Then dim+(Γ (S)) =

dim(Γ (S)).

Proof. It can be shown that S ≃ Z2 × R for some finite ring R with odd characteristic. If R is a domain, then
Γ (S) is a star-graph and the result follows from Theorem 2.4. (It is also trivial to prove that dim+(Γ (Z2 × Zp)) =

dim(Γ (Z2 × Zp)), where p is prime). Hence, we assume that R is not a domain for the rest of the proof.
The elements of v(Γ (S)) can be partitioned into the sets A = {(0, x)|x ∈ Z (R)∗}, B = {(0, y)|y ∈ R − Z (R)},

C = {(1, x)|x ∈ Z (R)∗} and D = {(1, 0)}. Note that |B| > 1 since R − Z (R) ̸= ∅ and z ∈ R − Z (R) implies
−z ∈ R − Z (R) with z ̸= −z. Also, all elements of B are distance similar as any element of B is only adjacent to (1,
0). If x and y are distance similar vertices of Γ (R), then both (0, x) and (0, y) are distance similar in Γ (S) and (1, x)
and (1, y) are distance similar in Γ (S). (For example, d((a, b), (0, x)) = 1 if and only if (a, b)(0, x) = (0, 0) if and
only if bx = 0 if and only if by = 0 if and only if (a, b)(0, y) = (0, 0) if and only if d((a, b), (0, y)) = 1). Thus, when
v(Γ (S)) is partitioned into distance similar classes (as in Theorem 3.1), the only class that will have one element is
D = {(1, 0)}.

Next, we show (1, 0) cannot be an element of any minimal resolving set for Γ (S). Suppose W is a resolving set
with (1, 0) ∈ W . Let W ∗

= W − {(1, 0)}. We show that W ∗ is also a resolving set. Note that W ∗
∩ B ̸= ∅. So, let

c ∈ W ∗
∩ B. Then, for all s ∈ v(Γ (S)) − W ∗, r (s, W ∗) ̸= r ((1, 0), W ∗) because (1,0) is the only vertex of Γ (S)

whose distance to c is 1. So, suppose x, y ∈ v(Γ (S)) − W with x ̸= y but r (x, W ∗) = r (y, W ∗). However, since
W is a resolving set, this implies d((1, 0), x) ̸= d((1, 0), y) and d(z, x) = d(z, y) for all z ∈ W ∗. This is impossible
if both x and y are in A ∪ B, since all elements of A ∪ B are distance 1 from (1, 0). If x, y ∈ C , then x = (1, x2)
and y = (1, y2), for some x2, y2 ∈ Z (R)∗. Clearly, d(x, (1, 0)) > 1 and d(y, (1, 0)) > 1. There must exist some
x3, y3 ∈ Z (R)∗ such that x2x3 = 0 and y2 y3 = 0. However, this implies d(x, (1, 0)) = d(y, (1, 0)) = 2 via the paths
x − (0, x3) − (1, 0) and y − (0, y3) − (1, 0). Hence, it must be the case that (without loss of generality) x ∈ A ∪ B
and y ∈ C . Thus y = (1, y2) for some y2 ∈ Z (R)∗. Suppose x ∈ A with x = (0, x2) for some x2 ∈ Z (R)∗. Then
there is some t ∈ Z (R)∗ with x2t = 0. Therefore, there must be some t∗

∈ Z (R)∗ such that t and t∗ are distance
similar with (1, t∗) ∈ W ∗. However, this implies d(x, (1, t∗)) = 1 but d(y, (1, t∗)) ̸= 1. If x ∈ B with x = (0, u)
for some u ∈ Z (R)∗, then there is some v ∈ Z (R)∗ with vy2 = 0. Therefore, there must be some v∗

∈ Z (R)∗ such
that v and v∗ are distance similar and (0, v∗) ∈ W ∗. Then d(y, (0, v∗)) = 1 and d(x, (0, v∗)) ̸= 1. Hence, in all cases,
r (x |W ∗) ̸= r (y|W ∗).

Finally, we show that every minimal resolving set of Γ (S) must contain all but one element of each distance similar
class. Let K1, K2, . . . , Kn be the partition of Γ (S) into distance similar classes (as in Theorem 3.1). By Theorem 3.1,
|W ∩ Ki | ≥ |Ki | − 1 for any minimal resolving set W . Therefore, assume |W ∩ Ki | = |Ki | (that is, Ki ⊆ W1) for
some minimal resolving set W1 and some 1 ≤ i ≤ n with Ki ̸= {(1, 0)}.

Let x1 ∈ Ki and let W ∗
= W1 − {x1}. As in Theorem 3.1, we will show that W1 is not a minimal resolving

set by showing that W ∗ is a resolving set. Let a, b ∈ V (Γ (S)) − W1. Then r (a|W1) ̸= r (b|W1), implying there
is some c ∈ W1 with d(a, c) ̸= d(b, c). If c ̸= x1, then c ∈ W ∗ and r (a|W ∗) ̸= r (b|W ∗). If c = x1, then let
v ∈ Ki with v ̸= x1. Therefore, v and x1 are distance similar and d(a, v) = d(a, x1) ̸= d(b, x1) = d(b, v). Hence,
r (a|W ∗) ̸= r (b|W ∗). Finally, if t ∈ V (Γ (S)) − W ∗ with t ̸= x1, then t is not distance similar to x1. Thus, there is
some vertex z ∈ V (Γ (S)) − {t, x1} such that d(t, z) ̸= d(x1, z). If z ̸= (1, 0), there is some z∗

∈ W ∗ such that z = z∗

or z is distance similar to z∗. Thus, d(t, z∗) = d(t, z) ̸= d(x1, z) = d(x1, z∗).
However, suppose z = (1, 0). Choose u ∈ R − Z (R) such that (0, u) ∈ W ∗. Then, since the only vertex adjacent

to (0, u) is (1, 0), we have d((0, u), t) = d((0, u), (1, 0)) + d((1, 0), t) = 1 + d((1, 0), t) ̸= 1 + d((1, 0), x1) =

d((0, u), (1, 0)) + d((1, 0), x1) = d((0, u), x1). Therefore, r (t |W ∗) ̸= r (x1|W ∗). □

Definition 3.1. A vertex of degree one (that is, a vertex adjacent to only one other vertex) is called a pendant vertex .
Call the vertices which are adjacent with at least one pendent vertex star vertices and the subset of all such vertices
a star subset . Also, the number of pendent edges incident on v is called the star degree of v, denoted by sdeg(v).
Clearly, if d(v) denotes the degree of a vertex v, then sdeg(v) ≤ d(v) and the equality holds in star graphs. Also, a
tree that is not a star graph has at least two star vertices.
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Theorem 3.4. Let G be a graph of order n with vertex set V (G) and a star subset X = {x1, x2, . . . , x p} such that
the star degree of xi is ki ≥ 2 for all 1 ≤ i ≤ p. Then dim+(G) ≥ k − p, where k = k1 + k2 + · · · + kp.

Proof. For 1 ≤ i ≤ p, choose xi , and let v1, v2, . . . , vki , ki > 1 be pendent vertices incident on xi . Then vm is
distance similar to v j for each 1 ≤ m ≤ ki and 1 ≤ j ≤ ki . Therefore, by Theorem 3.1, a subset of at least ki − 1 of
the vertices {v1, v2, . . . , vki } must be contained in any minimal resolving set. Thus any resolving set has cardinality
greater than or equal to k1 + k2 + · · · + kp − p = k − p. □

Corollary 3.5. Let G be a graph as in Theorem 3.4. If, in addition, G is the zero divisor graph of some commutative
ring, then k − p ≤ dim+(G) ≤ n − p, where k = k1 + k2 + · · · + kp.

Example 3.6. By using the results in this article and examining the graphs found in [11], one can determine the
upper dimension of all zero divisor graphs of a commutative ring with up to 14 vertices. Out of these examples,
there is only one ring R such that dim(Γ (R)) ̸= dim+(Γ (R)). For R ∼= Z2 × Z2 × Z2 × Z2, dim(Γ (R)) = 3 with
W = {(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1)} an example of a minimal resolving set. However, it is straightforward to
verify that V = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} also defines a resolving set for Γ (R). We can see
that V is minimal, as removing (1,0,0,0) would give r ((1, 1, 1, 0)|V ) = r ((0, 1, 1, 0)|V ), removing (0,1,0,0) will give
r ((1, 1, 1, 0)|V ) = r ((1, 0, 1, 0)|V ), removing (0,0,1,0) will give r ((1, 1, 1, 0)|V ) = r ((1, 1, 0, 0)|V ), and removing
(0,0,0,1) will give r ((1, 1, 0, 1)|V ) = r ((1, 1, 0, 0)|V ).

It is also interesting to note that for most of the zero divisor graphs on 14 or fewer vertices, a minimal resolving set
can be determined by looking at classes of distance similar vertices — in particular, if K1, K2, . . . , K p is a partition
of v(Γ (R)) into distance similar sets of vertices, then a minimal resolving set is formed by taking all but one element
from each Ki . The only exceptions are as follows.

(i) for R ∼= Z2 ×Z2 or Z9 or Z3[x]/(x2), (where Γ (R) ∼= K2 and vacuously no distinct vertices of Γ (R) are distance
similar).

(ii) for R ∼= Z2 ×
Z2[x]
(x2)

or Z2 × Z4, when Γ (R) has only one pair of distance similar vertices but dim(Γ (R)) =

dim+(Γ (R)) = 2.
(iii) for R ∼= Z2 × Z2 × Z2, when no two distinct vertices of Γ (R) are distance similar.
(iv) for R ∼= Z2 × Z2 × Z2 × Z2, when no two distinct vertices of Γ (R) are distance similar.
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