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ABSTRACT 

Previous research has examined visual-statistical learning at the individual level 

but used measurements which are not sensitive enough to detect differences at the 

individual level. This study investigated temporal visual-statistical learning but used a 

recently modified task designed to be more sensitive to individual performance. This 

study also incorporated an indirect measure of learning in the form of a rapid serial visual 

presentation paradigm (RSVP), a cover task, and binary confidence judgments, to assess 

how aware participants were of the statistical structure. Although there was strong 

evidence of participants learning the statistical structure at the group level, there was little 

evidence suggesting participants learned the statistical structure under the more rigorous 

criteria used to assess individual performance. Furthermore, participants that learned the 

statistical regularities at the individual level exhibited explicit, rather than implicit, 

learning of the structure.  
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I. Literature Review 

Introduction 

We live in a world of patterns. Throughout daily living, we’re constantly 

encountering patterns governed by statistical regularities. How do we make sense of all 

this information? To understand how humans process, learn, and discriminate between 

patterns, psychologists have studied classic behavioral approaches such as classical and 

operation conditioning. In more recent years, a compelling alternative known as 

statistical learning emerged. Statistical learning describes how people extract and learn 

joint probabilities (the likelihood of two events co-occurring at the same time) and 

conditional probabilities (the likelihood of one event following the occurrence of 

another event) from a given input of information (Klein et al., 2009), gradually reducing 

uncertainty within their learning environment.  

Statistical learning was first studied by Saffran, Aslin, and Newport (1996), 

which revealed after only a single 2-minute familiarization phase, 8-month-old infants 

could segment words from continuous speech, based on the statistical relationships 

between speech sounds. Throughout this continuous speech stream, four three-syllable 

nonsense words (e.g. ‘tupiro’, ‘golabu’, ‘bidaku’, ‘padoti’) were repeated randomly. 

Word boundaries were cued with varying conditional probabilities between syllable 

pairs. During this phase, the within word probability was 1 in all cases, and the between 

word probability was 0.33 (after the presentation of a word, the next word was chosen 

randomly between the remaining three, with equal odds of being presented for each). 

Learning of these nonsense words was assessed via a test phase, which presented the 

nonsense words along with three-syllable non-words, containing the same syllables as 
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used during the exposure stream. The results revealed a significant difference between 

listening times, with infants listening to non-words longer than the artificial words, 

suggesting discrimination between the two. In just 2-minutes of exposure, the infants 

had become more familiar with the nonsense words, due to the transitional probabilities 

present throughout the course of the stream.  

Goals of Current Study 

To preface the following literature, there were two major goals that the current 

project explored. Each shall later be discussed fully within the broader context of the 

statistical learning concepts surrounding them. The first goal of this project was to 

measure statistical learning at the individual level, rather than only looking at group 

mean differences. The second goal was to implement a task that has been found to be 

more effective in the measurement of individual ability, relative to more common used 

statistical learning tasks. This method was used to explore a debated question within the 

statistical learning literature: how implicit is visual statistical learning?  

 The primary focus of this project was to examine visual-temporal statistical 

learning at the individual level, however, it should be stressed that there are many 

alternatives. Since the seminal work of Saffran, Aslin, and Newport (1996), research 

has suggested statistical learning is a domain-general mechanism, allowing for the 

extraction of meaningful units of information from auditory (Endres, A.D & Mehler, 

2009; Saffran, Aslin, & Newport, 1999), verbal (Pelucchi, Hay, & Saffran, 2009), 

nonverbal (Gebhart, Newport, & Aslin, 2009), tactile (Conway & Christiansen, 2005), 

and visual sequences (Kirkham, Slemmer, & Johnson, 2002). Statistical learning has 
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been shown to occur within both the temporal and spatial domains (Fiser & Aslin, 2001; 

Orbán, Fiser, Aslin, & Lengyel, 2008).  

This project sought to address a core issue of the statistical learning literature; 

much of the literature examining statistical learning considers it a unified theoretical 

construct, considering success to be performance above chance level within a sampled 

population. Due to statistical learning’s suggested link with individual linguistic 

abilities (Christiansen, Shillcock, Greenfield; Hsu, Tomblin, and Christiansen, 2014), 

interest has sparked for studying statistical learning at the individual level, rather than 

only examining group mean differences. Siegelman, Bogaerts, and Frost (2016) argue 

that without significant modifications, the tasks commonly used to assess statistical 

learning are inadequate for assessing individual statistical learning ability. This is 

problematic, as many recent studies have sought to examine statistical learning at the 

individual level, but in doing so have made no modifications to the original task 

(examples: Arciuli & Simpson, 2012; Batterink, et al., 2015; Frost et al., 2013; Spencer, 

2013; Turk-Browne, 2009).  

Established Visual Temporal Learning Paradigms 

When examining temporal visual statistical learning, tasks are commonly 

designed as follows; participants are seated at a white computer display, where they are 

exposed to a series of stimuli, consisting of novel black shapes (Fiser & Aslin, 2001; 

Figure 1) The stimuli are sorted into triplets, namely, each shape is presented in a fixed 

order with two other shapes within the sequence. The order of the sequence is random 

with the following rules: 1. Shapes belonging to the same triplet are always presented 

together, and in the same order within that triplet, and 2. The same triplet cannot be 
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presented twice in a row. This means with a sequence of four triplets, the transitional 

probability between the shapes is always either 1 (within triplets) or 0.33 (between 

triplets).  

 

 

Figure 1. Example shapes for visual statistical learning task. Adapted from 

“Unsupervised Statistical Learning of Higher-Order Spatial Structures from Visual 

Scenes” by J Fiser and R.N. Aslin, 2001, Psychological Science, 12(6), p.6. 

 

During an exposure phase, participants are exposed to each shape in a sequence, 

typically one by one, at the center of a computer display. This phase is usually 

composed of around 1200 trials (1200 single shape presentations). Each shape is 

presented for milliseconds to seconds, with a brief interstimulus interval (Emberson, 

Conway, & Christiansen, 2011; Kirkham et al., 2012). After this exposure phase, 

participants are tested on their knowledge of the sequence structure, typically through 

an alternative forced-choice completion task, where participants are instructed to 

complete triplets by selecting the shape they believe belongs in each triplet interval 

(Emberson, Conway, & Christiansen, 2011; Kirkham et al., 2012, Turke-Browne, 
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Junge, & Scholl, 2005). In addition to this task may be a binary confidence judgment 

procedure, that instructs participants to indicate whether they were confident about the 

answer they provided on each forced-choice question interval (Bertels, Franco, & 

Destrebecqz, 2012). 

Another task that assesses learning is rapid serial visual presentation (RSVP), 

which instructs participants to detect targets within a sequence of shapes (Bertels, 

Franco, & Destrebecqz, 2012; Bertels, Demoulin, Franco, & Destrebecqz, 2013). Here, 

reaction times to target shapes are compared based on the position of a shape within the 

triplets. Faster reaction times to the second or third shape within a triplet, compared to 

the first shape within a triplet, would indicate the participant has to some extent learned 

the sequence structure. This is due to the predictive relationship established by the 

transitional probabilities between shapes, as the second shape always follows the first, 

and the third always follows the second. The shape that occurs before the first shape 

within a triplet, shared a transitional probability of 0.33 with other shapes not belonging 

to its triplet, and therefore does not establish a predictive relationship between these 

other shapes. It is understood that by consistently reacting faster to the second or third 

shapes, they are on some level predicting these shapes will occur one after another 

(Bertels, Franco, & Destrebecqz, 2012). 

Criticisms of Visual Statistical Learning Tasks 

Siegelman, Bogaerts, and Frost (2016) offered several criticisms regarding the 

typical temporal visual statistical learning task and discussed several solutions to 

improve its predictive validity and reliability. One such criticism addresses the number 

of trials used within the test phase, in which psychometrically sound tasks examining 
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individual differences require more trials than what has been used in the past for the 

study of individual statistical learning. In example, Spencer et al. (2014) and Turk-

Browne et al. (2009), used 4 and 16 test trials respectively. This few trials would not 

allow for the expression of variance within the sample. Some researchers have 

attempted to solve this issue by introducing more trials where the same triplet is 

repeated, but paired against different foils (Arciuli & Simpson, 2012). Siegelman, 

Bogaerts, and Frost (2016) argue with these repetitions comes the concern of learning 

occurring during the test phase, confounding what was learned during the initial 

exposure. To solve address this issue, researchers should maximize the number of trials 

during the test phase, while minimizing the number of times triplets are repeated 

throughout.  

This point may tie into yet another problem, that is the testing trials are all the 

same difficulty, leading to potential floor and ceiling effects. It’s possible that 

individually, participants are learning the triplet structures, however, the task is not 

sensitive enough to detect lower levels of learning. For example, some participants 

might only learn part of a triplet, or a subset of triplets. If this type of partial learning 

occurs, less sensitive tasks may not reveal evidence that any learning has occurred. 

Most statistical learning studies have not reported individual performance, instead 

opting to report group mean differences. When studies do report individual 

performance, a large proportion of the samples perform at or below chance level 

(examples: Bertels et al, 2012; Endress & Mehler, 2009; Saffran et al., 1997; Saffran, et 

al., 1999). This sometimes results in much of the data being excluded from certain 
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analyses, as participants may not have been aware of their own learning and are 

removed due to a lack of evidence of learning.  

At the individual level, people may exhibit learning of statistical regularities in 

widely different ranges. An adequate test of statistical learning should be able to 

measure whether an individual has learned only part of a regularity and assess whether 

they can both recognize and produce the pattern. Siegelman, Bogaerts, and Frost (2016) 

argue because current statistical learning tasks only contain items of the same difficulty, 

they only measure ability within a similar area of the distribution, with low and high 

level statistical learning not being adequately reflected by the data. This may affect the 

reliability of the measure, lending some explanation as to why low correlations between 

statistical learning measures have been found (Erikson, Thiessen, & Berry, 2016).  

New Visual Statistical Learning Task 

Siegelman, Bogaerts, and Frost (2016) addressed these concerns by formulating 

a new visual statistical learning task. This new task consisted of 16 shapes. Unlike 

traditional statistical learning tasks, wherein the within triplet transitional probabilities 

are always 1, the transitional probabilities come in two different types. Four triplets 

have transitional probabilities of 0.33 between each shape, made from four possible 

shapes (example triplets: 1–2–3, 2–1–4, 4–3–1, and 3–4–2). A transitional probability 

of 0.33 indicates that after the presentation of a shape, the next shape that is presented is 

always one of three possible shapes, with each shape being equally probable. The other 

four triplets have transitional probabilities of 1 between each shape, consisting of the 

remaining shapes (example triplets: 5–6–7, 8–9–10, 11–12–13, and 14–15–16). A 

transitional probability of 1 indicates that after the presentation of a shape, the next 
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shape that is presented is guaranteed to be a specific shape, based on the shape that was 

just presented (e.g. shape 5 is always followed by shape 6, which is always followed by 

shape 7). Each triplet appeared 24 times during the exposure phase for 800 ms, with a 

200 ms ISI. The same triplet was never repeated twice in a row within a stream.  

After the exposure phase, Siegelman, Bogaerts, and Frost (2016) incorporated a 

test phase consisting of 42-items. Items differed in terms of required response (some 

recognition trials, some completion trials; see Figure 2). Items also differed in terms of 

triplet presentation (some included all three shapes, while others only included pairs of 

shapes. Recognition trials instructed participants to select the pattern they felt most 

familiar with, among either two or four choices, by pressing the corresponding on a 

keyboard. Completion trials presented participants with a given triplet or pair, however, 

the presentation was missing a shape. On these trials, participants were instructed to 

select which of three shapes best completed the set. 



 

9 

 

Figure 2. Examples of test phase trials 
 

Test items differed in terms of the transitional probability of the target triplet. 

Triplets had a transitional probability of either 1 or 0.33. In the example triplets 

described above, the triplet 8-9-10 has a transitional probability of 1, as shape 8 is 

always followed by 9, and shape 9 is always followed by shape 10. The triplets 

containing shapes 1, 2, 3, and 4 have transitional probabilities of 0.33, as there are three 

possible shapes that can follow a given target, each with equal odds of appearing within 

the sequence. Test items also differed in terms of the number of foils provided (1 or 3). 

The degree of position violations of the foils was also manipulated, ranging from 0 to 1 

degrees. For example, the triplet comprised of the shapes 4-2-7 corresponds to the 

correct triplets 4-3-1,1-2-3, and 5-6-7. This is because the foil triplet still has shape 4 at 

position one, shape 2 at position two, and shape 7 at position three, and would thusly 
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have a 0-degree violation. The foil triplet 1-6-9 contains one shape which appears in a 

different position than in the actual triplet, namely the 9 that would typically be in the 

second position within the triplet 8-9-10. In this example there is a .33-degree position 

violation. If a foil triplet contained two shapes with different internal positions (e.g. 1-7-

9), this would be a .66-degree position violation. If a foil triplet contained three shapes 

that appear in incorrect positions (e.g. 12-7-9), this would be a position violation of 1. 

Siegelman, Bogaerts, and Frost (2016) argued by designing this task with 

variability in transitional probability of both the triplets, and the alternative choices, as 

well as testing both completion and recognition, the task becomes more sensitive to 

visual statistical learning at both lower and higher levels of learning. They argue 

because the transitional probabilities of triplets aren’t always 1, learning the underlying 

structure of the sequence becomes more difficult, due to the shapes establishing a 

predictive relationship with more than one shape. The increased number of test trials 

also follows the same logic in attempting to increase the sensitivity of the measure, 

providing more opportunities for participants to demonstrate learning.  

Their results reveal increased split-half reliability, test-retest reliability, and 

Cronbach’s alpha coefficients in comparison to the previously outlined temporal visual 

statistical learning tasks which had fewer and less varied test trials (Emberson, Conway, 

& Christiansen, 2011; Kirkham et al., 2012, Turke-Browne, Junge, & Scholl, 2005). An 

item analysis revealed a significant improvement in terms of how items reflect low and 

high visual statistical learning outcomes. A mixed-effect logistic regression model 

revealed that transitional probability of foils may not have influenced test performance, 

however the effect of the transitional probability of target triplets was significant. 
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One key difference between the approach by Siegelman, Bogaerts, and Frost 

(2016), and the approach used by some researchers is the employment of a cover task 

(Bertels et al., 2012, Bertels et al., 2013). Siegelman, Bogaerts, and Frost (2016) did not 

use any cover task during the exposure phase, but instead instructed participants to learn 

the sequence of shapes. This means any learning that occurred during their task may 

have been in part due to intentional instructions, rather than being incidental. This is one 

key aspect of statistical learning research, as however reliable this new task might be, 

another important question is whether the knowledge acquired is incidental. This is 

another goal of my proposed project.  

The Implicitness of Statistical Learning 

Some research has suggested statistical learning occurs automatically (Fiser & 

Aslin, 2001; Fiser & Aslin, 2002), incidentally (Fiser & Aslin, 2005), and without 

awareness of the statistical structure (Turk-Browne, Jungé, & Scholl, 2005; Fiser & 

Aslin, 2005), indicating that this mechanism may be somewhat implicit. Aslin (2017) 

argues statistical learning occurs without the individual consciously making decisions 

about the likelihood of occurrences, or the relevance of the perceived information. Aslin 

(2017) also argues statistical learning occurs without receiving feedback from an 

instructor, and is consistent with other implicit learning tasks, such as the serial reaction 

time task, and artificial grammar learning. Indeed, some researchers suggest implicit 

memory research may facilitate a better understanding of statistical learning (Conway & 

Christiansen, 2006). 

It’s apparent the concepts of implicit learning and statistical learning are related, 

as research that has examined the two topics have examined similar processes 
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(Perruchet & Pacton, 2006), even going as far as to use implicit learning tasks, such as 

the serial reaction time task, to investigate statistical learning (Hunt & Aslin, 2001). 

Perruchet & Pacton (2006) argue that despite both research endeavors examining one’s 

ability to process statistical regularities, they conceptualize the unit of knowledge 

differently. Research investigating implicit learning often conceptualizes information 

processed as chunks, while statistical learning conceptualizes knowledge as statistical 

computations. Perruchet & Pacton (2006) posit that these two approaches aren’t 

mutually exclusive, as it is possible the formation of chunks and statistical computations 

are two successive steps in the process of incidental learning. They also discuss the 

possibility of statistical structures being merely a by-product of the formation of 

chunks.  

Some models of statistical learning, such as the extraction and integration 

framework proposed by Thiessen, Kronstein, and Hufnagle (2013) argue that sensitivity 

to the conditional structures often found in statistical learning paradigms are reliant on 

attention and working memory, contradicting how some researchers conceptualize 

implicit learning as being independent from these processes (Erikson & Thiessen, 

2015). This idea is disputed by the findings of some research that posits statistical 

learning’s independent from attentional processes (Evans, Saffran, & Robe-Torres, 

2009; Siegelman & Frost, 2015). In the auditory domain, Batterink, Reber, and Paller 

(2015) assessed the implicitness of statistical learning through a forced-choice and 

reaction time, again using both a direct and indirect measure of learning, respectively. 

Their results showed both explicit learning, through word recognition, and possible 

implicit learning, through faster reaction times to nonsense words. These two results, 
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however, did not correlate. This is a possible indication that implicit learning may have 

occurred in parallel yet was dissociable to explicit learning that occurred.  

To determine how conscious statistical knowledge is, Bertels, Franco, and 

Destrebecqz (2012) investigated statistical learning using a visual statistical learning 

task, exposing participants to a sequence of novel shapes. Each shape belonged to a set 

of three shapes, always being presented with the other two within the sequence of 

shapes. This is consistent with the commonly used method developed by Fiser and 

Aslin (2001). After this exposure phase, participant familiarization and awareness of the 

sequence structure was assessed using a 4-choice completion task, rapid serial visual 

presentation, and binary confidence judgements. Their goal was to determine how 

conscious the learned information was, by using both direct and indirect measures of 

learning. A cover task in the form of intermittent letter presentation was also employed, 

to create an environment where learning of the shape’s statistical regularities incidental. 

Their findings also revealed a relationship between participant’s confidence rating and 

above chance performance on the completion task, indicating at least some of their 

knowledge was explicit, challenging the view that visual statistical learning was a solely 

implicit process. These findings were later replicated and expanded upon (Bertels, 

Demoulin, Franco, & Destrebecqz, 2013), revealing participants in a negative affective 

state had more conscious access to statistical knowledge than those in a control group. 

 There are issues with the methodology of Bertels, Franco, and Destrebecqz 

(2012) which this project seeks to address. As mentioned previously, Bertels, Franco, 

and Destrebecqz (2012) is one study that examined the awareness of learned 

knowledge, but only assessed it for participants that performed above chance. 
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Participants who performed at or below chance on the completion task were removed 

from the awareness analyses, as learning was not evident in those cases.  As discussed 

previously, the typical visual statistical learning task (Emberson, Conway, & 

Christiansen, 2011; Kirkham et al., 2012) lacks the psychometric properties to 

adequately assess statistical learning at the individual level (Siegelman, Bogaerts, & 

Frost, 2016). Bertels, Franco, and Destrebecqz (2012) acknowledges this, stating their 

indirect measures of learning may have been more sensitive than the direct measure 

they employed. It’s possible more participants would have demonstrated explicit 

learning of the sequence, given a more sensitive measure, thus suggesting implicit 

learning was not as prevalent as is suggested by their findings. If a measurement more 

sensitive to individual learning such as this was used, it would be clearer to indicate the 

individual levels of both participant learning and awareness of acquired knowledge. 

Project Goals 

 Siegelman, Bogaerts, and Frost (2016) did not attempt to assess participant 

awareness of the statistical structure, as the structure was intentionally learned, rather 

than incidental. The task designed by Bertels, Franco, and Destrebecqz (2012) lacks the 

psychometric properties necessary to assess individual learning. The goal of this project 

was to implement both tasks to assess the implicitness of visual statistical learning at the 

individual level. As in Bertels, Franco, and Destrebecqz (2012), the study introduced a 

cover task during the exposure phase, instructing participants to respond to the 

presentation of black letters displayed within the sequence of shapes. The testing phase 

included indirect measures of learning, in the form of a rapid-serial visual presentation 

phase, to be completed after the testing phase. The findings of Bertels, Franco, and 
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Destrebecqz (2012) revealed some participants performed at chance in a completion 

task but demonstrated learning with indirect measures. This suggests that statistical 

learning might be implicit, or that prior methods of directly assessing statistical learning 

are not as sensitive as indirect methods.  

This project investigated whether such a finding was truly due to implicit 

learning, or due to inadequate measurement. With a task designed to assess visual 

statistical learning at the individual level more adequately and having established higher 

predictive validity and reliability for the task, it’s possible to further test participant 

awareness of sequence structures. If during testing, participants were not able to 

reproduce the patterns of the shape sequences, but showed learning through response 

times in the rapid serial visual presentation (RSVP) phase, this may be evidence for 

implicit learning. Additionally, if binary confidence judgments indicated guessing, 

rather than remembering the information, yet individual performance learning has 

occurred, this may also indicate that participants have learned the sequence implicitly. 

Of course, the opposite is also possible, as with a more sensitive testing phase, this may 

show a stronger association to the already sensitive indirect rapid serial visual 

presentation (RSVP) measure, indicating that learning is more explicit. Siegelman, 

Bogaerts, and Frost (2016) demonstrated visual statistical learning in their task, but did 

not use a cover task to support whether learning could be achieved under their test 

incidentally. This project serves a double purpose in testing the limitations of 

Siegelman’s design, determining whether the added difficulty and variability would 

affect apparent implicit learning.    
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II. Current Study 

Method 

Participants  

A total of 86 students (68 female; M Age = 19.9 SD = 2.43) from Eastern 

Kentucky University participated in exchange for course credit. As per requirement, all 

participants were 18 years of age or older. Informed consent was obtained from each 

participant. Normal or corrected to normal vision was required to participate in this 

study.  

Materials  

The experiment was conducted on an HP ProDesk computer with an intel® core 

i7 – 6700 processor, and a 19.2 inch (diagonal) LCD monitor set at a resolution of 1280 

x 1024. PsychoPy2 (version 1.83.01; Perice, JW, 2008) was used for stimulus 

presentation and response recording. The 16 shapes used in the task were taken from 

Fiser and Aslin (2001). Each shape was presented at a height and width of 3 about 

centimeters. 

Design and Procedure 

Participants completed the experiment individually; each experimental session 

lasted approximately 30-minutes. After consenting to participate and being seated at a 

computer desk, the participants were asked to read instructions displayed on a computer 

monitor. Any questions the participants had were addressed at this time. The first part of 

the experiment consisted of an exposure phase. The exposure phase was identical to 

what was outlined in Siegelman, Bogaerts, and Frost (2016), (See Figure 2), with the 

addition of a cover task. For each participant, 16 shapes were randomly assigned to a 
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number, ranging from 1 to 16. These shapes made up eight triplets as follows, four 

triplets with within triplet transitional probabilities of .33 (1-2-3, 2-1-3, 4-3-1, 3-4-2) 

and four triplets with within triplet transitional probabilities of 1 (5-6-7, 8-9-10, 11-12-

13, 14-15-16). Each shape appeared one at a time in the center of a computer display for 

800 ms, with a 200-ms interstimulus interval. The shapes were always presented within 

their respective triplet, in a temporal sequence. Each triplet appeared 24 times during 

the exposure phase. The same triplet was not repeated twice in a row. Throughout this 

phase, black letters appeared, acting as a cover task. These letters were sparse 

throughout the sequence, appearing random to the participants. The letters always 

appeared between the triplets, never within, to maintain the integrity of the sequence 

structure. Participants were instructed to pay attention to the sequence and press a key 

each time they saw a letter appear within the stream. In total, 30 black letters appeared 

throughout the sequence. This phase lasted approximately 10 minutes.  

Shortly after the exposure phase, participants were presented with instructions 

for a rapid serial visual presentation paradigm (RSVP; Figure 3). At the beginning of 

each trial, a shape was displayed at the center of the computer screen for 2 seconds, 

along with the words “look for this shape”. A sequence of shapes then began, with each 

shape appearing one a time in the center of the computer display for 250-ms, with a 

200-ms interstimulus interval. As in the exposure phase, the appearance of the shapes 

always followed the structure of the established triplets, with no triplet repeating twice 

in a row. Participants were instructed to detect this shape within the sequence of shapes 

and respond by pressing a key as soon as they see the target shape appear within the 
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sequence. Once the participant responded with a key press, the sequence then stopped, 

and the next trial began. Each shape was presented six times, resulting in 96 trials. 

 

Figure 3. Example RSVP trial. 

 

The underlying logic to this task is if learning of the sequence structure has 

occurred, it will be evident by analyzing the reaction times to the target shapes. If 

response times are faster to shapes that appear in the second or third position of a triplet, 

in compared to the first position, this is an indirect demonstration of having learned the 

sequence structure. The reasoning behind this is that throughout exposure, the shapes 

have established a predictive relationship with other shapes in their given triplets. If a 

triplet consists of the shapes 1-2-3, and the target is shape 2, 1 and 2 share a predictive 

relationship, allowing the participant to anticipate the occurrence of shape 2 appearing 

within a structured sequence. One key difference between this design and the RSVP 

implemented by Bertels, Franco, and Destrebecqz (2012) is the presence of varying 
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transitional probabilities. As some shapes having lower within transitional probabilities 

(0.33), this variance should be reflected in learning. With some shapes belonging to 

different triplets, this added variance should be reflected in learning. It is predicted that 

target shapes belonging solely to higher transitional probability triplets will elicit faster 

reaction times than shapes with varying transitional probabilities. For a direct measure 

of learning, a second task was used. The 42-item test phase described in Siegelman, 

Bogaerts, and Frost (2016) was used. Some items required participants to select a 

familiar pattern, other items required participants to complete a pattern by selecting 

which shape they think is missing from it. Some items included pairs of shapes, while 

others will include full triplets. The number of alternative choices varied between items. 

Two, three, and four forced-choice items were used. As in Siegelman, Bogaerts, and 

Frost (2016) the alternatives varied in their position violations. After each question, 

participants were asked to provide a binary confidence judgment, indicating whether 

they guessed or remembered the answer. Lastly, at the end of the experiment 

participants were asked as to whether they noticed the shapes appearing in a set pattern 

during the exposure phase.  

If statistical learning is evident within our sample, performance on the rapid 

serial visual presentation trial will reveal an effect of both transitional probability, and 

position of the shapes. If after the exposure phase the participant had learned the 

statistical regularities, this should be reflected in both the RSVP and direct testing 

phase. Average reaction times should be faster for high transitional probability targets 

than for targets with low transitional probability. Also, reaction times should be faster 
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for targets within the second or third position of the triplet than the first position of the 

triplet. Performance on the direct test phase should also be above chance.  

If statistical learning is implicit, this should be reflected in two ways. 1. An 

inability to produce the pattern during direct testing, coupled with strong evidence of 

learning during the rapid serial visual presentation task (RSVP). 2. There is no 

relationship between binary confidence judgments and the correctness of their responses 

on trials during the direct testing phase. If participants indicate they are confident in 

their answers on more correct trials than incorrect trials, this would indicate learning is 

primarily explicit. 

Results 

Rapid Serial Visual Presentation 

Analyzing the results of the rapid serial visual presentation (RSVP), we found 

across the participants the average hit rate was 0.95 (SD = 0.04). To examine learning at 

the group level, a 3x2 repeated-measures analysis of variance (ANOVA) was conducted. 

Position of each shape (1, 2, and 3) was treated as an independent variable. Transitional 

probability of each shape (low or high) was another independent variable. The 

dependent variable was response time. Erroneous responses were excluded from the 

analysis. Inconsistent with our hypothesis, there were no significant differences in 

average response time when comparing the position of the shapes F(2, 170) = 0.693, p = 

.502 > .05, η G 2 = .002. At the group level, response times did not significantly differ 

when responding to shapes in position 1 (M = 0.86, SD = 0.33), position 2 (M = 0.85, 

SD = 0.33), or position 3 (M = 0.83, SD = 0.32). Consistent with our hypothesis, there 

was a significant difference in average response time on high transitional probability 
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trials when compared to low transitional probability trials F(1, 85) = 6.385, p = .013, 

η G 2 = .01. On average, participants responded faster during high transitional 

probability trials (M = 0.84, SD = 0.23) than during low transitional probability trials 

(M = 0.88, SD = 0.40). There was no significant interaction effect of position and 

transitional probability on response time F(2, 170) = 0.174, p = 0.84 > 0.05,  η G 2 = 

.0004 (See Figure 4).  

 

Figure 4. Mean response times by transitional probabilities and shape position. 

 

Completion and Recognition Task 

As our completion and recognition test phase was nearly identical to the method 

used in Siegelman, Bogaerts, and Frost (2016), the same criterion was used to assess 

learning in this study. Using the binomial distribution and aggregating the various 

probabilities of correct responses for each item, Siegelman, Bogaerts, and Frost (2016) 

calculated that at the group level, above chance performance on their test phase was 
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16.67 correct answers out of 42 total items. A total of 74 of 86 participants correctly 

answered 17 or more of the 42 items (M = 20.43, SD = 4.12). Calculating the individual 

chance level, Siegelman, Bogaerts, and Frost (2016) found, given an alpha level of .05, 

correctly answering 23 of the 42 items would indicate evidence of learning at the 

individual level. The results revealed 23 of 86 participants correctly answered 23 or 

more of the 42 items (M = 25.39, SD = 2.29), amounting to 27% of the participants 

showing evidence of learning at the individual level via this measure (See Figure 5).  

 

Figure 5. Individual performance on the completion and recognition task. The orange 

line indicates number of correct items for group level significant learning. The green 

line indicates number of correct items for individual significant learning 

 

When asked if they had noticed a pattern within the sequence, 54 of the 86 

participants reported noticing a pattern. A chi-squared test of was conducted to further 

analyze whether noticing the pattern was related to above chance performance on the 

completion and recognition task. X2 = (1, N = 86) 0.28, p = 0.59. The results show no 

evidence an association between above chance performance and noticing the sequence 

pattern during exposure.  
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A 2x2 repeated-measures analysis of variance (ANOVA) restricted to the 23 

participants that showed evidence of statistical learning examined their awareness of the 

statistical structure. It was necessary to restrict this analysis to only participants that 

exhibited evidence of learning at the individual level, as the argument must be made 

that learning must be evident regardless of whether the participant is aware of the 

knowledge. This analysis used binary confidence judgments as an independent variable, 

and correctness of response as a second. The dependent variable was the number of 

responses falling into each of these categories (e.g. a correct response which was 

guessed, a correct response which the participant was confident in, an incorrect 

response which was guessed, and an incorrect response which the participant was 

falsely confident in). Since this sample showed evidence of learning, it’s no surprise the 

results revealed a significant main effect of response correctness on number of 

responses F(1,22) = 64.697, p < .001, η G 2 = .09. There was no evidence of a significant 

main effect of confidence judgment on number of responses F(1, 22) = 0.168, p = 

0.686, η G 2 = . The analysis revealed a significant response correctness, binary 

confidence judgments interaction effect. F(1, 22) = 8.039, p = 0.009 < .01, η G 2 = .07. 

To follow up on this interaction, a simple effects analysis was conducted at both levels 

of confidence. When “confident” confidence judgments were made, the simple effect of 

response correctness was reliable F(1,22) = 47.11, p < .00, η G 2 = .01. When “guess” 

confidence judgments were made, the simple effect of response correctness was not 

reliable F(1, 22) = 1.88, p = 0.184 > .05, η G 2 = .014. On average, participants made 

more “confident” judgements when they gave correct responses (M = 14.39, SD = 

6.94). than when they gave incorrect responses (M = 8.09, SD = 4.92). On average, 
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participants also made more “guess” judgments when they gave correct responses (M = 

11, SD = 7.53) than when they gave incorrect responses (M = 9.56, SD = 4.26), 

however, as noted this simple effect is unreliable (See Figure 6). 

 

Figure 6. Mean number of responses by response correctness and confidence 

judgments.  

 

The relationship between rapid serial visual presentation (RSVP) response time 

and direct test phase performance was examined. With the inclusion of the entire 

sample, there was no evidence of a relationship between response time and test 

performance r(514) = -.03, p = .477 > .05. Narrowing the analysis to only participants 

that performed above chance in the direct test phase, there was again no evidence of a 

relationship between response time and test performance r(136) = .05, p = .54 > .05 
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Discussion 

The current study investigated visual-temporal statistical learning at the 

individual level. After an exposure phase, learning statistical structure was assessed 

both indirectly via a rapid serial visual presentation (RSVP) and directly using testing 

phase consisting of both recognition and completion items. Performance on the rapid 

serial visual presentation task (RSVP) at the group level indicated that participants 

demonstrated some learning of the statistical structure based on the transitional 

probabilities but did not demonstrate learning of the statistical structure based on the 

position of the shapes within the triplets. It was revealed that on average, performance 

was better on higher probability trials than on lower probability trials. This finding is 

not surprising, as the varying transitional probabilities were implemented to increase the 

difficulty of the trials for both the RSVP task and direct testing task.  

Participants failing to demonstrate learning based on the position of shapes 

within the triplets is inconsistent with previous findings which have used the RSVP task 

to examine visual statistical learning (Turk-Browne, Jungé, Sholl, 2005; Kim, Feenstra, 

Shams, 2009; Bertels, Franco, Destrebecqz, 2012; Bertels, Demoulin, Franco, & 

Destrebecqz, 2013). This is the first time to our knowledge that varying transitional 

probabilities have been paired with an RSVP, thus, it’s possible the addition of varying 

transitional probabilities during the exposure phase made the RSVP too complex to 

adequately measure learning. Future research may wish to examine the impact varying 

transitional probabilities has on the measure’s sensitivity.    

The analysis of performance on the completion and recognition task reveal that 

86% of participants performed above chance at the group level, however, despite 
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incorporating the task designed by Siegelman, Bogaerts, and Frost (2016), only 27% of 

participants performed above chance at the individual level. This is drastically lower 

than Siegelman, Bogaerts, and Frost’s (2016) analyses, who found that 60% of their 

sample learned the statistical structure during the same task. This finding highlights the 

importance of analyzing the individual performance when making inferences about the 

learning outcomes of individuals.  

It’s unclear as to why most participants failed to perform above chance on the 

direct testing task, given Siegelman, Bogaerts, and Frost (2016) found the task was 

largely reliable for the measure of individual statistical learning. It’s possible that the 

added complexity of this task, along with the addition of a cover task, adversely affects 

learning outcomes. A possible follow up study could compare incidental and intentional 

learning using this task. Our findings revealed that on average, participants who did 

learn the statistical structure at the individual level indicated they were confident on 

more trials in which they gave the correct response, than on trials on which they gave an 

incorrect response. It’s worth noting, however, that the opposite was not true. On 

average, participants who performed above chance could not accurately determine 

whether their incorrect answers stemmed from guessing. For the purposes of this 

project, we defined implicit learning has learning which occurs in the absence of 

intention and without awareness. Because participants exhibited at least some 

awareness of the statistical structure, it cannot be argued that they’ve learned the 

structure implicitly. This pattern suggests that for these participants, learning of the 

statistical structure may have been more explicit.  
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Siegelman, Bogaerts, and Frost (2016) propose that possible improvements to 

the completion and recognition task are the implementation of weighted scoring, based 

on item difficulty, and adaptive difficulty based on prior item performance. Both 

changes could potentially improve the sensitivity of the task, however, further 

improvements would necessary to successfully incorporate an indirect measure of 

learning in addition to this task, as the varying transitional probabilities present 

throughout the direct measure may disturb the reliability of the RSVP measure. 

Conclusion 

 The current study presents the combination of a direct and indirect method of 

measuring visual statistical learning at the individual level. This study also attempted to 

determine how aware participants were of the knowledge they had learned throughout 

exposure. Evidence for statistical learning was sparse throughout the sample. 

Performance on the rapid serial visual presentation (RSVP) suggested the sample did 

not successfully learn the statistical structure. Our findings suggest participants who 

successfully reached the threshold of significant learning at the individual level 

exhibited explicit knowledge of the statistical structure. These participants showed 

evidence for some awareness of the statistical structure, and thus, do not meet the 

criteria for implicit learning (absence of intention and awareness). No evidence was 

found to suggest a relationship between RSVP response times and direct testing 

performance. Reliability measures, similar to those of Siegelman, Bogaerts, and Frost 

(2016) may also be necessary to determine whether a consistent relationship between 

these measures exists. Finally, future research may wish to examine whether the task 
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designed by Siegelman, Bogaerts, and Frost (2016) can adequately measure incidental 

learning, compared to intentional learning 
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