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ABSTRACT 

 

 The banded pygmy sunfish Elassoma zonatum is a wide-ranging species found 

throughout the Southeastern Coastal Plain of North America.  In Kentucky, the populations are 

found above and below the inner boundary of the Coastal Plain.  Due to their geographical 

separation comparisons in body size and morphological features along with genetic comparisons 

using mitochondrial cytochrome-b (Cyt-b) were conducted to test relationships between 

populations.   Two sites, Cypress Creek in the Lower Green River system and Rose Creek in the 

Tradewater River drainage, were sampled from above the inner boundary and two additional 

sites, Bayou de Chien and Running Slough in the Mississippi River drainage, were sampled from 

below the boundary line.  Collections from Rose Creek and Running Slough yielded no adult 

specimens for body measurement/morphological comparisons and were only used for genetic 

comparisons. 

 Using principal components analysis (PCA) of body measurements, minimal separation 

in body sizes was detected between drainages when males and females were combined (PC1 

48.9%, PC2 16.7%).  When separating sexes, complete separation was observed between both 

sites, PC1 62% and PC2 12.55% for females and PC1 48.19% and PC2 15.02% in males.  PCA 

comparisons were also conducted using 12 morphological landmarks in geometric 

morphological analysis but yielded no distinct separation in drainages. 

 Cyt-b comparisons were conducted using sampled individuals in addition to 25 NCBI 

sequences of Elassoma zonatum collected from nearby drainages.  Phylogenetic trees were 

constructed using maximum likelihood analysis and indicated that individuals from Rose Creek 

and Cypress Creek were nearly identical to each other and with individuals from another 

population collected above the fall line in Running Lake, Illinois and had low genetic diversity 
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while sampled individuals from Bayou de Chien and Running Slough had greater genetic 

diversity. Haplotype networks were constructed that indicated populations found above the 

Coastal Plain region were very similar to each other and could be indicative of a northward 

range expansion after the Wisconsin Glacial Episode. 
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CHAPTER 1 

 

INTRODUCTION 

  

 Phlyogeography deals with the spatial arrangements of genetic lineages especially 

within and among closely related species (Avise, 2009).  In aquatic organisms, phylogeographic 

patterns should give an indication of the geological history of the regions they occur in (Avise, 

2000).  In eastern North America, climatic changes during the Pleistocene likely played a 

significant role in shaping the current diversity and distributions of freshwater fishes in the 

region (Berendzen et al., 2003; Berendzen et al., 2008; Bossu et al., 2013; Mayden, 1988; Near 

et al., 2001). 

 Prior to the Pleistocene, river drainages in North America were quite different than 

present day.  The major river systems during that period included the Old Ouachita, Arkansas, 

Missouri, Mississippi, Teays, Wabash, Ohio, Cumberland, Duck, and Tennessee rivers with many 

of the extant systems looking very different than their current form (Mayden, 1988).  During this 

time the Central Highlands of eastern North America were one contiguous highland region that 

would be eventually fragmented by glacial cycles and form the Ozark and Ouachita highlands 

west of the Mississippi River and the Eastern Highlands located east of the Mississippi River 

(Thornbury, 1965). 

During the Pliocene, the lower Ohio River was considerably smaller than its current 

form.  The headwaters were located in present day southern Indiana and central Kentucky, 

including the Green and Tradewater rivers, and snaked across southern Illinois (Wabash River) 

to the present-day Cache River Valley.  It continued south joining the Cumberland and 

Tennessee rivers prior to its confluence with the Mississippi (Burr and Warren, 1986).  During 
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this period the present day Big Sandy, Licking, and Kentucky rivers were likely tributaries to the 

Teays River (Burr and Warren, 1986). 

Mayden (1988) hypothesized that present-day species distributions in the Central 

Highlands were the result of glacial events during the Pleistocene that severed a physiographic 

province that consisted of widespread and speciose fauna into at least three disjunct areas 

referred to as the Eastern Highlands, Ozark Highlands, and Ouachita Highlands.  This pre-

Pleistocene vicariance hypothesis was supported by several studies that indicated an east-west 

Pliocene divergence of wide ranging fish species (e.g. Berendzen et al., 2003; Berendzen et al., 

2008; Bossu et al., 2013; Near et al., 2001). 

A key concept in evolutionary biology is that the divergent selective regime will often 

generate and maintain some type of phenotypic diversity (Langerhans et al., 2003).  This 

divergent selection can lead to differences in phenotypic expression either by genetic 

differentiation or phenotypic plasticity (Levins, 1968; Orr and Smith, 1998; Robinson and Wilson, 

1994; Schluter, 2000, cited in Langerhans et al., 2003; West-Eberhard, 1989).  Such divergence is 

significant as it can influence microevolutionary changes and result in speciation (West-

Eberhard, 1989).   Mitochondrial DNA analysis can indicate whether populations have been 

separated for a long period of evolutionary time or if the separation has been much more recent 

(Hughes et al., 2009).   

A common gene used in phylogenetic studies is the mitochondrial cytochrome-b (Cyt-b), 

due to it having a rate of base substitution that makes it suitable for comparisons between 

closely related species (Whitmore et al., 1994).  Cyt-b has been considered one of the more 

useful genes for phylogenetic work, and is one of the more widely used, mainly because of the 
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structure and function of its protein product (Degli et al., 1993).  Cyt-b gene contains slowly and 

rapidly evolving codon positions, and has been used for a diversity of systematic questions 

(Farias et al., 2001).  Mitochondrial DNA (mtDNA) is passed via the female to offspring thus 

molecules from different families rarely recombine making mtDNA inheritance both haploid and 

asexual.  Mutations alone normally account for the genetic variety of mtDNA that is observed in 

animal populations.   MtDNA genotypes are referred to as haplotypes, that differ from each 

other by mutations.  Due to the rapid pace of mtDNA evolution several haplotypes can be 

observed within a species (Avise, 2009) 

The shape and size of a species of fish can vary across habitat types (Foster et al., 2015; 

Gaston et al., 2016; Hamel and Crispo, 2016).  In pelagic forms, the individuals are usually 

adapted for feeding on zooplankton in open waters.  Thus, those individuals usually have more 

streamlined, fusiform bodies.  Benthic forms tend to be adapted to feeding on 

macroinvertebrates or other similar food items and have deeper bodies.  Morphological 

diversity has been shown to be influenced by various ecological forces including resource use, 

predation, competition and water flow (Hamel and Crispo, 2016).   

Quantifying meristic characteristics, such as number of fin rays, gill rakers, and scale 

rows have historically served as important methods for identifying fishes and can be used in 

statistical analysis, allowing for comparison of populations and sexes (Barlow, 1961 cited in Begg 

and Waldman, 1999). Meristic characteristics vary within and among species, making them 

useful for describing or identifying fishes (Strauss and Bond, 1990).  Geometric morphometrics is 

the analysis of body shape and or shape of other morphological features (Begg and Waldman, 

1999).  Geometric morphometrics analysis utilizes data derived from discrete morphometric 

points, linear distances between points and the geometric relationships amongst points (Cadrin, 
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2005).  Traditional systems of measurement, including calipers and measuring boards are 

commonly used in morphometric studies.  However, digital imaging with accurate calibration 

provides superior data format and allows data to be stored as coordinates that can be analyzed 

using geometric methods.  Also, digital images are easily archived and saved, allowing for one to 

reprocess and confirm the results (Cadrin, 2005). 

 The genus Elassoma encompasses seven recognized species: E. zonatum Jordan, E. 

evergladei Jordan, E okefenokee Böhlke, E. bohlke Rohde and Arndt, E. okatie Rohde and Arndt, 

E. alabamae Mayden, and E. gilberti Snelson, Krabbenhoft and Quattro.  Four of these seven 

species (E. alabamae, E. boehlkei, E. gilberti, and E. okatie) have only been described in the past 

30 years (Rohde and Arndt 1987, Mayden 1993, Snelson et al., 2009).  Five of the seven 

Elassoma species have restricted geographic distributions. Of these seven species, only the 

banded pygmy sunfish, Elassoma zonatum, occurs in Kentucky and was originally thought 

restricted to the Coastal Plain region (Clay, 1975). It is now known that E. zonatum populations 

in Kentucky inhabit three different drainages.  The Coastal Plain population drains into the 

Mississippi River, while the Green and Tradewater rivers populations drain into the Ohio.   

Elassoma zonatum was originally assigned a conservation status of special concern 

(Branson et al., 1981 cited in Burr and Warren, 1986).  However, biological surveys conducted by 

the Kentucky State Nature Preserves Commission (KSNPC) in 1979–1980 discovered populations 

above the inner boundary of the Coastal Plain, often referred to as the fall line (Robison, 1986), 

in the Tradewater and Green River systems (Warren and Cicerello, 1982).  Both populations 

represented new records for the state and extended the known Kentucky Elassoma zonatum 

range 160km east (Warren, 1980). With this range extension and new populations, Burr and 
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Warren (1986) suggested E. zonatum was more common than prior studies showed and should 

not be listed as a species of special concern. 

 Prior studies on the life history and habitat preference of E. zonatum in the Coastal Plain 

region of Kentucky indicated association in the summer with swampy areas among dense beds 

of aquatic vegetation supporting bald cypress (Taxodium distichum), tupelo (Nyssa spp.), oaks 

(Quercus spp.) and willows (Salix spp.) (Walsh and Burr, 1984).  Barney and Anson (1920) noted 

typical habitat for E. zonatum in Cypress Bayou, Louisiana consisting of surface mats of 

vegetation with Coontail (Ceratophylum spp.) growing underneath.  With the distribution of E. 

zonatum in Kentucky paralleling cypress swamps, it has been hypothesized that suitable habitat 

was once found over the western third of the state and that isolated populations found in the 

Tradewater and Green River systems may be a result of historical wetland loss (Warren, 1980). 

The objectives of this study were to utilize meristic counts and morphological 

measurements to provide a comparison of a disjunct Elassoma zonatum population found above 

the fall line in Cypress Creek, located in the Green River system, with those found below the fall 

line in Bayou de Chien in the Coastal Plain region.  Genetic comparisons were conducted using 

Cyt-b analysis to look at genetic similarity/differences between populations collected above the 

fall line with those below the fall line, along with individuals collected in surrounding states.  

Such analysis could help answer if populations of Banded Pygmy Sunfish in Kentucky, found 

above the fall line are morphologically and genetically similar to other populations of E. zonatum 

found in Kentucky and in surrounding states, or if there is a distinct difference between 

populations, supporting the need for further studies to investigate potential causes. 
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CHAPTER 2 

METHODS 

Study Areas 

Four populations of Elassoma zonatum were identified for this study.  Two populations 

were collected from below the fall line in the Mississippi system.  One site was located in a 

drainage ditch near Bayou de Chien in Hickman County.  A second site was located in Running 

Slough also in Fulton County.  Specimens above the fall line were collected from Cypress Creek 

State Nature Preserve in the Green River system in Muhlenberg County and from Rose Creek in 

the Tradewater drainage in Hopkins County 1(Fig. 1).   

Cypress Creek (Fig. 2), is a second order stream located in the Interior Low Plateaus 

Province; it is bordered by cypress swamps and flows into Pond River, which drains into the 

Green River, which eventually drains into the Ohio River.  Bayou de Chien (Fig. 3), is a second 

order tributary to the Mississippi River located in the Coastal Plain region; it is surrounded by 

heavy agriculture resulting in many agricultural ditches draining into the stream.  Rose Creek 

(Fig. 4), is a second order stream that meanders through Hopkins County before draining into 

retention ponds/wetlands bordering the Tradewater River; significant portions dry out during 

the summer months and serve as drainage for many agriculture fields in the area.  Running 

Slough (Fig. 5) was the most western site and is a second order stream that has been mostly 

channelized to assist with field drainage.  It eventually drains into Reelfoot Lake in the Upper 

Blue Basin in Tennessee.  All streams have been heavily impacted over the past century due to 

agricultural practices resulting in straightened stream channels and increased siltation.   

                                                           
1 All figures and tables are presented in appendices at end of thesis. 
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Morphological Comparison 

Elassoma zonatum voucher specimens were procured from Cypress Creek and Bayou de 

Chien using ¼” (6mm) mesh dip nets during the summer of 2016.  Collections yielded 24 

individuals (12 males and 12 females) from Cypress Creek, and 25 individuals (9 males and 16 

females) from ditches around Bayou de Chien. Specimens from Rose Creek and Running Slough 

were omitted from the morphological comparison due to no adult specimens being collected.  

Live specimens were brought back to Eastern Kentucky University (EKU) where photographs 

were taken using a camera mount to ensure same angle and lighting.  A Fujifilm S9400W was 

used to photograph specimens.  Specimens were photographed on a dissecting tray with dorsal 

and anal fins spread with inserted pins for better visualization of fin origins.  A ruler was placed 

next to each specimen for scale and was necessary for geometric analysis.   Photographs also 

allow visual comparison of body and fin coloration and assist with morphometric analysis and 

comparisons.   Prior to photographing specimens for morphometric analysis, they were 

anesthetized with Tricaine Methanesulfonate (MS-222), and then preserved in 95% ethanol for 

use in genetic studies.  

 Software programs tpsDIG2 and tpsUTIL were used for landmark digitalization (Rohlf, 

2010).  Landmarks for morphological characters (Fig. 6) of individuals from both populations 

followed Armbruster (2012) guidelines.  Meristic measurements were conducted adhering to 

Hubbs and Lagler (1974) and Rohde and Arndt (1987) guidelines to determine if populations 

followed usual identification methods for E. zonatum.  Measurements of standard length, body 

depth and body width were taken to the nearest 0.1mm using dial calipers under a dissecting 

microscope.  Body depth was measured vertically from the origin of the dorsal fin.  Dorsal and 

anal fin length measurements were taken from the base of the first spine to the tip of the 
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longest ray.  Eleven other proportional body measurements were taken using ImageJ software 

measurement function (https://imagej.nih.gov/ij/) and included pre-dorsal length, pre-pelvic 

length, pre-anal length, dorsal fin length, anal fin length, caudal peduncle length, caudal 

peduncle depth, head length, snout length, eye diameter and upper jaw length.  All 

measurements were transformed to proportions expressed as thousandths of standard length.  

Linear regressions were conducted to test if any variables were correlated with standard length.  

Correlated values were removed and remaining measurements were compared using MANOVA 

with sex at each site as fixed factors.  Pairwise Hotelling's tests were conducted post-hoc to 

determine differences among sexes between sites.  Student’s T-tests were then used to 

determine which measurements were significantly different between populations and sexes.  In 

addition, all vertical trunk bars and preopercular pores were counted and compared between 

sexes and populations.    

IMP 8 package including Coordgen8, and Twogroup8 (Sheets, 2014) was used to analyze 

landmark relationships and differences between means in Cypress Creek and Bayou de Chien 

populations.  Coordgen8 was used to take digitized landmarks and save the data sets in a partial 

Procrustes file using an x1y1x2y2 format.  Twogroup8 was used to conduct analytic test using 

Goodall’s F test (Procrustes) to test for significant differences in shapes between two groups.  

Resampling test for F-test, Procrustes were conducted using 100 bootstraps.  Partial Procrustes 

distances between the two means were calculated using Twogroup8 as well.  Paleontological 

Statistics version 3.15 (PAST) (Hammer et al., 2001) was used to construct principal components 

analysis (PCA) from digitized landmark data and log10 transformed body measurements prior to 

their transformations to proportions of standard length. Thin-plate spline transformations of 
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data were also constructed using PAST to help visualize relative warps.  PAST was also used to 

create a confusion matrix from linear discriminant analysis (LDA) 

Spawning coloration of males was assigned a value by using GNU Image Manipulation 

Program (GIMP) (available from https://www.gimp.org/).  Each male specimen had three hue 

values taken using the color selector function with a sample average collected and with a radius 

setting of 5.  One measurement was taken from the anterior third of the body around the lower 

jaw, a second measurement from the middle of the body around the trunk region below the 

origin of the dorsal fin.  The final measurement was collected from the caudal peduncle after 

termination of the dorsal fin.  The three measurements were then averaged together for an 

overall score for each male.  Students t-test was then used to compare the averages from each 

drainage to each other to detect if any difference in coloration could be observed. 

Aging 

Individuals were aged by removing three scales from the caudal peduncle region using 

dissecting scope and forceps to ensure that individuals of the same age class were being 

compared.  Prior to removing scales, specimens had to be rehydrated with distilled water to 

allow for easy scale removal.  Scales from 49 individuals collected from Cypress Creek n=24 and 

Bayou de Chien n=25 were slide mounted, with all three scales from individual specimens on 

one slide and labeled to match each specimen photograph.  All three scales were observed using 

60x magnification on a compound microscope.   Any observed annuli were then recorded.    

Molecular Techniques 

 In addition to the 24 adults collected from Cypress Creek and 25 adults from Bayou de 

Chien, 7 juveniles from Rose Creek and 17 juveniles from Running Slough were collected.  
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Extraction of whole genomic DNA from fin clips of preserved specimens was conducted via 

CTAB, following lab protocol from Saghai-Maroof et al. (1984).  After CTAB extraction, specimen 

DNA was resuspended using 25µl of nuclease free water.   Samples were checked with a Qubit 

fluorometer to verify quantity of DNA.  Specimens that yielded less than 10ng/µl were 

reprocessed to ensure enough DNA was available to make working solutions.  Once quantity 

was checked, a working solution was made using each specimen’s DNA and nuclease free water 

to achieve a 50µl sample at 10ng/µl concentration.  The samples with most genomic yield were 

used for amplification which represented 24 individuals from Bayou de Chien, 11 from Cypress 

Creek, 7 from Rose Creek and 16 from Running Slough.  The complete Cyt-b gene was amplified 

using polymerase chain reaction (PCR) using a primer pair EZCytbL 5’- 

CCTGAAAAACCACCGTTGTAA - 3’ and EZCytbH 5’-CAAGGCCGATGCTCTAACTC - 3’ (Sandel, 2012).  

Twenty-five microlitre reactions were set up using 12.5µl GoTaq, 1.5µl upstream primer, 1.5µl 

downstream primer, 3µl DNA and 6.5µl of nuclease free water.  Amplification conditions were 

30 cycles of 95°C, 45 secs; 54°C, 30 secs; 72°C, 90 sec. After amplification, specimens were 

plated and sent off for Sanger sequencing by Eurofins Genomics 

(http://www.eurofinsgenomics.com/en/home.aspx).  Prior to Sanger Sequencing purification of 

PCR products was conducted by Eurofins Genomics.  After Sanger Sequencing, only 4 individuals 

from Cypress Creek, 7 from Rose Creek, 15 from Running Slough and 17 from Bayou de Chien 

yielded enough sequence data to be used in comparisons.  

After analysis, forward and reverse sequences were joined and edited using DNA Dynamo. 

Consensus sequences were then imported into AliView (Larsson, 2014) and aligned using 

Muscle 3.8.   Sequences for everglades pygmy sunfish, Elassoma evergladei and spotted sunfish, 

Lepomis punctatus were obtained from GenBank (Benson et al., 2005) and used as an outgroup.  
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Additional E. zonatum sequences from nearby drainages were pulled from GenBank that were 

used in Sandel, 2012 (Table 1), then aligned with sequences from this study to create a FastML 

tree (Price et al., 2009, Price et al., 2010), and then edited with FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/) to determine nearest neighbor sequences to include 

in analysis.  A haplotype network using TCS networks (Clement et al., 2002) was constructed in 

PopArt (http://popart.otago.ac.nz) using all four study sites and additional neighbor sequences.  

CIPRES Science Gateway (Miller et al., 2010) was used to conduct jModelTest2 (Darriba et al., 

2012; Guindon and Gascuel, 2003) and RAxML (Stamatakis, 2014) tests to determine best fit 

trees with Elassoma evergladei and Lepomis punctatus being used as outgroups.  MEGA7: 

Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets (Kumar et al., 2015) 

was used to estimate evolutionary divergence between sequences (Tamura et al., 2004). 
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CHAPTER 3 

RESULTS 

Body Measurement Comparison 

 Linear regressions indicated that measurements of body depth (r=-0.55) and snout 

length (r= -050) were correlated to standard length and were removed prior to MANOVA.  

Individuals were sexed and MANOVA indicated that there was a statistical difference between 

sites based on sex, F (36,101.2) =7.652, p<0.0005; Wilk’s Λ=0.02058.  Post-hoc analysis using 

pairwise Hotelling's tests (Table 2) indicated significant differences between Cypress Creek 

females and Cypress Creek males (p=0.0008), Bayou de Chien males (p=0.0079) and Bayou de 

Chien females (p=0.0004).  Males from Cypress Creek were significantly different from Bayou de 

Chien males (p=0.0293) and from Bayou de Chien females (p=<0.0001).  Males and females at 

Bayou de Chien were not statistically different from each other (p=0.058343). 

 Students t-test comparing differences of means in body measurements of sampled 

individuals from Bayou de Chien (BC) and Cypress Creek (CC) (Table 3) indicated significant 

differences in standard length BC (X̄ 30.22, SD 2.11) and CC (X̄ 26.64, SD 2.37); t(47)=5.5908, 

p=<0.0001, body width BC (X̄  116.88, SD 10.41), and CC (X̄ 156, SD 19.94); t(47)=-8.6574, 

p=<0.0001, pre-pelvic length BC(X̄ 374.64, SD 17.71), and CC (X̄ 385.71, SD 5.22); t(47)=-1.7658, 

p=0.04, eye diameter BC (X̄ 78, SD 5.97), and CC (X̄ 72.25, SD 6.72); t(47)= 3.1692, p=0.0013 and 

upper jaw length BC (X̄ 75.8, SD 7.8) and CC (X̄ 70.92, SD 7.25); t(47)=2.2664,  p=0.0149.   

Comparisons of males from sample sites (Table 4) indicated differences in standard 

length BC (X̄ 29.15, SD 2.32), and CC (X̄ 25.96, SD 1.84); t(19)=1.7291, p=0.001, body width BC (X̄ 

113.78, SD 8.60) and CC (X̄ 149.06, SD 19.94); t(19)=-4.9495, p=<0.0001, pre-dorsal length BC (X̄ 
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518.13, SD 45.06) and CC (X̄ 483.47, SD 43.28); t(19)=1.7846, p=0.0452, anal fin length BC (X̄ 

245.85, SD 7.97), and CC (X̄ 250.32, SD 35.64); t(19)=-10.3965, p=<0.0001, and upper jaw length 

BC (X̄ 79.84, SD 8.38) and CC (X̄ 74.13, SD 6.01); t(19)=1.842, p=0.0419.   

Female comparisons (Table 5) showed significant differences in standard length BC (X̄ 

30.22, SD 1.79), and CC (X̄ 27.32, SD 2.71); t(26)=4.1187, p=0.0002, body width BC (X̄ 118.68, SD 

11.26), and CC (X̄ 162.75, SD 18.28); t(26)=-7.8791, p=<0.0001, pre-pelvic length BC (X̄ 372.16, 

SD 19.04), and CC (X̄ 395.50, SD 24.02); t(26)=2.8708, p=0.0040, pre-anal length BC (X̄ 622.65, SD 

31.20), and CC (X̄ 653.67, SD 32.73); t(26)=-2.5497, p=0.0085, caudal peduncle depth BC (X̄ 

119.94, SD 7.73), and CC (X̄ 113.89, SD 7.81); t(26)=2.0379, p= 0.0259, eye diameter BC (X̄ 76.82, 

SD 5.37) and CC (X̄ 71.70, SD 7.85); t(26)=-20492, p=0.0253 and upper jaw length BC (X̄ 73.49, SD 

6.69) and CC (X̄ 67.78, SD 7.13); t(26)=-2.1791, p=0.0191). 

 PCA of log10 transformed body measurements between Bayou de Chien and Cypress 

Creek indicated that Eigenvalues for PC1 and PC2 accounted for 65.64% of the variance (Fig. 7), 

which indicated minimal overlap between drainages and significant visual separation.  Females 

from both drainages were compared as well.  Eigenvalues for PC1 and PC2 accounted for 74.55% 

of the variance.  The PCA plot (Fig. 8) showed complete separation by drainage.  Male 

comparisons gave Eigenvalues that attributed 63.21% of variation to PC1 and PC2.  The PCA plot 

showed significant drainage separation (Fig. 9).  

 Confusion matrix results computed from LDA indicated that the separate drainages 

(Table 6) were sufficient in identifying origin of individuals.  Males (Table 7) and females (Table 

8) both scored 100% correct assignment during analysis.   
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Age and Body Comparisons 

 No annuli were observed on any scale (Fig. 10), indicating all individuals were under 1 

year of age.    Preopercular pore counts were identical across both drainages with all individuals 

expressing 4 pores, paired as 2 and 2.  Hue color comparisons of males from both drainages 

indicated a significant difference (p=0.01) between sites (Table 9).  Males from Cypress Creek 

had darker shades of blue when compared to Bayou de Chien individuals.  

 Trunk bar counts (Table 10) between both drainages and between sexes had a mode of 

11 bars.  Bayou de Chien males and females ranged 9–11 bars while Cypress Creek males ranged 

9–12 bar counts and females ranged 10–11.   

Geometric Morphometric Analysis  

 Two groups analysis comparing both sites using landmark data resulted in a Procrustes 

F-test score of 2.36 with a significance level of p=0.070 with 100 bootstraps.  Goodall’s F-test 

resulted in F=2.36, df=20, p=0.001.  Bootstrapped partial Procrustes distances resulted in a 

difference between means of 0.0205.  Comparisons between females from both sites yielded 

Procrustes F-score of 3.96 p=0.010 with 100 bootstraps.  Goodall’s F-test analysis resulted in a 

F=3.97, df=20.00 p=<0.0001.  Bootstrapped partial Procrustes distances between means was 

0.0298.  Comparisons of males resulted in a F-score of 2.22, p=0.0100.  Goodall’s F-test resulted 

in F=2.22, df 20, p=0.002 with 100 bootstraps.  For males, the bootstrapped partial Procrustes 

distances was 0.0021. 

 PCA comparisons of 12 Procrustes fitted landmarks for both drainages indicated that 

PC1 and PC2 explained 54.35% of the variation with PC3 explaining an additional 17.6%.  The 

PCA plot (Fig. 11) did not show any distinct separation of drainages.  Comparing males across 
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both drainages resulted in 57.5% of the variation being explained by PC1 and PC2.  The plotted 

PCA (Fig. 12) showed little separation between groups.  In females 60.26% of variation was 

explained by PC1 and PC2.  The PCA plot (Fig. 13) showed some separation between drainages.  

 Thin-plate spline transformations using color coded comparison between drainages (Fig. 

14) indicated that between drainages there was some enlarging of landmarks located at the 

occiput and around the eyes.  In male comparisons (Fig. 15) there were only minor variations 

among landmarks.  Females (Fig. 16) appear more variable with variations more evident in the 

head region and caudal peduncle landmarks. 

Molecular 

 After conducting jModelTest2 a best fit consensus model was selected from 88 models.  

RAxML was then used to take that substitution model and generate a phylogenetic tree which 

showed individuals from Running Lake in Illinois falling out with individuals from Cypress Creek 

and Rose Creek indicating a grouping of individuals from above the Fall line while the majority of 

sequences from below the fall line grouped together (Fig. 17).  A haplotype network was 

generated without outgroup sequences showing each sequenced individual’s drainage (Fig. 18).  

Additional haplotype networks were constructed to show major drainage (Fig. 19) and location 

in relation to Fall Line (Fig. 20).  Haplotype networks showed that individuals from above the Fall 

Line did share haplotypes, while an individual from below the Fall Line located in Lazare 

Louisiana had the most genetic variation from the rest of the sequenced individuals.  Genetic 

differences from Mega 7 evolutionary divergence measurements (Table 11) indicated greatest 

pairwise distances was between all haplotypes to haplotype7 which represented one sequenced 

individual (OUACHT-LAZARE_LA_JQ514646).   
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CHAPTER 4 

DISCUSSION 

 Comparison of measured individuals from this study to sampled E. zonatum populations 

from Mayden (1993) indicated that males in Cypress Creek fell into accepted ranges for known 

populations.  However, mean body measurements of males from Cypress Creek were smaller 

than those measured by Mayden.  Female measurements from Cypress Creek paralleled those 

seen in Mayden’s comparison.  However, females from Bayou de Chien were larger on average 

than females sampled by Mayden, while males were similar in measurements.  Walsh and Burr 

(1984) noted that the maximum length of E. zonatum is usually 32-38mm but lacks definition as 

to whether those numbers refer to standard or total length.  Some variation in size for such a 

wide-ranging species can be caused by more southern individuals growing larger due to earlier 

spawning periods and longer growing seasons (Walsh and Burr, 1984).  Overall, it appears that 

individuals found above the fall line in Cypress Creek are of similar measurements to other 

sampled populations of E. zonatum.   

 Groupings were observed in the body measurement PCA analysis, with distinct 

separation of drainages observed.  Such visual comparisons further indicate that there is 

separation between these drainages as far as morphological measurements are concerned.  Of 

note though is that it appears that in the overall comparison of individuals from both drainages, 

Bayou de Chien individuals are mostly clustered together while Cypress Creek individuals seem 

to have greater variability.  Body measurements were similar among males and females at 

Bayou de Chien, while measurements were more varied between sexes at Cypress Creek.  With 

individuals seeming to fall out in respected drainages it may be possible to predict where 

unknown individuals of same age class may have originated from. 
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 Geometric morphological data used in PCA plots yielded no defined separation of 

individuals between drainages.  This lack of separation indicates that the 12 landmarks used 

simply do not relay enough variation in body size across the drainages to cause separation 

between sites.  It appears likely that overall body shape between the sites is not being 

influenced by certain abiotic factors such as habitat or stream type. 

 One visual difference between sites was observed between males.  Cypress Creek males 

appeared to have more blue coloration to their body while Bayou de Chien individuals appeared 

to be lighter overall.  Assigning hue values and taking 3 measurements from each individual 

confirmed that there was a difference between sites.  However, due to small sample sizes and 

restricted sampling sites it cannot be verified as a variable to separate drainages.  Male 

specimens in Bayou de Chien were collected from very turbid drainage ditches while Cypress 

Creek individuals came from a clear swamp area where the bottom was easily visible.  Turbidity 

has been noted to result in duller colored males as it can reduce the penetration of light 

resulting in reduced color signals from the color spectrum.  With this reduced effectiveness of 

color, a subsequent relaxation of sexual selection occurs for color, with the result being the loss 

of nuptial coloration in males (Seehausen et al., 1997). 

 Using Cyt-b for genetic analysis revealed that there is little to no variation in individuals 

from Rose Creek and Cypress Creek.  Both populations fall out with each other and have nearly 

identical sequences.  However, an interesting observation was uncovered in the phylogenetic 

trees as two sequenced individuals from Running Lake in Illinois fell out with individuals 

collected in Cypress Creek and Rose Creek.  This is an important observation, as all three sites 

are found above the fall line and could be indicative of founder effect.  The Interior Low Plateaus 

of central Kentucky is noted to have sections such as the Shawnee Hills sharing similar aquatic 
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habitats to the Coastal Plain region (Burr and Warren, 1986).  Thus, species found in the Coastal 

Plain region have dispersed to areas beyond the Coastal Plain.  The Shawnee Hills region extends 

from Kentucky and into Illinois and contains the Tradewater River, Green River and Running 

Lake populations from this study.   

The remaining sampled individuals showed greater genetic diversity.  Running Slough 

individuals were observed to be closely aligned with individuals from Reelfoot Lake in 

Tennessee.  Running Slough drains into Reelfoot Lake after traversing across the landscape for 

approximately 9 miles.  Many of the Mississippi drainage individuals were similar to each other 

with only a specimen collected at Lazare Park near Ouachita River in Louisiana showing the 

greatest separation from all other individuals. 

  While the results indicate separation between individuals from above the fall Line to 

sites below the fall line, measurements of individuals from Cypress Creek and Bayou de Chien 

still fall within accepted measurements of E. zonatum throughout their entire range. Warren 

(1980) suggested that appropriate habitats for E. zonatum existed in the western third of 

Kentucky due to the parallel of E. zonatum distributions to bald cypress Taxodium distichum.  

Braun (1943), noted existence of Taxodium distichum in river swamps and sloughs that went as 

far east as Cypress Creek area.  Warren and Cicerello (1982) concluded that the loss of wetland 

habitats has played a significant role in the sporadic distribution of E. zonatum above the fall 

line.   

Elassoma zonatum and its sister species E. evergladei, and E. okefenokee have large 

overlapping geographic distributions that suggest a deeper divergence with current distributions 

representing postspeciation dispersal.  In studies these species branched consistently from 
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deeper nodes across the mitochondrial and nuclear gene trees (Quattro et al., 2001).  It is likely 

that during past glacial events E. zonatum suffered a range contraction.  During the post-

Wisconsinan deglaciation a northward expansion of E. zonatum was detected (Sandel, 2012).  

Due to the similarity of habitat between the Coastal Plain and Shawnee Hills region (Burr and 

Warren, 1986), the Shawnee Hills may have provided the northern limit of E. zonatum range 

expansion.    

Further genetic testing should be conducted on populations found above the fall line to 

determine stability of populations.  These populations are disjunct from other populations and 

may now be experiencing selective pressures.  Biodiversity loss threatens to disrupt the function 

of ecosystems, with the potential of consequences for humans as well.  Often this loss is 

measured by species extinction rates, but considerations should be made to include population 

diversity with measures including changes in size, number, distribution and genetic composition 

of population and potential implications those changes may have (Luck et al., 2003).  

Microsatellites have the potential to address some concerns of these population as they allow 

ecologists to estimate parameters such as migration rates, and relatedness of individuals (Selkoe 

and Toonen, 2006) but other molecular methods could be used by the researcher. 

This study indicates the possibility of a range expansion of Elassoma zonatum after the 

Wisconsin glaciation.  Populations found above the fall line are genetically similar to populations 

found below the fall line but do have their own unique haplotype that encompasses the 

Shawnee Hill region of Kentucky and Illinois.  These populations are restricted in their range and 

future testing should be conducted to determine the genetic stability of said populations.  

Populations found in Kentucky are in areas of significant agriculture and mining activities 

although part of Cypress Creek is protected as a Kentucky State Nature Preserve property.  
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These activities have the potential to negatively impact those distributions.   The Illinois 

population is located at Union County State Fish and Wildlife area and may see better protection 

than some of the Kentucky populations. 
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Table 1.  Elassoma zonatum and outgroup sequences acquired from NCBI from nearby 

drainages used for comparisons with sampled Kentucky populations.  Two outgroups were 

used to construct phylogenetic tree.  Outgroup1 was a Elassoma evergladei and Outgroup2 

was Lepomis punctatus. 
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Table 2.   Post-hoc analysis conducted using pairwise Hotelling's tests.  Each value shown is 

the calculated p-value.  A p-value <0.05 is considered significant. 

 

 

Table 3. Proportional body measurement comparisons of sampled Elassoma zonatum 

individuals from Cypress Creek (n=24) and Bayou de Chien (n=25).   A p value <0.05 is 

considered significant. 
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Table 4. Proportional body measurement comparisons of Elassoma zonatum males from 

Cypress Creek (n=12) and Bayou de Chien (n=9). Proportions expressed as thousandths of 

standard length.   A p value <0.05 is considered significant. 
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 Table 5.  Proportional body measurement comparisons of Elassoma zonatum females from 

Cypress Creek (n=12) and Bayou de Chien (n=16). Proportions expressed as thousandths of 

standard length. A p value <0.05 is considered significant. 
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Table 6. Summary classification for least discriminant analysis of Elassoma zonatum by 

drainage.  Rows=given group, columns=predicted groups. 

 Bayou de Chien Cypress Creek Total 

Bayou de Chien 25 0 25 

Cypress Creek 0 24 24 

Total 25 24 49 

 

 

Table 7. Summary classification for least discriminant analysis of male Elassoma zonatum by 

drainage.  Rows=given group, columns=predicted groups. 

 Bayou de Chien Cypress Creek Total 

Bayou de Chien 9 0 9 

Cypress Creek 0 12 12 

Total 9 12 21 

 

 

Table 8. Summary classification for least discriminant analysis of female Elassoma zonatum by 

drainage.  Rows=given group, columns=predicted groups. 

 Bayou de Chien Cypress Creek Total 

Bayou de Chien 16 0 16 

Cypress Creek 0 12 12 

Total 16 12 28 
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Table 9.  Nuptial body color hue Score comparison of males from Bayou de Chien (n=9) and 

Cypress Creek (n=12).  A p-value <0.05 is considered significant. 

Range x SD Range x SD t-value p

Hue Scores 106-139 125.93 12.25 92-187 152.94 31.94 -2.3961 0.0135

Bayou de Chien Cypress Creek

 

 

Table 10. Trunk bar counts of sampled Elassoma zonatum individuals separated by sexes. 

 

 

Table 11.  Pairwise distances of 26 Elassoma zonatum haplotypes from above and below the 

Fall line along the Mississippi and Lower Ohio river drainages.   Greatest pairwise distance was 

observed in Haplotype7 which represents a sequenced E. zonatum individual in the Ouachita 

River in Louisiana. 
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Figure 1. Locations of Elassoma zonatum sampling sites above and below the fall line in 

Kentucky.  (Sources: shapefiles Kentucky Counties via kygeonet.ky.gov and Physiogeographic 

Regions via kygeonet.ky.gov). 
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Figure 2. Cypress Creek Elassoma zonatum collection site located in Muhlenberg County, 

Kentucky.  Part of the lower Green River drainage.  (Sources: shapefiles NHD 24K Streams, 

Muhlenberg County via http://www.uky.edu/KGS/gis/NHD24DOWN.htm and Kentucky 

Counties via kygeonet.ky.gov). 
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Figure 3.  Bayou de Chien Elassoma zonatum collection site located in Hickman County, 

Kentucky.  Part of the lower Mississippi River drainage.  (Sources: shapefiles NHD 24K Streams, 

Fulton County via http://www.uky.edu/KGS/gis/NHD24DOWN.htm and Kentucky Counties via 

kygeonet.ky.gov). 
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Figure 4.  Rose Creek Elassoma zonatum collection site located in Hopkins County, Kentucky.  

Part of the Tradewater River drainage.  (Sources: shapefiles NHD 24K Streams, Hopkins County 

via http://www.uky.edu/KGS/gis/NHD24DOWN.htm and Kentucky Counties via 

kygeonet.ky.gov). 
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Figure 5.  Running Slough Elassoma zonatum collection site located in Fulton County, 

Kentucky.  Part of the lower Mississippi River drainage.  (Sources: shapefiles NHD 24K Streams, 

Fulton County via http://www.uky.edu/KGS/gis/NHD24DOWN.htm and Kentucky Counties via 

kygeonet.ky.gov). 
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Figure 6. Elassoma zonatum male illustrating the 12 landmarks used for geometric 

morphometric analysis. 
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Figure 7. Principal Components Analysis (PCA) of log₁₀ transformed body measurements 

between Elassoma zonatum from Bayou de Chien (black dots) and Cypress Creek (red x).  PC1 

(standard length) accounts for 48.938% of the variation while PC2 (Body depth) accounts for 

16.7%. 
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Figure 8. Principal Components Analysis (PCA) of log₁₀ transformed body measurements 

between Elassoma zonatum females from Bayou de Chien (black dots) and Cypress Creek (red 

x).  PC1 (standard length) accounts for 62% of the variation while PC2 (body depth) accounts 

for 12.55%. 
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Figure 9.  Principal Components Analysis (PCA) of log₁₀ transformed body measurements 

between Elassoma zonatum males from Bayou de Chien (black dots) and Cypress Creek (red 

x).  PC1 (standard length) accounts for 48.19% of the variation while PC2 (body depth) 

accounts for 15.02%. 
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Figure 10. Caudal peduncle scale of a female Elassoma zonatam from Bayou de Chien, 

illustrating lack of annulus observed in all specimens.  All specimens were at or under 1 year 

of age when collected. 
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Figure 11.  Principal Components Analysis (PCA) of Procrustes distances for the geometric 

morphometric analysis of Elassoma zonatum from Bayou de Chien (black dots) and Cypress 

Creek (red x).  PC1 accounts for 28.02% of variation and PC2 accounts for 25.85%. 

 

Figure 12.  Principal Components Analysis (PCA) of Procrustes distances for the geometric 

morphometric analysis of Elassoma zonatum males from Bayou de Chien (black dots) and 

Cypress Creek (red x).  PC1 accounts for 40.23% of variation and PC2 accounts for 17.32. 
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Figure 13.  Principal Components Analysis (PCA) of Procrustes distances for the geometric 

morphometric analysis of Elassoma zonatum females from Bayou de Chien (black dots) and 

Cypress Creek (red x). PC1 accounts for 35.31% of variation and PC2 accounts for 24.82%. 

 

 

Figure 14.  Thin-plate spline transformations using color coding between Cypress Creek and 

Bayou de Chien; head is to the right.  Color coding shows green for expansion and purple for 

contraction.  Vector arrows indicate directional stretching. 
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Figure 15. Thin-plate spline transformations using color coding between males at Cypress 

Creek and Bayou de Chien; head is to the right.  Color coding shows green for expansion and 

purple for contraction.  Vector arrows indicate directional stretching. 

 

Figure 16. Thin-plate spline transformations using color coding between females at Cypress 

Creek and Bayou de Chien; head is to the right.  Color coding shows green for expansion and 

purple for contraction.  Vector arrows indicate directional stretching. 
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Figure 17. Phylogenetic tree constructed with RAxML using sequences from 43 sampled 

individuals in Kentucky and 25 sequences from other drainages located along the Mississippi 

and Lower Ohio river drainages accessed from Genbank. 
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Figure 18.  Haplotype network of 26 haplotypes of Cyt-b sequences of 68 Elassoma zonatum 

specimens by sampling site using popart 1.7.  Most significant variation is observed in the 

Lazare population located in the Ouachita River drainage in Louisiana.   
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Figure 19.  Haplotype network of 26 haplotypes of Cyt-b sequences of 68 Elassoma zonatum 

specimens by major drainage using popart 1.7.  Mississippi River made up bulk of haplotype 

sequences with only one population from Illinois sharing the same haplotype as individuals 

from the Lower Green and Tradewater drainages in Kentucky.   
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Figure 20.  Haplotype network of 26 haplotypes of Cyt-b sequences of 68 Elassoma zonatum 

specimens by location in relation to the fall line.  Only individuals from Bay Creek, Illinois fell 

out with individuals below the fall line.  Individuals from Tradewater, and Lower Green 

systems in Kentucky are shown above the fall line along with individuals from Running Lake, 

Illinois.  Network created using popart 1.7. 
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