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ABSTRACT

We apply a recent extension of a compression-expansion fixed point theorem of func-

tion type to a second order boundary value problem with Dirichlet boundary condi-

tions. We show the existence of positive symmetric solutions of this boundary value

problem.
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1 INTRODUCTION

There have been many studies in the past on finding positive solutions of boundary

value problems. In 1979, Leggett and Williams [14] came up with fixed point theorems

which guaranteed the existence of solutions of the boundary value problems. The first

theorem helps find a fixed point, the second one guarantees the existence of at least

two fixed points, and the other two theorems guarantee the existence of at least three

fixed points. The following theorem is the original Leggett-Williams theorem which

guarantees the existence of a fixed point.

Theorem 1.1 (Leggett-Williams [14]). Consider a Banach space B, the cone K, and

the operator T . For α a positive concave functional, we define the following subsets

of K:

Kc = {x ∈ K : ‖x‖ < c},

K(α, b, d) = {x ∈ K : b ≤ α(x), ‖x‖ ≤ d}, and

Suppose that A : Kc → K is completely continuous and suppose there exist a concave

positive functional α with α(x) ≤ ‖x‖ (x ∈ K) and numbers b > a > 0(b ≤ c)

satisfying the following conditions:

(1) {x ∈ S(α, a, b) : α(x) > a} 6= ∅, and α(Ax) > a if x ∈ S(α, a, b);

(2) Ax ∈ Kc if x ∈ S(α, a, c); and

(3) α(Ax) > a for all x ∈ S(α, a, c) with ‖Ax‖ > b.

Then A has a fixed point x in S(α, a, c).

Avery and other co-authors have generalized the Leggett-Williams theorem over

the years, modifying the conditions, and have proven their theorem guarantees the ex-

istence of a positive solution. Some recent works of Avery, Anderson, and Henderson

[10, 13] have also proven that there exists at least one positive solution for a right focal
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boundary value problem. The compression-expansion fixed point theorem [10] helps

find the fixed point when there is nonnegative continuous concave functionals and

nonnegative continuous convex functions on P , and when operator T is completely

continuous. Some of the applications of the extensions of the Leggett-Williams fixed

point theorem and the compression-expansion fixed point theorem are stated below.

In 2012, Altwaty and Eloe [2] have also used an extension of the original Leggett-

Williams fixed point theorem to show the existence of at least one positive solution

of a two point boundary value problem of the kth order differential equation.

In 2012, Avery, Eloe, and Henderson [8], used an extension of Leggett-Williams

type fixed point theorem to study a two point boundary value problem for an ordinary

differential equation that has a fourth order

x(iv)(t) = f(x(t)), t ∈ [0, 1],

x(i)(0) = 0, x(i)(1) = 0, i = 0, 1.

Similarly, in 2013, Altwaty and Eloe [1] used an extension of a Leggett-Williams

in order to show that operator has at least one positive solution. They worked on

two point conjugate boundary value problem

(−1)nx(2n)(t) = f(x(t)), t ∈ [0, 1],

x(i)(0) = 0, x(i)(1) = 0, i = 0, 1, ...n

where n is a positive integer.

In 2016, Avery, Anderson, and Henderson [10] provided a modified version of the

fixed point theorem which is known as the extension of the compression-expansion

fixed point theorem. They used a compression-expansion fixed point theorem to show
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the existence of a positive solution for a right focal boundary value problem

x′′(t) + f(x(t)) = 0, t ∈ (0, 1),

x(0) = 0 = x′(1),

where f : R→ [0,∞) is continuous. If x is a fixed point of the operator T defined by

Tx(t) :=

∫ 1

0

G(t, s)f(x(s))ds,

where G(t, s) = min{t, s}, (t, s) ∈ [0, 1]× [0, 1], then x is a solution of the boundary

value problem mentioned above.

In this paper, we will show the existence of a positive symmetric solution of

the boundary value problem by using a compression-expansion fixed point theorem

of function type [10]. Here, we have a second order boundary value problem with

Dirichlet boundary value conditions. We will apply the fixed point theorem in order

to show the existence of a positive symmetric solution to the differential equation

x′′(t) + f(x(t)) = 0, t ∈ (0, 1), (1.1)

when it has the Dirichlet boundary conditions

x(0) = 0 = x(1), (1.2)

where f : R→ [0,∞) is continuous.

In Chapter 2, we have definitions and fixed point theorem. Under the fixed point

theorem, we have extension of compression-expansion fixed point theorem. In Chapter

3, we have application of the extension of compression-expansion fixed point theorem

and preliminaries. In addition to that, we have the properties of the Green’s function
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that we use throughout the paper, and the theorem we came up with. There are

different conditions presented in the theorem, and if all these conditions are satisfied

then we will show that our operator T has a fixed point x∗ ∈ A(β, b, α, a). In other

words, we will show the existence of a positive symmetric solution of (1.1), (1.2).

We are motivated to work on this problem because of some of the recent works of

Avery, Anderson, and Henderson [10, 13]. For more examples of Avery type fixed

point theorems, see [3, 4, 5, 6, 7, 9, 11, 12].
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2 THE FIXED POINT THEOREM

2.1 Definitions

Let us begin with some basic definitions.

Definition 1. A complete normed vector space is called a Banach space.

Definition 2. Let E be a real Banach space. A nonempty closed convex set P ⊂ E

is called a cone if for all x ∈ P and λ ≥ 0, λx ∈ P , and if x, −x ∈ P then x = 0.

Definition 3. A map α is said to be a nonnegative continuous concave functional on

a cone P of a real Banach space E if α : P → [0,∞) is continuous and if

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly, we say the map β is a nonnegative continuous

convex functional on a cone P of a real Banach space E if β : P → [0,∞) is continuous

and if

β(tx+ (1− t)y) ≤ tβ(x) + (1− t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

Definition 4. An operator is called completely continuous if it is continuous and

maps bounded sets into sets whose closures are compact.

2.2 The Fixed Point Theorem

Definition 5. Let A be a relatively open subset of a cone P , b and c positive real

numbers, α a concave functional on P , and β a convex functional on P . We say that

the open set

P(β, b) = {x ∈ P : β(x) < b}
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is a functional wedge on a cone, that a set of the form

P(β, b, α, c) = {x ∈ P : c < α(x) and β(x) < b}

is a functional frustum of a cone, and if A is an open subset of the cone P , we say

that

A(β, b, α, c) = {x ∈ A : c < α(x) and β(x) < b}

is an interval of functional type.

Theorem 2.1 (Extension of Compression-Expansion Fixed Point Theorem [10]).

Suppose P is a cone in a real Banach space E, A is a relatively open subset of P, α

and ψ are nonnegative continuous concave functionals on P, β and θ are nonnegative

continuous convex functionals on P, and T : P → P is a completely continuous

operator. If there exist nonnegative numbers a, b, c, and d such that

(A1) A(β, b, α, a) is bounded, A(β, b, α, a) ∩ A(θ, c, ψ, d) 6= ∅, and if x ∈ ∂A ∩

P(β, b, α, a) = ∅ then Tx 6= x;

(A2) if x ∈ ∂A(β, b, α, a) with α(x) = a and either θ(x) ≤ c or θ(Tx) > c, then

α(Tx) > a;

(A3) if x ∈ ∂A(β, b, α, a) with β(x) = b and either ψ(Tx) < d or ψ(x) ≥ d, then

β(Tx) < b; then T has a fixed point x∗ ∈ A(β, b, α, a).

6



3 POSITIVE SYMMETRIC SOLUTIONS

3.1 Preliminaries

Define the Banach space

E = C(1)[0, 1] = {x : [0, 1]→ R : x′ is continuous}

with norm

||x|| = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|x′(t)|.

Define the cone P ⊆ E by

P = {x ∈ E : x(1− t) = x(t), x is nondecreasing on [0, 1/2],

nonnegative on [0, 1], and concave on [0, 1]} .

The Green’s function for −x′′ = 0, (1.2), is given by

G(t, s) =


t(1− s), 0 < t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Therefore, x is a solution of (1.1), (1.2) if and only if x solves the integral equation

x(t) =

∫ 1

0

G(t, s)f(x(s)) ds, t ∈ [0, 1].

Notice the derivative of the Green’s function with respect to t is given by

∂

∂t
G(t, s) =


(1− s), 0 < t ≤ s ≤ 1,

−s, 0 ≤ s ≤ t ≤ 1.
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Lemma 3.1. The function G satisfies the following properties.

1. G(t, s) ∈ C([0, 1]× [0, 1]) with G(t, s) ≥ 0 for all (t, s) ∈ [0, 1]× [0, 1].

2. G(1− t, 1− s) = G(t, s) for all (t, s) ∈ [0, 1]× [0, 1].

3. For any y, w ∈ [0, 1/2] with y ≤ w,

yG(w, s) ≤ wG(y, s).

Define the operator T : E → E by

Tx(t) =

∫ 1

0

G(t, s)f(x(s))ds, t ∈ [0, 1].

If x is a fixed point of T , i.e. if Tx = x, then x solves (1.1), (1.2). In [2], it is shown

that T : P → P and that T is completely continuous.

Define the nonnegative continuous functionals by

β(x) = max
t∈[0,1/2]

x(t) = x(1/2),

ψ(x) = x′(1/8),

and

α(x) = min
t∈[1/8,1/2]

x(t) = x(1/8).

3.2 Positive Symmetric Solutions

Theorem 3.2. Choose k1, k2, k3, k4, and k5 positive so that

(a) 128
7
k4 < 8k3,

(b) k1 < (83
40

)
(
k3 − 9

256
k2
)
,

(c) 16
(
k4 −

(
192
913

)
k1
)
< k3 − k5,
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(d) 4
55

(
k3 −

(
9

256

)
k2
)
> k4 −

(
192
913

)
k1,

(e) k2 > 64
(
k4 −

(
192
913

)
k1
)
,

(f) k2 >
(
2048
913

)
k1,

(g) k3 − k5 >
(
512
913

)
k1,

(h) k3 >
1
8

(k5 + 8k1) , and

(i) k4 < (1
8
)(k5 + 8k1).

Let f : [0,∞) → [0,∞) be a continuous function and b be a positive real number

such that

(H1) f(w) > 4,096
913

k1b for w ∈ [k4b, k3b],

(H2) f(w) < 2k2b for w ∈ [0, k3b],

(H3) f(w) < 8(k3b− k5b) for w ∈ [0, k3b],

(H4) f(w) > 128
(
k4b− 192

913
k1b
)

for w ∈ [0, k4b], and

(H5) f(w) < 512
55

(
k3b− 9

256
k2b
)

for w ∈ [1
8
b(k5 + 8k1), k3b].

Then T has a fixed point x∗ ∈ A(β, k3b, α, k4b); i.e. (1.1), (1.2) has a solution x∗ ∈

A(β, k3b, α, k4b).

Proof. Let

A = {x ∈ P : x(3/16)− x(1/8) > k1b and x′(0) < k2b}.

Consider A(β, k3b, α, k4b) = {x ∈ A : k4b < x(t) < k3b for t ∈ [1/8, 1/2]}, and

A(β, k3b, ψ, k5b) = {x ∈ A : x(t) < k3b for t ∈ [0, 1/2] and x′(1/4) > k5b}.

9



(A1) We show A(β, k3b, α, k4b) is bounded. Let x ∈ A(β, k3b, α, k4b). Then

||x|| = max
t∈[0,1]

|x(t)|+ max
t∈[0,1]

|x′(t)|

= x(1/2) + x′(0) ≤ k3b+ k2b

= (k3 + k2)b.

Therefore, A(β, k3b, α, k4b) is bounded open subset of P .

Next, we show A(β, k3b, α, k4b)∩A(β, k3b, ψ, k5b) 6= ∅. Choose K such that K ≤ 8k3,

K ≥ 128
7
k4, and K ≥ 8

3
k5. Let

w0 (t) =

∫ 1

0

G (t, s)Kb ds.

Then x ∈ P ,
β(w0) = w0

(
1

2

)
=

∫ 1

0

G

(
1

2
, s

)
Kb ds

= Kb

∫ 1/2

0

s ds

=
Kb

8

≤ k3b.

In addition,

α(w0) = w0

(
1

8

)
=

∫ 1

0

G

(
1

8
, s

)
Kb ds

=

∫ 1/8

0

s

(
1− 1

8

)
Kb ds+

∫ 1

1/8

1

8
(1− s)Kb ds

= Kb

(
7

1024
+

49

1024

)
=

7Kb

128

≥ k4b.
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Lastly,

ψ(w0) = w′0

(
1

8

)
=

∫ 1/8

0

(−s)Kb ds+

∫ 1

1/8

(1− s)Kb ds

= Kb

(
− 1

128
+

49

128

)
=

3Kb

8

≥ k5b.

Therefore,

w0 ∈ A(β, k3b, α, k4b) ∩ A(β, k3b, ψ, k5b)

and

A(β, k3b, α, k4b) ∩ A(β, k3b, ψ, k5b) 6= ∅.

Finally, we show if x ∈ ∂A∩P(β, k3b, α, k4b), then Tx 6= x. Let x ∈ A(β, k3b, α, k4b)

with Tx = x. Then

x

(
1

8

)
> k4b and x

(
1

2

)
< k3b.

Now,

x

(
3

16

)
− x

(
1

8

)
= (Tx)

(
3

16

)
− (Tx)

(
1

8

)
=

∫ 3/16

0

s

(
1− 3

16

)
f(x(s))ds+

∫ 1

3/16

3

16
(1− s)f(x(s))ds

−
∫ 1/8

0

s

(
1− 1

8

)
f(x(s))ds−

∫ 1

1/8

1

8
(1− s)f(x(s))ds

=

∫ 1/8

0

− 1

16
sf(x(s))ds+

∫ 3/16

1/8

1

16
(15s− 2)f(x(s))ds

+

∫ 1

3/16

11

16
(1− s)f(x(s))ds

=

∫ 1/8

0

− 1

16
sf(x(s))ds+

∫ 3/16

1/8

1

16
(15s− 2)f(x(s))ds

+

∫ 13/16

0

11

16
sf(x(s))ds

11



=

∫ 1/8

0

5

8
sf(x(s))ds+

∫ 3/16

1/8

1

8
(13s− 1)f(x(s))ds

+

∫ 13/16

3/16

11

16
sf(x(s))ds

>

∫ 3/16

1/8

1

8
(13s− 1)f(x(s))ds+

∫ 13/16

3/16

11

16
sf(x(s))ds.

If s ∈ [1/8, 13/16], x(s) ∈ [k4b, k3b]. By (H1), f(w) > 4,096
913

k1b for w ∈ [k4b, k3b]. Thus,

f(x(s)) > 4,096
913

k1b for s ∈ [1/8, 3/16]. So,

x

(
3

16

)
− x

(
1

8

)
>

∫ 3/16

1/8

1

8
(13s− 1)

4, 096

913
k1b ds+

∫ 13/16

3/16

11

16
s

4, 096

913
k1b ds

=
4, 096

(8)(913)
k1b

∫ 3/16

1/8

(13s− 1) ds+
(11)(4, 096)

(16)(913)
k1b

∫ 13/16

3/16

s ds

=
4, 096

7, 304
k1b

(
13s2

2
− s
) ∣∣∣3/16

1/8
+

45, 056

14, 608
k1b

(
s2

2

) ∣∣∣13/16
3/16

=
512

913
k1b

(
13s2

2
− s
) ∣∣∣3/16

1/8
+

256

83
k1b

(
s2

2

) ∣∣∣13/16
3/16

=
33

913
k1b+

640

664
k1b

=
364k1b+ 7, 040k1b

7, 304

=
7, 304

7, 304
k1b

= k1b.

Also, x′(0) = (Tx)′(0) =
∫ 1

0
(1 − s)f(x(s)) ds. If s ∈ [0, 1], x(s) ∈ [0, k3]. By (H2),

f(w) < 2k2b for w ∈ [0, k3b]. Thus, f(x(s)) < 2k2b for s ∈ [0, 1]. So,

x′(0) <

∫ 1

0

(1− s)2k2b ds

= 2k2b

∫ 1

0

(1− s) ds

= 2k2b

(
s− s2

2

) ∣∣∣1
0

12



= 2k2b

(
1− 1

2

)
= 2k2b

(
1

2

)
= k2b.

Thus, x /∈ ∂A(β, k3b, α, k4b). So by contrapositive, if x ∈ ∂A(β, k3b, α, k4b), then

Tx 6= x.

(A2) Let x ∈ ∂A(β, k3b, α, k4b) with α(x) = k4b. Now x
(
1
8

)
= k4b.

α(Tx) = (Tx)

(
1

8

)
=

∫ 1

0

G

(
1

8
, s

)
f(x(s))ds

=

∫ 1/8

0

s

(
1− 1

8

)
f(x(s))ds+

∫ 1

1/8

1

8
(1− s)f(x(s))ds

=

∫ 1/8

0

7

8
sf(x(s))ds+

∫ 1

1/8

1

8
(1− s)f(x(s))ds

=

∫ 1/8

0

7

8
sf(x(s))ds+

∫ 7/8

0

1

8
sf(x(s))ds

=

∫ 1/8

0

sf(x(s))ds+

∫ 7/8

1/8

1

8
sf(x(s))ds.

If s ∈ [0, 1/8], x(s) ∈ [0, k4b]. By (H4), f(w) > 128
(
k4b− 192

913
k1b
)

for w ∈ [0, k4b].

Thus, f(x(s)) > 128
(
k4b− 192

913
k1b
)

for s ∈ [0, k4b]. Also, if s ∈ [1/8, 7/8], x(s) ∈

[k4b, k3b]. By (H1), f(w) > 4,096
913

k1b for w ∈ [k4b, k3b]. Thus, f(x(s)) > 4,096
913

k1b for

s ∈ [1/8, 7/8]. Therefore,

α(Tx) >

∫ 1/8

0

s

(
128

(
k4b−

192

913
k1b

))
ds+

∫ 7/8

1/8

s

(
4, 096

913
k1b

)
ds

= 128

(
k4b−

192

913
k1b

)∫ 1/8

0

s ds+
4, 096

913
k1b

∫ 7/8

1/8

1

8
s ds

= 128

(
k4b−

192

913
k1b

)(
s2

2

) ∣∣∣1/8
0

+
4, 096

913
k1b

(
s2

16

) ∣∣∣7/8
1/8

13



= 128

(
k4b−

192

913
k1b

)(
1

128

)
+

4, 096

913
k1b

(
1

16

(
49

64
− 1

64

))
= k4b−

192

913
k1b+

4, 096

913
k1b

(
3

64

)
= k4b−

192

913
k1b+

192

913
k1b

= k4b.

(A3) Let x ∈ ∂A(β, k3b, α, k4b) with β(x) = k3b.

Suppose ψ(x) ≥ k5b. Then (x)′
(
1
8

)
≥ k5b. Now ψ(x) ≥ k5b and x is increasing, so

x
(
1
8

)
≥ 1

8
k5b, since

1

8
k5b ≤

ψ(x)

8

=

∫ 1/8

0

x′
(

1

8

)
ds

≤
∫ 1/8

0

x′(s)ds

= x

(
1

8

)
.

Also, since x ∈ A,

x

(
3

16

)
≥ x

(
1

8

)
+ k1b

≥ 1

8
b (k5 + 8k1) .

Thus,

β(Tx) =

∫ 1

0

G

(
1

2
, s

)
f(x(s)) ds

=

∫ 1/2

0

sf(x(s)) ds

=

∫ 3/16

0

sf(x(s)) ds+

∫ 1/2

3/16

sf(x(s)) ds.

If s ∈ [0, 3/16], x(s) ∈ [0, k3b]. By (H2), f(w) < 2k2b for w ∈ [0, k3b]. Thus,

f(x(s)) < 2k2b for s ∈ [0, 3/16]. Also, for s ∈ [3/16, 1/2], x(s) ∈ [1
8
b(k5 + 8k1), k3b].

By (H5), f(w) < 512
55

(
k3b− 9

256
k2b
)

for w ∈ [1
8
b(k5 + 8k1), k3b]. Thus, f(x(s)) <

14



512
55

(
k3b− 9

256
k2b
)

for s ∈ [3/16, 1/2]. Therefore,

β(Tx) <

∫ 3/16

0

s 2k2b ds+

∫ 1/2

3/16

s

(
512

55

(
k3b−

9

256
k2b

))
ds

= 2k2b

∫ 3/16

0

s ds+
512

55

(
k3b−

9

256
k2b

)∫ 1/2

3/16

s ds

= 2k2b

(
9

512

)
+

512

55

(
k3b−

9

256
k2b

)(
55

512

)
=

9

256
k2b+ k3b−

9

256
k2b

= k3b.

Next, suppose ψ(Tx) < k5b. Now (Tx)′
(
1
8

)
< k5b. So,

ψ(Tx) = (Tx)′
(

1

8

)
=

∫ 1/8

0

(−s)f(x(s))ds+

∫ 1

1/8

(1− s)f(x(s))ds

=

∫ 1/8

0

(−s)f(x(s))ds+

∫ 7/8

0

sf(x(s))ds

=

∫ 7/8

1/8

sf(x(s))ds

< k5b.

Thus,
β(Tx) = (Tx)

(
1

2

)
=

∫ 1

0

sf(x(s))ds

=

∫ 1/8

0

sf(x(s))ds+

∫ 7/8

1/8

sf(x(s))ds+

∫ 1

7/8

sf(x(s))ds.

We also know that

∫ 1

7/8

sf(x(s))ds =

∫ 1/8

0

(1− s)f(x(s))ds.

15



So, ∫ 1/8

0

sf(x(s))ds+

∫ 1/8

0

(1− s)f(x(s))ds =

∫ 1/8

0

f(x(s))ds.

Therefore, by combining them together, we get

β(Tx) =

∫ 7/8

1/8

sf(x(s))ds+

∫ 1/8

0

f(x(s)) ds

< k5b+

∫ 1/8

0

f(x(s)) ds

If s ∈ [0, 1/8], x(s) ∈ [0, k3b]. By (H3), f(w) < 8(k3b − k5b) for w ∈ [0, k3b]. Thus,

f(x(s)) < 8 (k3b− k5b) for s ∈ [0, k3b]. So,

β(Tx) < k5b+

∫ 1/8

0

8 (k3b− k5b) ds

= k5b+ 8 (k3b− k5b) (s)
∣∣∣1/8
0

= k5b+ 8 (k3b− k5b)
(

1

8

)
= k5b+ k3b− k5b

= k3b.

Therefore, T has a fixed point x∗ ∈ A(β, k3b, α, k4b), and (1.1), (1.2) has a positive

symmetric solution x∗ ∈ A(β, k3b, α, k4b).

3.3 Example

Example 3.3. Example: Let k1 = 8380, k2 = 230400, k3 = 12140, k4 = 1800, and

k5 = 80. Then let us verify if the mentioned values satisfy the inequalities from (a)

to (i).

16



(a) 128
7
k4 < 8k3. Then we have

128

7
(1800) < 8(12140)

32914.2857 < 97120.

(b) k1 < (83
40

)
(
k3 − 9

256
k2
)
. Similarly,

8380 <
83

40

(
12140− 9

256
(230400)

)
= 8383.

(c) 16
(
k4 −

(
192
913

)
k1
)
< k3 − k5.

16

(
1800− 192

913
(8380)

)
< 12140− 80

16(1800− 1762.278204) < 12060

603.5487 < 12060.

(d) 4
55

(
k3 −

(
9

256

)
k2
)
> k4 −

(
192
913

)
k1.

4

55

(
12140− 9

256
(230400)

)
> 1800− 192

913
(8380)

4

55
(4040) > 1800− 1762.278204

293 > 37.7218

(e) k2 > 64
(
k4 −

(
192
913

)
k1
)

230400 > 64

(
1800− 192

913
(8380)

)
= 2414.1950
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(f) k2 >
(
2048
913

)
k1.

230400 >
2048

913
(8380) = 18797.6342

(g) k3 − k5 >
(
512
913

)
k1

12140− 80 >
512

913
(8380)

12060 > 4699.4085

(h) k3 >
1
8

(k5 + 8k1) .

12140 >
1

8
(80 + 8(8380)) = 8390.

(i) k4 < (1
8
)(k5 + 8k1).

1800 <
1

8
(80 + 8(8380)) = 8390.

This shows that k1 to k5 satisfy (a)−(i). Thus, by letting b = 1 we have the following:

(H1) f(w) > 34324480
913

for w ∈ [1800, 12140],

(H2) f(w) < 460800 for w ∈ [0, 12140],

(H3) f(w) < 96480 for w ∈ [0, 12140],

(H4) f(w) > 4408320
913

for w ∈ [0, 1800], and

(H5) f(w) < 413696
11

for w ∈ [8390, 12140].

Then the constant function f(w) = 37600 satisfies the conditions mentioned above.

Therefore, Theorem 3.1 guarantees the existence x∗ of a positive symmetric solution

18



of the boundary value problem

x′′ + 37600 = 0,

x(0) = 0 = x(1),

with x∗ ∈ A(β, 12140, α, 1800).

19
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