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ABSTRACT 

Environmental degradation has led to declines in available natural roosting habitat 

for bats. To mitigate this loss, practitioners often deploy artificial roosts (e.g., bat boxes). 

There are no established species-specific practices for deployment strategy and roost 

design selection, but occupancy rates are known to vary across species and roost 

microclimates can be harmful to bats. Providing bats with thermally beneficial roosts 

during summer could enhance overwinter survival of WNS-affected species. To further 

our understanding of roost preference and microclimate, we deployed 40 rocket box 

roosts of 5 designs at field sites in Indiana and Kentucky. Roosts were deployed in 

clusters of 5 at 4 distinct solar exposures within each site. From April-September of 2019, 

we collected hourly roost microclimate data via Thermochron iButtons (12 sensors/box) 

and monitored occupancy of resident Indiana bats (Myotis sodalis) via spotlight checks 

and emergence counts 2–4 times per week. Following an information theoretic modeling 

approach, we used hurdle models to assess the effects of design, solar treatment, and 

weather on occupancy and abundance. We used linear models and beta regression to test 

the effects of design, solar treatment, weather, and bat abundance on roost microclimate. 

Indiana bats showed no preference for roost design, but preferred roosting in easterly and 

westerly sun roost clusters, which provide solar exposure and access to cover upon 

emergence. Bats were more likely to be present and more abundant under warm, calm 

weather conditions. Vent removal and reference designs logged the most unsuitably hot 

recordings across solar treatments, while unsuitably cold recordings were similar across 

designs and solar treatments. At low ambient temperatures (< 20ºC), large groups of bats 

(≥ 30) had a substantial positive impact on within-roost temperature availability (hourly 
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TMAX–TMIN) and variability (daily TMAX–TMIN) as compared to unoccupied roosts. Group 

size had varying effect strengths based on interactions with roost design. Further, during 

the summer months (June-August), 3 designs (external water jacket, chimney, and white 

tile roof) had microclimates more suitable for bats as compared to a reference design. 

Though during the cool spring months, landscape position and design had little effect on 

roost suitability, though further investigation is warranted. To promote warm roosting 

conditions and access to cover upon emergence, we recommend deploying boxes on 

solar-exposed tree-lined edges. Researchers should further consider the potential impact 

that bats may have on a prospective artificial roost before deployment, as social 

thermoregulation could alter box microclimates, thereby affecting bats’ energetic 

budgets. Additional roost monitoring is warranted as bats may or may not develop a 

preference for roost designs in subsequent years. Further development and testing of 

roost designs that can buffer against unsuitably hot and cold temperatures is likely critical 

to improve conservation outcomes for bats.  
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CHAPTER 1 : INDIANA BATS SELECT ARTIFICIAL ROOSTS BASED ON 

SOLAR EXPOSURE AND WEATHER 

 

INTRODUCTION 

 

Roost selection is critical for the survival and successful reproduction of many 

bat species. Specifically, selection of a quality roost can result in increased energetic 

savings (Solick and Barclay 2006), protection from extreme weather (Bondarenco et al. 

2014), refugia from predators (Kunz 1982), and communal spaces for information 

transfer and pup rearing (Wilkinson 1992; Lewis 1995). On many landscapes, bats have 

lost suitable roosting habitat due to anthropogenic land modification, resulting in the 

loss of large snag and hollow bearing trees which various bat species use for roosts 

(Lacki 2018). These limited roosting resources are not readily replaced, as large 

hollow/cavity baring trees can take decades to form (Vesk et al. 2008). In instances 

where natural roost trees are sparse, resource managers often deploy artificial roosts 

(i.e., bat boxes) to supplement natural roosting habitat (Flaquer et al. 2006; Adams et al. 

2015; Hoeh et al. 2018). While artificial roosts are commonly deployed by resource 

managers, occupancy varies widely among studies and there are many unknowns 

remain regarding species-appropriate design, number of roosts to deploy, placement on 

the landscape, and the microclimate being provided (Mering and Chambers 2014).  

Artificial roost placement on the landscape is a critical factor influencing roost 

selection of bats, as landscape position affects solar exposure and microclimate (Mering 

and Chambers 2012; Rueegger 2019), thus altering the suitability of a roost. For 
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example, Brittingham and Williams (2000) found maternity colonies of little brown bats 

(Myotis lucifugus) and big brown bats (Eptesicus fuscus) more likely to use artificial 

roosts placed in locations receiving ≥ 7 hours of direct solar exposure, potentially 

exploiting the thermoregulatory benefits of a warm roost. Further, in Indiana, Whitaker 

et al. (2006) noted the lack of solar-exposed artificial roosts at their site may have 

resulted in limited uptake of roosts by Indiana bats. Solar exposure influences the 

microclimate provided by the roost and, during lactation, females will often select 

warm, solar-exposed roosts to promote the growth and development of pups and 

decrease the energetic costs of maintaining normothermia (Racey and Swift 1981; Kunz 

1987; Lausen and Barclay 2003a). However, for non-reproductive and post-lactating 

bats with no burden of pups, finding cool roosts that facilitate deeper torpor may be 

more important for conserving energy (Hamilton and Barclay 1994; Dzal and Brigham 

2013). Based on the varying physiological and thermoregulatory constraints faced by 

bats, providing a variety of roosting conditions during the summer maternity season is 

likely important to accommodate the variety of thermoregulatory strategies used by 

bats. 

Artificial roost placement on the landscape is also likely to influence predation 

risk. Many Myotid bats are slow-flying and clutter adapted with corresponding 

morphology — low wing loading and low aspect ratio wing (Norberg and Rayner 

1987). Bats with these morphological traits often rely heavily on cluttered forests for 

foraging (Aldridge and Rautenbach 1987) and protection from predation (Russo et al. 

2007). While roosts in open habitats may be warmer, they may also be riskier choices 

for slow flying bats, due to the potential for detection by diurnal/crepuscular raptors 
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(Lima and O’Keefe 2013; Arndt et al. 2018). Thus, predation risk may alter the 

behavior of reproductively active bats during the maternity season as they may face a 

trade-off between selecting a warm solar exposed roost or a roost that minimizes 

predation risk. Roosting near tree lines provides bats with forest cover upon emergence 

(Lima and O’Keefe 2013; Arndt et al. 2018) and facilitates a warm microclimate for 

pup rearing, as forest edge roosts are not within the shaded forest interior and, 

depending on aspect, can receive solar exposure for portions of the day. Roosting in the 

forest interior and switching roosts often could facilitate predator avoidance, similar to 

the strategy used by male Indiana bats (Myotis sodalis) (Bergeson et al. 2018), but these 

conditions would not be conducive to the development of pups. Deploying a variety of 

roost clusters may allow bats to select optimal roosting conditions which maximize 

solar exposure and minimize predation risk. 

Roost detectability and fidelity are likely influenced by the number of roosts 

available on the landscape (Lewis 1995; Rueegger 2016). For example, in Arizona, 

Mering and Chambers (2012) found that bats occupy artificial roost clusters more 

frequently than artificial roosts deployed singly, suggesting that clusters may provide 

better concealment and could support larger colonies of bats. Furthermore, high roost 

availability could promote lower roost fidelity and smaller colony sizes (Brigham 1991; 

O’Keefe and Loeb 2017). Deploying clusters of roosts could provide a variety of 

microclimates within one discrete roosting locality (Mering and Chambers 2012; 

Rueegger 2016), which may be important as many bat species switch roosts frequently 

to find optimal microclimates based on reproductive condition (Lausen and Barclay 

2003b). Further, it is thought that maternity colonies of Indiana bats likely need large 
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numbers roosts, both primary and alternate, to support their physiological needs 

(Callahan et al. 1997; Silvis et al. 2014; Bergeson et al. 2018). Resource managers 

should consider deploying artificial roosts in clusters to enhance roost discovery, 

promote predator avoidance, and supply a variety of microclimates to suit a multitude of 

thermoregulatory needs. 

Artificial roosts are often used to provide roosting habitat for the Indiana bat, a 

federally endangered species found throughout the Midwest and parts of the 

northeastern and southeastern United States (USFWS 2007). This species may live at 

least 10 years, and has a low reproductive output of just one pup per year, which is 

typically born in June or early July (Kurta and Rice 2002; USFWS 2007). The loss of 

suitable summer roosting habitat for Indiana bats is a topic of concern for the protection 

and persistence of this species (Sparks et al. 2005; Whitaker et al. 2006; USFWS 2007). 

While much research has focused on Indiana bats’ selection of natural roosts (e.g., 

Callahan et al. 1997; Britzke et al. 2003; O’Keefe and Loeb 2017; Bergeson et al. 

2018), few studies have focused on artificial roost selection and preference (Whitaker et 

al. 2006; Adams et al. 2015; Hoeh et al. 2018). Of the two studies that examined 

multiple roost designs (Whitaker et al. 2006; Hoeh et al. 2018), neither examined the 

effect of differential solar exposure on roost selection, and due to differences in volume 

and entrance area of the designs tested, it is unknown if microclimate was the only 

factor influencing roost preference. Occupancy rates within these studies varied widely, 

which could be caused by several factors like roost design, landscape position, solar-

exposure, and climate.  
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Selecting an artificial roost design for deployment is critical to effective 

management, as roosts that can buffer against thermal extremes could confer substantial 

energetic savings to bats. Most artificial roost designs are deployed without thorough 

investigation of the microclimate provided. Of the few studies that have investigated 

artificial roost microclimate, most have found that some artificial roost designs offer 

microclimates that are harmful to bats (Brittingham and Williams 2000; Bideguren et al. 

2018; Hoeh et al. 2018). Temperatures > 40ºC can induce heat stress and prolonged 

exposure at these temperatures can result in physiological damage and mortality (Licht 

and Leitner 1967). Further, Hoeh et al. (2018) found that, of the 3 artificial roost 

designs tested, none buffered cold temperatures. Roosting conditions that are too cool 

can reduce the growth rate of pups (Kunz 1987), reduce milk production in females 

(Wilde et al. 1999), and delay parturition (Racey and Swift 1981).  

Artificial roosts allow for controlled experiments that involve the fine-scale 

manipulation of design, placement, and availability; manipulating these factors can give 

a detailed look at the landscape and thermoregulatory preferences of bats (Mering and 

Chambers 2012; Hoeh et al. 2018). In contrast, the outcomes of studies that examine bat 

preferences for natural roosts are often driven by natural roost availability and type 

(Brigham 1991; O’Keefe and Loeb 2017), chance events (e.g., beetle kill and lightening 

strike; Rabe et al. 1998), and management history (Bergeson et al. 2018) and patterns 

observed may reflect responses to such events as opposed to bat preference. In the 

present study, our goal was to assess the artificial roost selection of Indiana bats with 

regard to 5 rocket box style roost designs specifically altered to manipulate 

microclimate and to evaluate the impact of roost placement and weather on the presence 
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and abundance of Indiana bats at our artificial roosts. We aimed to understand Indiana 

bats’ preferences for artificial roost microclimate and landscape placement during the 

maternity season so that we can provide more specific information on effective 

deployment strategies, thus enhancing ongoing conservation efforts for this imperiled 

bat. 

STUDY SITES 

Historically, the Indiana bat ranged throughout most of the east-central United 

States, with the core of their range in the Midwest (USFWS 2007) and with many major 

hibernacula throughout Indiana and Kentucky (USFWS 2007). The two field sites for 

this study have known maternity colonies of Indiana bats and are in the central part of 

the species’ range. 

 The first site is the Indianapolis Airport mitigation site in central Indiana 

(39°38'59"N, 86°20'57"W; hereafter, the Indiana site; Figure 1-1: A) and the second site 

is located at Veterans Memorial Wildlife Management Area in north-eastern Kentucky 

(38°19'20"N, 84°32'57"W; hereafter, the Kentucky site; Figure 1-1: B). The Indiana 

field site is located within the Eastern Corn Belt Plains ecoregion and is characterized 

by an abundance of soybean, corn, and wheat fields with small mixed forest fragments 

(U.S. Environmental Protection Agency 1997). The Indiana bat maternity colony at this 

site has used artificial structures as roosts since ~2003–2019 (Ritzi et al. 2005; Whitaker 

et al. 2006; Hoeh et al. 2018). In the mid-1990s, Whitaker et al. (2006) observed the 

deployment of over 3,000 artificial roosts, of varying designs, at the Indiana site and 

documented minimal roost occupancy. Recently, Hoeh et al. (2018) deployed 6 clusters 

of 3 roost types (rocket box, bark-mimic, and bat box style) at the Indiana site, of which 
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Indiana bats preferred the rocket box style based on occupancy; these roost clusters 

have been in place since ~2015.  

The Kentucky field site is located within the Interior Plateau ecoregion and is 

characterized by mostly forested rolling hills containing predominantly white oak 

(Quercus spp.), hickory (Carya spp.), and eastern red cedar (Juniperus virginiana) 

(Woods et al. 2002). At this site, the Indiana bat maternity colony was previously 

documented using BrandenBark™ artificial roost structures that were installed around 

Summer 2016 (pers. comm. KDFWR). These structures are composed of a polyurethane 

sheet of synthetic bark wrapped around and affixed to the top of a 7.6 meter tall 

telephone pole (Gumbert et al. 2013). During the spring of 2019, 17 of the 18 original 

Brandenbark™ roosts were removed and replaced by 18 newer versions, as the posts for 

the old roosts were badly decayed and posed a safety hazard. A total of 3 roost clusters 

are spread across the site, 2 of the clusters containing 6 BrandenBark™ artificial roosts 

and 1 cluster containing 7 roosts (6 new and 1 old, 19 total at site) (pers. comm. 

KDFWR).  
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METHODS 

Rocket Box Deployment~ 

We deployed 20 rocket boxes at Indiana and Kentucky field sites (n = 40 total), 

with all boxes in place by 1 April 2019. At each field site, rocket boxes were deployed 

in 4 clusters, with 5 boxes (1 per design) present within each cluster (n = 8 total clusters 

between both field sites). Box designs developed include: reference (REF), vent 

removal (VR), chimney (CH), white tile roof (WTR), and external water jacket 

(EXTJ)Each box was marked with a unique tree tag with the last digit on the tag 

identifying its design. Rocket box clusters ran along a north-south axis, and boxes 

within each cluster were spaced 2m apart (Figure 1-2). We randomly determined the 

order of rocket box designs within each cluster. We set boxes in ~1.3m deep holes so 

that the top of each rocket box was ~6.1m above ground. Boxes were set in 45.4kg of 

fast-setting concrete and the above-ground base of each box post was braced with 4 

angled 2”x4”x4’ (4.4cm x 8.9cm x 1.2m) boards.  

We deployed boxes in clusters to facilitate roost discovery, roost switching, and 

provide bats a variety of available microclimates within one locality (Lewis 1995; 

Rueegger 2016) (Figure 1-2). Of the 4 clusters within each field site, one “open” cluster 

was located away from tree lines so that boxes received solar exposure throughout the 

day. A “forest” cluster was in a closed canopy condition in which boxes would receive 

little to no direct solar exposure. An “easterly sun” cluster was ~5m from an east-facing 

tree line such that boxes primarily received morning solar exposure. A “westerly sun” 

cluster was ~5m from a west-facing tree line such that boxes primarily received 
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afternoon solar exposure. This deployment strategy exposed box designs to varied solar 

conditions, thus potentially altering the performance of each design in a situation. 

 

 

Figure 1-2: Open treatment rocket box cluster featuring post braces, guano traps, 
and weather station. From left to right: EXTJ, VR, WTR, REF, CH. 
 

Weather Data Collection~ 

To monitor cluster-specific weather conditions, we collected hourly weather 

data at each cluster via Ambient Weather WS-1201 weather stations powered by a 12v-

18amh battery and locked in weatherproof Pelican (Model 1500) cases (4 stations per 

site, n = 8 total). Each weather station was mounted on a 3.2m tall fence top rail post 

and was concreted into the ground so that each weather station was 3m above ground. 

Each station was placed 2m from the south side of each rocket box cluster so that the 

stations would not be shaded by the boxes.  

Weather stations recorded temperature (ºF, accuracy ± 2ºF, converted to ºC after 

download), solar radiation (lux, ± 15%, converted to w/m2), rainfall (inches, ± accuracy 
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0.01 inches, converted to mm), and wind speed (mph, accuracy ± 2.2mph, converted to 

m/s). While weather stations recorded data hourly, data were not able to be collected on 

the hour. Rather, stations recorded on a 60-min time interval starting when power was 

connected to the station. Thus, this interval changed each time the power supply for a 

weather station’s data receiver was changed (roughly every 2–3 days). Subsequently, 

we binned data on an hourly basis.  

Roost Checks~ 

 To survey all 40 rocket box roosts, of 8 different roost clusters, for the 

daily presence/absence (P/A) and abundance of Indiana bats, we performed spotlight 

checks 2–4 times per week at both the Indiana and Kentucky field sites. The number of 

surveys per week varied based on weather and conflicts with hunting seasons. Spotlight 

checks began on 6 April 2019 and ended on 15 September 2019 at the Kentucky field 

site and began on 28 March 2019 and ended on 10 October 2019 at the Indiana field 

site. Spotlight checks involved shining a ~1000 lumen spotlight (Stanley Fatmax Model 

#SL10LEDS) up into each roost and visually determining P/A of bats (Whitaker et al. 

2006; De La Cruz et al. 2018; Hoeh et al. 2018). When two observers were present, 

each individually checked the roost and conferred on their assessments. For roosts 

where bats were present, bats were visually counted to estimate abundance and to aid in 

determining where to conduct emergence counts. We classified bats to genus visually 

via spotlight checks and took non-flash photos when conditions were favorable (e.g., 

Figure 1-3). To minimize stress to bats, spotlight checks typically lasted < 20 seconds. 

We made a concerted effort to not check roost clusters in the same order in consecutive 
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visits to field sites, this reduced the effect of time of day and solar position on our 

ability to detect bats in a roost.  

We conducted emergence counts 2–4 times per week, weather dependent, at 

roosts we considered likely to contain the most bats based on spotlight checks and 

guano accumulation. Emergence counts help to reduce the error in abundance estimates 

based on data collected from spotlight checks, given that bat counts from spotlight 

surveys are less accurate for larger colony sizes. Observers arrived at roosts ~30 min 

before sunset and stayed at least 10 min after the last bat emerged or 30 min after sunset 

if no bats emerged (Arndt et al. 2018; Hoeh et al. 2018; Oyler-McCance et al. 2018). 

Observers recorded the roost ID number, time of first emergence, time of last 

emergence, and total number of bats emerged for each roost watched. Each observer 

typically watched ~3 roosts within a cluster during emergence counts, varying based on 

weather and visibility. The total number of roosts counted per night varied with 

personnel availability. 

 

 

Figure 1-3: Indiana bats (top, outer chamber) roosting with a big brown bat 
(bottom, inner chamber) in westerly sun EXTJ box (905). 
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Guano Collection and DNA Analysis~ 

Guano traps were installed below all 20 rocket boxes at the Indiana field site and 

below 17 of the 20 boxes at the Kentucky field site (i.e., traps were absent from all 

EXTJ roosts save the open cluster). Guano traps hung 1m above ground, were made of 

¾” PVC and window screen, and covered a ~1m2 area below each roost (Robinson et al. 

2019). At the Kentucky site, we collected guano every 2–3 days, depending on weather 

and personnel. We counted pellets on site, stored them in a zip-lock bag labeled with 

date and total pellets collected, and stored them at -80°C until the samples were shipped 

for DNA analysis. Outsourced genetic analyses are still pending. 

Analysis~ 

For our response variable “Total Bats” we compiled both spotlight check and 

emergence count abundance data, when available, to create a daily presence/absence 

and abundance record for each roost on each survey day. Though we acknowledge that 

a limitation of spotlight checks to measure abundance is that this method likely 

underestimates abundance, we mitigated for this by performing emergence counts at 

roosts that we thought would contain the most bats. Thus, we strove to use the most 

accurate estimates of abundance to minimize underestimation. We used hurdle models, 

which are appropriate for zero-inflated data, to assess factors affecting P/A and 

abundance of Indiana bat rocket box roost use. The hurdle model approach allowed us 

to separately model the factors affecting the P/A of bats at all rocket boxes and then, for 

occupied rocket boxes only, we could then assess factors affecting abundance. 

We defined several prerequisites for vetting our dataset prior to modeling. First, 

because our rocket boxes were newly deployed at both field sites, bats were naïve to 
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their presence on the landscape and, thus, we judged the subsequent discovery of these 

roosts by bats would take time, similar to observations in a previous study (Mering and 

Chambers 2012). To address “discovery time”, we used occupancy data starting from 

when Indiana bats were first detected in the new roosts (i.e., 15 May 2019 for the 

Indiana site; 3 May 2019 for the Kentucky site). From these dates on, roosts were 

considered discovered by bats at each site. Next we assessed use; 6 of 8 clusters were 

used and we removed the unused open solar treatment clusters from the analysis to 

improve model stability. Finally, we insured there was available weather data 

corresponding to each survey day. We dropped bat usage data for clusters on days when 

the weather station had a power failure. The EXTJ box in the easterly sun cluster at the 

Indiana site was damaged on 25 June 2019, so we dropped this box from our analysis 

after this date. 

 We used R (version 3.6.2; R Core Team 2019) to conduct all analyses. We used 

the R package glmmTMB to build and run our hurdle models (Brooks et al. 2017). We 

assessed the normality of our abundance response variable “Total Bats” using a 

Shapiro-Wilk Normality Test (p < 0.05; indicating non-normality; Shapiro and Wilk 

1965). We tested for multicollinearity among predictor variables with a variance 

inflation factor (VIF) test and considered VIF ≥ 5 as an indicator of multicollinearity; 

all VIF scores were < 5. To address the non-normality of our abundance data, we 

compared AICC (Akaike’s Information Criterion corrected for small sample sizes) 

scores for 3 different error distributions: truncated_poisson, truncated_nbinom1, and 

truncated_nbinom2; we selected truncated_nbinom2 because this model had the lowest 
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AICc score (Burnham and Anderson 2002; Brooks et al. 2017). Subsequently, we used 

zero-truncated negative binomial hurdle models, following an information theoretic 

approach (Burnham and Anderson 2002) to test a set of 19 a priori candidate models 

including 2 global models and a null (Table 1-1). We based all candidate models on 

ecologically relevant hypotheses describing Indiana bat artificial roost selection. We 

attempted to use all parameters in a consistent and balanced manner. 
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Table 1-1: Candidate set of 19 a priori hurdle models. All models include a nested 
random effect of roost ID nested within field site. 
Model K Included predictors 
Null 7 -
m2 15 Design 
m3 11 Reproductive Period 
m4 11 Solar Treatment 
m5 9 Average Previous Day Temperature 
m6 19 Design + Reproductive Period 
m7 19 Design + Solar Treatment 
m8 17 Design + Average Daily Temperature 
m9 13 Solar Treatment + Average Daily Temperature 
m10 17 Design + Average Daily Wind Speed 
m11 15 Solar Treatment + Reproductive Period 
m12 13 Reproductive Period + Average Previous Day Temperature 

m13 23 Design + Reproductive Period + Solar Treatment 
m14 21 Design + Reproductive Period + Average Previous Day 

Temperature 
m15 22 Design + Reproductive Period + Average Morning Solar 

Radiation + Average Evening Solar Radiation 
m16 21 Solar Treatment + Average Morning Solar Radiation + 

Average Evening Solar Radiation + Average Daily 
Temperature + Average Previous Day Temperature + 
Average Daily Wind Speed 

m17 17 Average Morning Solar Radiation + Average Evening 
Solar Radiation + Average Daily Temperature + Average 
Previous Day Temperature + Average Daily Wind Speed 

Solar Treatment 
Global 

25 Solar Treatment + Reproductive Period + Average 
Morning Solar Radiation + Average Evening Solar 
Radiation + Average Daily Temperature + Average 
Previous Day Temperature + Average Daily Wind Speed 

Design Global 29 Design + Reproductive Period + Average Morning Solar 
Radiation + Average Evening Solar Radiation + Average 
Daily Temperature + Average Previous Day Temperature + 
Average Daily Wind Speed 

We ranked candidate models via AICC (Akaike’s Information Criterion 

corrected for small sample size) even though n/K > 40 (1790/29 = 61.7).  Burnham and 

Anderson (2002) note that as sample size increases the bias correction term in AICC 
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becomes negligible, thus, converging with AIC. We derived inferences from models 

within ∆AICC  ≤ 2 of the top model and considered model averaging of a 90% 

confidence set if the top ranked model did not have substantial support (i.e., wi < 0.90; 

Burnham and Anderson 2002). We calculated the 85% confidence intervals for all 

parameters from the top model, and defined parameters as informative if their 85% 

confidence intervals did not overlap 0. This practice has been noted to be more AIC 

compatible, because AIC model selection favors the inclusion of additional parameters 

in models if the 85% confidence intervals of these parameters does not overlap 0 

(Arnold 2010). We qualitatively visualized all informative parameters to determine their 

relative effect on Indiana bat P/A and abundance. We calculated odds ratios for P/A 

parameters to better quantify relationships between parameters. We scaled odds ratios 

for continuous P/A parameters, when appropriate, to values that are ecologically 

relevant (Hosmer and Lemeshow 2000). All means are reported as x ± SE unless 

otherwise stated. 

We used a variety of predictor variables and candidate models to model the 

daily P/A and abundance of Indiana bats in rocket boxes. Predictor variables included 

box design (REF, VR, CH, WTR, EXTJ; Design), cluster solar treatment (East, Forest, 

Open, West; Solar Treatment), reproductive period (Pregnancy [P], Lactation [L], Post-

Lactation [PL]; Repro Period), mean daily morning solar radiation (w/m2; 

AvgAMSolRad), mean daily evening solar radiation (w/m2; AvgPMSolRad;), mean 

daily temperature (°C; AvgDailyTemp), mean previous day temperature (°C; 

AvgPrevDayTemp), and mean daily wind speed (m/s; AvgDailyWindSpd). A nested 

random effect of roost ID nested within field site was included as a random effect in 
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every model to account for differences in bat abundance and habitat quality between the 

Indiana and Kentucky sites, which might have influenced roost usage and uptake, and to 

account for subtle differences between roosts of the same design that could detract from 

overall performance. 

Roost design was included as a predictor variable to account for the possible 

differences in microclimate offered by different box designs. Temperature can directly 

influence the energetic expenditure of bats (Racey and Swift 1981; Kunz 1987; 

Sedgeley 2001). Selecting roosts with an optimal microclimate could result in 

substantial energetic savings during summer, and potentially increase fitness and 

overwinter survival (Wilcox and Willis 2016; Cheng et al. 2018). 

We included solar treatment as a predictor variable in the analysis, as solar 

exposure has a direct impact on the microclimate experienced by a roost (Brittingham 

and Williams 2000; Mering and Chambers 2012), is an important facet of bat maternity 

roosts (Callahan et al. 1997; Brittingham and Williams 2000; Bergeson et al. 2018), and 

might have a strong effect on roost selection. Further, in our study, solar treatment 

could reflect predation risk, as the open cluster was father from tree cover when 

compared to the easterly sun, westerly sun, and forest clusters. Bats may face a trade-off 

when selecting roosts with optimal solar exposure that are far away from tree cover as 

the potential risk of being depredated by raptors may be greater (Lima and O’Keefe 

2013). 

Reproductive period was selected as a predictor variable as energetic constraints 

and physiological needs of individual bats vary based on reproductive condition 

(Hamilton and Barclay 1994; Lausen and Barclay 2003a; Arndt et al. 2018), and this 
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might be reflected in temporal preferences for roost type or position. We classified bat 

P/A and abundance data into one of 3 Indiana bat reproductive periods, modifying the 

start and end dates of each reproductive period as necessary based upon information 

from 2019 Indiana bat mist net captures at both sites (F. Tillman at ISU and M. Rogers 

at KDFWR, pers. comm). Dates for the start and end of each reproductive period were 

thus defined as follows: P: 3 May to 10 June, L: 11 June to 13 July, PL: 14 July to 10 

October. 

We tested the effects of mean morning and mean evening daily solar exposure 

for each cluster to account for the effects of differential solar radiation on roost 

microclimate. Certain roost designs may heat faster than others, and areas of low solar 

radiation may offer refugia from extreme high temperatures, while areas of high solar 

radiation may provide warmer microclimates. Further, measures of solar radiation will 

allow for fine-grain analysis of P/A and abundance on overcast days when solar 

radiation may be limited, as this trend would not be elucidated with the sole use of the 

solar treatment parameter. Mean daily morning solar radiation was the mean amount of 

solar radiation experienced at a roost cluster over a 6-hour period beginning during the 

sunrise hour. Weather stations did not record on the hour; to avoid large amounts of 

variability in the initial solar radiation reading, all calculations started during the hour of 

sunrise. We calculated mean daily evening solar radiation as the mean amount solar 

radiation experienced by a cluster over a 7-hour time window ending during the hour in 

which sunset occurred.  

We tested the effects of mean daily temperature and mean previous day 

temperature because ambient temperature affects roost microclimate (Hoeh et al. 2018). 
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Temperature can affect roost temperature availability and variability which could cause 

bats to shift roost preferences (Hoeh et al. 2018). We calculated mean daily temperature 

and mean previous day temperature as the average value of each respective measure 

over a 24-hour window (0000 to 2300 hours).  

Lastly, we included mean daily wind speed as a predictor variable because 

convective cooling and wind throw are likely to be key factors for roost selection. 

Convective cooling from high wind speeds will likely reduce temperatures within a 

roost and potentially decrease roost temperature availability (Tillman 2019). Wind 

throw is also likely important to roost selection, as a typical snag roost is ephemeral and 

more susceptible to falling (Timpone et al. 2010; Bergeson et al. 2018). Also, wind 

speed predicts the timing of Indiana bats’ spring/fall migration and arrival to their 

maternity site; bat presence and abundance is often low during periods of high wind 

(Pettit and O’Keefe 2017). We calculated mean daily wind speed as the mean daily 

wind speed over a 24-hour window (0000 to 2359 hours).  

This research was approved by Eastern Kentucky University IACUC protocol 

number 01-2019. 

RESULTS 

Weather~ 

At the Indiana site, from 11 April (date of weather station installation for IN) to 

10 October 2019, ambient air temperature (Ta) across roost clusters ranged from –1.2–

34.7ºC (mean = 19.7ºC). Hourly wind speeds ranged from 0–10.4 m/s (mean = 0.51 

m/s) across roost clusters, though gusts likely exceeded the recorded hourly wind speed. 

Total rainfall accumulation for the study period at the Indiana site amounted to 677.7 
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mm. Solar radiation ranged from 0–1116 w/m2 (mean = 154.03 w/m2) across roost

clusters. Differences in tree line density and forest composition likely influenced all 

microsite weather parameters. 

At the Kentucky site, from 5 April (date of weather station installation for KY) 

to 15 September 2019, Ta across roost clusters ranged from 2.5–36.4ºC (mean = 20.8ºC; 

See Appendix A). Hourly wind speeds ranged from 0–9.9 m/s (mean = 0.46 m/s) across 

roost clusters. Total rainfall accumulation for the study period was 803.7 mm. Solar 

radiation ranged from 0–1138 w/m2 (mean = 168.93) across roost clusters. Differences 

in tree line density and forest composition likely influenced all microsite weather 

parameters. 

Survey Effort~ 

In 2019, we accumulated 85 survey days at the Kentucky site, with 1700 

individual spotlight checks and 255 emergence counts (mean of 3 counts/day). There 

were 91 survey days at the Indiana site, with 1591 individual spotlight checks and 501 

emergence counts (mean of 6 counts/day). 

Roost Occupancy Overview~ 

We observed substantial variation in roost usage between field sites. While 

supporting similar sized colonies of Indiana bats, the colony at the Kentucky site was 

spread out across existing structures, leading to fewer bats in our new roosts. In total, 

we observed Indiana bats for 1,575 total bat days (1 bat day = 1 bat present in a roost on 

a given day) at the Kentucky field site, with bats using 15 of 20 rocket boxes, save those 

in the open cluster, with 5 rocket boxes reaching primary roost status (i.e., colony size ≥ 

30 bats as per Callahan et al. 1997). A total of 8,804 bat days were logged at the Indiana 
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site, with Indiana bats using 14 of 20 rocket boxes, with no Indiana bats detected at the 

open cluster, and with 9 rocket boxes reaching primary roost status. The maximum 

emergence count for a rocket box at the Kentucky site was 59 (mean count = 7.5 ± 0.7 

bats) and at the Indiana site the maximum emergence count was 174 bats (mean count = 

33.6 ± 2.7 bats).  

We discerned no patterns regarding bat preferences for a specific rocket box 

design (Figure 1-4). The REF design received comparatively little use at the Kentucky 

site, while the EXTJ design received little use at the Indiana site. At both field sites, VR 

designs seemed to have consistent use, and Indiana bats tended to colonize the easterly 

sun and forest roost clusters earlier in the year, then transition to the westerly sun 

clusters later in the maternity season (Figure 1-5). Peak usage of the forest and easterly 

sun clusters occurred during the same biweekly interval at both field sites. 
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Figure 1-4: A) Bi-weekly total bat days per roost design for the Kentucky field site. 
B) Bi-weekly total bat days per roost design for the Indiana field site.
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Figure 1-5: A) Bi-weekly total bat days per solar treatment for the Kentucky field 
site. B) Bi-weekly total bat days per solar treatment for the Indiana field site. 
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Presence/Absence and Abundance~ 

We removed open clusters from the analysis for both field sites as we never 

detected Indiana bats at either open cluster. We do note that 3 bat days were logged at 

the Indiana open cluster by bats we were unable to identify with confidence. The 

easterly sun EXTJ roost at the Indiana site was damaged on 6 June 2019 and no 

observations from this roost were used after this date. After removing observations from 

unused/avoided open solar treatment clusters, damaged roosts, observations pre-roost 

discovery, and weather station power failure days, there were 1790 individual 

observations of P/A and abundance for use in the hurdle model analysis. 

Based on AICC model selection, the Solar Treatment Global model was the most 

plausible model with > 99.9% of all model weights (Table 1-2). No other models were 

within 2 AICC units of the top model. The next highest-ranking model was the Design 

Global model. This model carried < 0.001% of all model weights and was 13.9 AICC

units below the top model. This result highlights the critical role of the solar treatment 

parameter in the best-fitting model as the Design Global model substitutes roost design 

for solar treatment. There was no support for the other candidate models. Within the top 

model, we identified 7 informative parameters in the P/A portion of the hurdle model 

(Table 1-3) and 6 informative parameters from the abundance portion (Table 1-4).  
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Table 1-2: AICC ranks of the 19 candidate hurdle models used to describe P/A and 
abundance. 
Model Name ∆AICC K wi 
Solar Treatment Global 0.0 25 1.0000 
Design Global 13.9 29 <0.001 
m13 44.9 23 <0.001 
m11 46.4 15 <0.001 
m16 50.2 21 <0.001 
m12 69.3 13 <0.001 
m14 76.3 21 <0.001 
m17 76.5 17 <0.001 
m3 76.9 11 <0.001 
m15 79.1 22 <0.001 
m6 84.1 19 <0.001 
m9 102.4 13 <0.001 
m4 134.1 11 <0.001 
m7 135.1 19 <0.001 
m10 155.0 17 <0.001 
m5 168.3 9 <0.001 
m8 169.1 17 <0.001 
Null 191.2 7 <0.001 
m2 201.2 15 <0.001 

Table 1-3: Parameter estimates and 85% confidence intervals for the P/A portion 
of the top model. Note that a positive parameter estimate, in this case, indicates an 
increased probability of an absence (informative parameters bolded). 
Parameter Estimate 85% Confidence Interval 

Lower Upper 
Intercept 3.324 2.325 4.323 
`Solar Treatment`Forest 1.798 1.111 2.485 
`Solar Treatment`West 0.259 -0.252 0.770 
`Solar Treatment`West(Forest RefLvl) -1.539 -2.234 -0.844
`Repro Period`P 0.000 -0.356 0.356
`Repro Period`PL -0.530 -0.776 -0.283
`Repro Period`PL(P RefLvl) -0.530 -0.829 -0.230
AvgAMSolRad -0.001 -0.002 0.001
AvgPMSolRad -0.002 -0.003 -0.001
AvgDailyTemp -0.071 -0.120 -0.021
AvgPrevDayTemp -0.011 -0.059 0.037
AvgDailyWindSpd 1.650 1.174 2.126
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Table 1-4: Parameter estimates and 85% confidence Intervals for the abundance 
portion of the top model (informative parameters bolded). 
Parameter Estimate 85% Confidence Interval 

Lower Upper 
Intercept 2.764 1.020 4.507 
`Solar Treatment`Forest -1.878 -2.984 -0.773
`Solar Treatment`West -0.469 -1.157 0.220
`Solar Treatment`West(Forest 
RefLvl) 1.410 0.290 2.533
`Repro Period`P -2.155 -2.801 -1.510
`Repro Period`PL 0.952 0.596 1.307
`Repro Period`PL(P RefLvl) 3.107 2.462 3.752
AvgAMSolRad 0.001 -0.001 0.003
AvgPMSolRad 0.000 -0.001 0.001
AvgDailyTemp -0.081 -0.141 -0.020
AvgPrevDayTemp 0.025 -0.038 0.088
AvgDailyWindSpd 0.344 -0.309 0.997

Table 1-5: Odds ratios (OR), scaled where appropriate, and 95% confidence 
intervals for P/A parameters. 

95% Confidence 
Interval 

Parameter OR 
Scaled 

OR 
Unit 

Change 
Scaled 
Upper 

Scaled 
Lower 

`Solar Treatment`Forest 6.039 - - 15.393 2.369 
`Solar Treatment`West 1.296 - - 2.599 0.646 
`Solar Treatment`West(Forest 
RefLvl) 0.215 - - 0.553 0.083 
`Repro Period`P 1.000 - - 1.623 0.616 
`Repro Period`PL 0.589 - - 0.823 0.421 
`Repro Period`PL(P RefLvl) 0.391 - - 0.886 0.391 
AvgAMSolRad 0.999 0.962 50 1.060 0.864 
AvgPMSolRad 0.998 0.905 50 0.959 0.851 
AvgDailyTemp 0.932 0.703 5 1.039 0.366 
AvgPrevDayTemp 0.989 0.946 5 1.272 0.620 
AvgDailyWindSpd 5.209 5.209 1 9.960 2.724 

Based on odds ratios for informative P/A parameters, Indiana bats were 6.04 

times more likely to be absent at forest clusters when compared to easterly sun clusters, 

and 1.30 times more likely to be absent in westerly sun clusters when compared to the 
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easterly sun cluster (Table 1-5; Figure 1-6: A). Bats were 78% more likely to be present 

in the westerly sun cluster compared to the forest. Indiana bats were 41% more likely to 

be absent during lactation when compared to post-lactation, and bats were equally likely 

to be absent during pregnancy when compared to lactation (Table 1-5; Figure 1-6: B). 

Indiana bats were 61% more likely to be present during post-lactation when compared 

to pregnancy. Indiana bats were 30% less likely to be absent in rocket boxes for every 

5ºC increase in mean daily temperature (Figure 1-7: A). Indiana bats were 9% less 

likely to be absent for every 50w/m2 increase in mean daily solar radiation (Figure 1-7: 

B). Finally, bats were 5.21 times more likely to be absent for every 1 m/s increase in 

mean daily wind speed (Figure 1-7: C).  

Figure 1-6: Relative frequency of presences (1) to absences (0), grouped by A) solar 
treatment and B) reproductive period. 
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Solar treatment, reproductive period, and mean daily temperature were 

informative parameters for the abundance portion of the hurdle model (Table 1-4). 

Mean colony size was conspicuously larger for easterly and westerly solar exposed 

roosts when compared to the forest cluster roosts (Table 1-6; Figure 1-8: A, C). 

Indiana bat colony sizes were larger during lactation and post-lactation versus 

pregnancy ( Table 1-6; Figure 1-8: B, D). Furthermore, Indiana bat colony sizes were 

larger during periods of warmer mean daily temperatures (Figure 1-9). 

Table 1-6: Mean and standard error of emergence counts by roost cluster and 
reproductive condition for the Indiana and Kentucky field sites. 

Field site 
Indiana Kentucky Combined 

Mean ± SE Mean ± SE Mean ± SE 
Roost Cluster 

Easterly sun 47.7 4.9 9.2 1.2 28.1 2.8 
Westerly sun 28.5 5.0 7.3 0.9 17.4 2.6 

Forest 2.0 0.4 1.1 0.1 1.3 0.1 
Repro Condition 

Pregnancy 2.6 0.7 1.8 0.2 2.0 0.2 
Lactation 26.6 5.4 7.4 1.7 19.2 3.5 

Post-lactation 45.5 4.5 9.2 0.9 26.2 2.4 
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Figure 1-8: Mean emergence count at the Indiana field site by A) solar treatment 
and B) reproductive period. C) Mean emergence count at the Kentucky field site 
by C) solar treatment and D) reproductive period. 

Figure 1-9: Scatter plot of the total emergence count per roost as a function of 
mean daily temperature with trend line and 95% confidence intervals. Trend line 
(black) and 95% confidence interval (gray). 
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DISCUSSION 

Roost Uptake and Occupancy~ 

Our results indicate strong inter-site variation in artificial roost use by Indiana 

bats. While bats used a similar number of roosts across sites, the mean colony size, 

maximum emergence count, and total number of bat days logged at the two sites were 

dissimilar. The Indiana field site accumulated over 5 times the number of bat days and 

had a maximum emergence count that was 2.9 times larger compared to that of the 

Kentucky site. Considering these observations, there are several factors regarding site 

history that may have influenced roost uptake and use at each field site.  

We judge the most plausible hypothesis for greater roost usage at the Indiana 

site is that Indiana bats have developed search images for rocket box roost structures as 

a result of previous exposure to this style of roost. Considering classic examples of prey 

detection being enhanced by the buildup of search images overtime (Zentall 2005), it 

seems plausible Indiana bats may be identifying potential roost structures in a similar 

manner. The Indiana field site has a long history of artificial bat roost deployment and 

research (Ritzi et al. 2005; Whitaker et al. 2006), and rocket boxes have been deployed 

at this site previously (Hoeh et al. 2018). In contrast, at the Kentucky site there were no 

rocket box style roosts deployed prior to this study. Roost familiarity may play an 

important role in roost uptake, as individual bats become familiar with the rocket box 

design, they may develop search images for them and thus be more likely to detect and 

subsequently use or avoid that structure in the future. Because rocket boxes were in 

place and used at the Indiana site for several years prior to our study, Indiana bats at this 

site may have be more willing to move into these structures in large numbers due to 
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possessing a search image and prior knowledge of this roost style. In contrast, Indiana 

bats at the Kentucky field site were likely more naive to the idea of rocket boxes as 

potential roosts.  

Another likely explanation for dissimilar roost usage between sites could be the 

Indiana bats at the Indiana field site are more restricted to using artificial roosts as a 

result of increased urbanization and fragmentation of this landscape (Sparks et al. 2005; 

Whitaker et al. 2006; Bergeson et al. 2020). The Kentucky site likely possesses much 

larger tracts of contiguous forest with ample amounts of large dead snags which could 

potentially serve as natural roosts. Ample natural roosting habitat available at the 

Kentucky site may partly explain smaller colony size and lower fidelity to artificial 

roosts (Brigham 1991; Lewis 1995). For example, O’Keefe et al. (2017) found that in 

the southern Appalachians where roost availability was high, Indiana bats formed 

smaller colonies and switched roosts more often when compared to Indiana bat 

populations in the Midwest. Further, Brigham (1991) found big brown bats in British 

Columbia showed less fidelity to roosts than conspecifics in Ontario, suggesting limited 

roosting opportunities in Ontario led to higher roost fidelity. Thus, it is likely that 

decreased availability of natural roosting habitat at the Indiana field site may have led to 

larger numbers of bats using individual roosts. 

Solar Treatment~ 

The importance of high solar exposure for Indiana bat maternity roosts is well-

documented (Humphrey et al. 1977; Callahan et al. 1997; Kurta and Rice 2002; Britzke 

et al. 2003; O’Keefe and Loeb 2017). Our results further confirm that solar exposure is 

important to roost habitat selection, as our top model indicated that Indiana bats roosted 
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in rocket boxes receiving easterly and westerly solar exposure more often than they 

used shaded forest cluster roosts. Our results suggest potential tradeoffs and thresholds 

regarding solar exposure, as Indiana bats avoided using rocket boxes in the open solar 

treatment clusters, which were a considerable distance away from any tree line. A likely 

hypothesis explaining our result could be that Indiana bats perceive a high predation 

risk when flying in the open (Lima and O’Keefe 2013; Arndt et al. 2018), as this species 

is typically considered slow-flying and clutter-adapted, possessing both relatively low 

wing loading and low aspect ratio morphology. Roosting near tree lines may provide 

these bats with cover and fast access to sheltered areas safe from predation by diurnal 

and nocturnal raptors (Lima and O’Keefe 2013; Arndt et al. 2018). However, the fact 

that bats selectively roosted in clusters with eastern or western exposures over the forest 

cluster demonstrates the relative importance of high solar exposure for maternity 

roosting Indiana bats. If predator avoidance was the sole focus, bats would be more 

likely to roost in forest boxes that offered immediate cover upon emergence. Further, 

we would expect roost selection more similar to that of male Indiana bats, which 

typically roost alone or in small groups and select roosts with characteristics facilitating 

predator avoidance, such as high snag density and taller roost trees (Bergeson et al. 

2018).  

Reproductive Condition~ 

Reproductive condition was an important determinant of Indiana bat presence 

and abundance at our artificial roosts. We note greater abundance and increased 

frequency of presence with each successive reproductive stage, from pregnancy to post-

lactation. We note that abundance and likelihood of presence is inflated during post-
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lactation (and, to a certain extent, during lactation) due to pups gradually becoming 

volant and thereby increasing emergence count numbers, as well as by exploring and 

potentially using more roost structures (Whitaker and Sparks 2008; Oyler-McCance et 

al. 2018). Another explanation for this observed result is that Indiana bats at both field 

sites were likely naïve to the presence of the new rocket box structures on the landscape 

and thus there may be a period of time over which bats discovered roosts and then 

relayed this information to other bats before large colonies formed (Flaquer et al. 2006; 

Mering and Chambers 2012; Rueegger 2016). For instance, Mering and Chambers 

(2012) deployed 104 artificial roosts of 2 basic types in Arizona and found mean 

colonization time to be just over 400 days after installation. Additionally, Flaquer et al. 

(2006) found the abundance of soprano pipistrelles (Pipistrellus pygmaeus) in artificial 

roosts in wetland paddies increased with each subsequent year. We may have observed 

a similar effect on a much shorter time scale over the course of one maternity season, 

during which bats accumulated knowledge and subsequently began to aggregate in our 

rocket box roosts.  

Wind~ 

Higher mean daily wind speeds led to a decrease in the likelihood of the 

presence of Indiana bats in our artificial roosts. This could be, in part, due to the 

seasonal timing of higher wind speeds at the study sites coinciding with the spring 

migration of bats to our sites and the fall migration away from the sites (see Appendix 

A). For example, Pettit and O’Keefe (2017) found high seasonal winds coincided with 

the arrival and departure of Indiana bats at their respective study sites. Due to this 

seasonal movement, Indiana bats were less abundant during these transition periods as 
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opposed to the generally calmer summer months (Pettit and O’Keefe 2017). Another 

plausible hypothesis is that during periods of high winds (e.g., during storms), Indiana 

bats shifted to more sheltered or forested roost structures, as typical maternity roosts are 

generally solar-exposed, ephemeral snags (Timpone et al. 2010; Hammond et al. 2016), 

which may be more susceptible to falling and thus may pose a safety risk to bats during 

periods of high wind.  

Mean Daily Temperature~ 

Ambient temperature is well documented as a factor known to impact artificial 

roost microclimate, metabolic energy expenditure of bats, as well as a factor influencing 

the growth and development of pups (Racey and Swift 1981; Kunz 1987; Hoeh et al. 

2018). Our results suggest a weak trend in which the presence and abundance of bats 

increased with increasing mean daily temperature. One hypothesis explaining this result 

could be that the warmest days during our study occurred during the middle of the 

maternity season (See Appendix A) when bats are most abundant, and that Indiana bats 

are likely to be migrating and less abundant on cooler days during the spring and fall 

(Pettit and O’Keefe 2017). Another explanation could be that Indiana bats accumulated 

knowledge of roost locations over time and, thus, the discovery period led to a gradual 

accumulation of bats in roosts over time. In turn, this may have contributed to the weak 

trend with temperature as average temperatures increased as the summer progressed. In 

this scenario, time is the determinant of abundance and just happens to coincide with 

increasing periods of temperature. 



37 

Evening Solar Radiation~ 

Our results show evening solar radiation as an important predictor of Indiana bat 

presence, with bats more likely to be present in rocket boxes with increasing evening 

solar radiation. The level of solar radiation received is likely linked to the solar 

treatment of the roost cluster, with easterly sun and westerly sun roost clusters receiving 

higher evening solar radiation than the forest roost clusters. Our result is supported by 

the literature; high solar exposure is well-documented as an important characteristic of 

Indiana bat maternity colonies (Callahan et al. 1997; Britzke et al. 2003; O’Keefe and 

Loeb 2017). Our observed preference for high evening solar exposure is likely a result 

of Indiana bats selecting warmer roost microclimates as the growth and development of 

pups is favored under warmer conditions (Kunz 1987; Zahn 1999).  

Non-preference of Roost Design~ 

We found little evidence of bats selecting any particular rocket box design, 

which could be due to several factors. First, because these roost were newly-deployed at 

both field sites, bats lacked prior knowledge about what type of microclimate each roost 

design might provide and likely did not have time to “sample” each roost to assess its 

microclimate during different periods and weather conditions (Kerth et al. 2001). 

Selection and preference are likely the result of associative learning impacting behavior 

(e.g., Swift et al. 2002), which may influence future actions. As our results only 

encompass a single maternity season, there likely has not been enough time for testing 

of all roosts to occur. Another possibility is that bat principally select roosts at dawn 

when roosts have likely reached their coolest temperatures and, as shown in several 

studies, artificial roost temperatures can be very similar during the overnight even when 
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daytime temperatures can be drastically different (Kerth et al. 2001; Bartonicka and 

Rehak 2007). If bats lack prior knowledge about roost microclimate, they likely would 

not be able to discern differences between roosts and thus would not prefer one to 

another with at first testing each roost (Kerth et al. 2001). Another plausible scenario is 

our roost designs may not be providing microclimates that are different enough to 

influence roost preference. Rocket boxes have been documented to support large 

internal temperature gradients (i.e., 7ºC; Hoeh et al. 2018), making it possible that all of 

our rocket box designs may have provided large enough temperature gradients so that 

bats could find suitable temperatures within any roost. For example, a bat roosting in 

the cooler chimney design may roost near the top of the box if warmer temperatures 

were desired, while in the warmer vent removal box a bat could roost lower within the 

roost to find a cooler condition. If these two designs supported a large enough 

temperature gradient, it is possible that Indiana bats may find similar roosting 

temperatures within each box by changing their vertical positioning. Several studies 

have documented bat movements within roosts, presumably to locate desired 

temperatures (Humphrey et al. 1977; Hamilton and Barclay 1994; Lourenço and 

Palmeirim 2004); it is reasonable to assume the populations of Indiana bats under study 

at our field sites might behave similarly.  

Transitions across Roost Clusters~ 

Differential solar radiation and the associated reproductive costs of 

thermoregulation may be a driving force behind the observed transition of Indiana bats 

from easterly to westerly sun clusters, which occurred during the same biweekly 

interval at both field sites (26 July – 8 August 2019). Indiana bat pups are born altricial 
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and are poor thermoregulators; using warm roosts favors the growth and development 

of pups, as less metabolic energy is devoted towards thermoregulation (Racey and Swift 

1981; Kunz 1987; Hoying and Kunz 1998). It logically holds in our study system that 

Indiana bats selected easterly sun roosts during lactation, as these roosts as likely to 

warm faster in the morning as compared to forest and westerly sun clusters (Mering and 

Chambers 2012) and, thus, reduce energetic costs associated with maintaining 

normothermia (Hamilton and Barclay 1994). For example, Hamilton and Barclay 

(1994) found that female big brown bats rearing young preferred to roost on the easterly 

side of an attic roost and, thus, inferred passive rewarming in the morning was the main 

driver of selection for roost aspect. In our system, the mid-July/early-August transition 

to westerly sun roosts may have been the result of lactating bats transitioning to the 

post-lactation stage, at which point pups are weened and presumably volant (Kurta and 

Rice 2002). The transition may thus be related to differing energetic constraints 

following pups becoming independent. Post-lactating Indiana bats might have 

transitioned to westerly sun roosts for the increased energetic savings gained through 

passive rewarming before emerging at night (Lacki et al. 2013), as bats need to arouse 

to near an active body temperature before taking flight (Hamilton and Barclay 1994; 

Willis and Brigham 2003).  

Though observed usage of the forest cluster rocket boxes was low, we note peak 

usage of these roosts occurred during the same biweekly period at both field sites (17 

May – 30 May 2019). This peak in usage occurred during pregnancy and may have 

occurred due to shaded roosts supporting cooler microclimates and, thus, facilitating 

deeper torpor and resulting in increased thermoregulatory savings from not maintaining 
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normothermia (Hamilton and Barclay 1994; Lausen and Barclay 2003b; Willis and 

Brigham 2003). This supposition is further supported by the findings of Lausen and 

Barclay (2003), who found that big brown bats in Canada were more likely to use torpor 

during pregnancy and post-lactation than during lactation. Further investigation of 

forest cluster roosts is needed to provide clearer support for this hypothesis. 

Management Implications~ 

We stress that if artificial roosts are deemed necessary for management then 

resource managers should deploy multiple artificial roosts (of the same or differing 

designs) at a variety of solar exposures to suit the changing thermoregulatory and 

physiological needs of Indiana bats over the maternity season. Deploying artificial 

roosts in clusters and in varying solar treatments could facilitate roost discovery and 

provide bats with a variety of microclimatic options to choose from within a microsite 

(Lewis 1995; Rueegger 2016). In both of our field sites, Indiana bats used artificial 

roost clusters in easterly sun, westerly sun, and forest locations. We provide evidence 

that Indiana bats may avoid artificial roosts in open areas away from tree lines. 

Providing bats with high-quality artificial roosting habitat during the summer may 

enhance energetic savings and, thus, could potentially lead to increased overwinter 

survival as bats that accumulate larger fat stores pre-hibernation may be more likely to 

survive WNS infection (Cheng et al. 2018). Additionally, providing multiple roost 

designs and deployments may provide bats refugia from extreme temperatures, as 

overheating events in artificial roosts are likely to become more common as a result of a 

changing climate (Flaquer et al. 2014; Bideguren et al. 2018). It logically follows that 
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providing a variety of roosting conditions may enhance survival during extreme 

temperature events.  

Future Directions~ 

We note several additional avenues of research for further investigation. Future 

work should assess whether our observation regarding transitions across roost cluster 

locations (i.e., from easterly to westerly sun) holds true over successive years and is 

thus predictable. If so, consistent observations would provide further evidence that 

Indiana bats switch roost clusters to gain thermoregulatory advantages that align with 

their current physiological state. Additionally, now that bats have had time to sample 

each roost in our study system, work focusing on roost selection is needed to determine 

if bats begin to show preference (or continue not to show preference) for roost design. 

We also note several other tree line deployments (e.g., south, south-east, south-west, 

northern orientations) could be tested alongside current deployments to further 

investigate the effects of differential solar exposure on roost selection. Additional 

research focusing on the longevity and viability of artificial roosts is needed to 

investigate the cost-benefit ratio of artificial roost deployment, as some designs may last 

longer and maintain thermal performance overtime more effectively than other designs. 

Alongside deployment of artificial roosts, researchers should also investigate 

reproductive success of bats at artificial roosts, as information on reproductive success 

and pup viability are largely unknown. Further, roost dominance and the community 

composition at artificial roost sites following deployment should be investigated as 

relative roost importance and interspecific competition may change occupancy and 

abundance rates over time (Mering and Chambers 2014; Rueegger 2016, 2017; 
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Rueegger et al. 2019). Lastly, further research is needed to assess the potential that 

artificial roosts could be altering the behavior of bats and subsequently serving as 

ecological traps wherein bats may experience subsequent declines in survival or 

fecundity (Bideguren et al. 2018). In such cases, artificial roosts may mimic the 

appearance of natural roosts and be placed in theoretically “prime” locations, but 

thermally and functionally may not act in the same manner as a natural roost. Thus, bats 

might be tricked into using these structures by visual and environmental cues they think 

are optimal (Battin 2004). Such scenarios should be investigated more thoroughly in the 

future to justify the use of artificial roosts as tools for management of at-risk bat 

species. 
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CHAPTER 2 : BAT BOX MICROCLIMATE IS IMPACTED BY DESIGN, 

PLACEMENT, WEATHER, AND OCCUPANCY 

INTRODUCTION 

Thermal environments of roosts, both natural and artificial, can vary greatly in 

regard to temperature stability, availability, and suitability (Lacki et al. 2013; Hoeh et 

al. 2018; Rueegger 2019). Temperature variability within environments, often inducing 

physiological stress, has led to the evolution of varied coping mechanisms and 

behaviors organisms use in an attempt to stay within the operative temperature limits of 

their bodies (Huey et al. 2003; Buckley and Huey 2016). In many cases, temperature 

extremes may delineate the suitability of a site based upon an organism’s thermal 

tolerance thresholds and coping behaviors (Sunday et al. 2012); in many cases 

temperature extremes exceeding tolerance thresholds render sites unusable and 

potentially dangerous (Lourenço and Palmeirim 2004; Camacho et al. 2015). As such, 

access to roost structures and microhabitats within thermal tolerance thresholds may be 

critical to the survival and persistence of many species (Kunz 1982; Buckley and Huey 

2016; Jarolimek and Vierling 2019). 

For temperate region bats, finding roosts that suit their thermoregulatory and 

physiological needs is paramount to survival and rearing offspring successfully (Kunz 

1982, 1987; Sedgeley 2001). Roost temperatures can occasionally exceed the thermal 

tolerance thresholds of bats, rendering these roosting areas unusable and dangerous 

(Bartonicka and Rehak 2007; Flaquer et al. 2014; Bideguren et al. 2018). Temperatures 

exceeding 40°C can induce heat stress and prolonged exposure to these high 
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temperatures within a roost can lead to mortality (Hensaw and Folk Jr 1966; Licht and 

Leitner 1967). For example, Flaquer et al. (2014) report an overheating event in an 

artificial roost leading to 22 soprano pipistrelles (Pipisetellus pygmaeus) falling from 

the roost upon emergence. Further, Lourenço and Palmeirim (2004) note that soprano 

pipistrelles sought warm roosting positions within an attic, but avoid areas exceeding 

40ºC, suggesting that the upper temperature limit for these bats is near this temperature. 

In contrast, cold roosts can prolong the gestation period of pregnant bats (Racey and 

Swift 1981), reduce milk production of lactating bats (Wilde et al. 1999), and slow the 

development of pups, which are born altricial and are poor thermoregulators expending 

excess energy to maintain normothermia (Kunz 1987; Hoying and Kunz 1998). Delayed 

development in cool roosting conditions could impact overwinter survival, as body fat 

accumulation can increase the probability of surviving white-nose syndrome (WNS) 

infection during winter (Cheng et al. 2018). At temperatures near or below 0°C, bats 

must arouse from torpor and expend excess energy generating heat to prevent freezing 

(Henshaw and Folk, Jr 1966; Davis and Reite 1967). Thus, having access to roosts that 

offer suitable microclimates may increase the likelihood survival. 

Thermal environments of roosts directly influence bats’ energetic expenditures 

(Kunz 1987; Hoying and Kunz 1998; Zahn 1999; Lausen and Barclay 2003; Wilcox and 

Willis 2016). In cool roosts, bats can enter torpor and experience increased energetic 

savings resulting from not maintaining normothermia (Hamilton and Barclay 1994; 

Lausen and Barclay 2003; Willis and Brigham 2003). Even so, the negative 

reproductive costs of low body temperature during lactation often limit female bats’ use 

of torpor (Kunz 1987; Hamilton and Barclay 1994; Solick and Barclay 2006). For 
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example, Lausen and Barclay (2003) note that lactating big brown bats (Eptesicus 

fuscus) in Alberta, Canada select rock crevice roosts that are more thermally stable, 

retaining more heat through the course of the overnight than other available rock 

crevices; these conditions allow lactating bats to use deep torpor less frequently than 

pregnant and post-lactating individuals. Selecting roosts that retain heat could expedite 

juvenile development (Zahn 1999; Lausen and Barclay 2006). Further, as adult bats 

emerge for foraging and are no longer providing body heat, heat retention by roosts 

through the overnight could be critical for juvenile development and survival. Notably, 

lactating female Indiana bats (Myotis sodalis) can spend > 5 hours per night foraging, 

visiting pups intermittently to nurse (Murray and Kurta 2004), which could result in 

significant roost cooling. Additionally, Kerth et al. (2001) found that, of 2 roost designs 

tested, artificial roosts with significantly different peak temperatures during the day 

decline to near identical temperatures 1–3 hours after sunset as a result of poor heat 

retention. Based on the costs of variable roost microclimate, it is clear strong selective 

pressure is placed on bats to find roosts that suit their thermoregulatory and 

reproductive needs. Providing thermally beneficial roost alternatives could enhance 

outcomes when artificial roosts are used as effective conservation and management 

tools. 

Microclimates of both natural and artificial roosts are influenced by a multitude 

of structural, environmental, and landscape components. Artificial roost construction 

material (Bideguren et al. 2018), color and reflectance (Doty et al. 2016; Griffiths et al. 

2017), and volume (Sedgeley 2001) can influence microclimate suitability. For 

example, Lourenço and Palmeirim (2004) found that black boxes are on average 5ºC 
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warmer than white boxes of the same design. Environmental factors like cloud cover 

(Hoeh et al. 2018), ambient temperature (Lacki et al. 2013), wind (Tillman 2019), 

humidity (Rueegger 2019), and solar exposure (Brittingham and Williams 2000) all 

alter microclimate. For example, on days with clear skies, the temperature gradient 

within rocket and bat box style roosts can be as high as 10ºC (Hoeh et al. 2018). Larger-

scale components like roost aspect (Mering and Chambers 2012), canopy closure 

(Jarolimek and Vierling 2019), and slope position (Lacki et al. 2013) all impact 

microclimate. Several studies suggest bats prefer roost aspects and slope positions that 

promote warm microclimates, like south and east aspects (Mering and Chambers 2012) 

and south facing slopes (Hammond et al. 2016). Detailed consideration of roost 

microclimate relating to structure, weather, and landscape position should be 

investigated as potential drivers of roost occupancy. Such investigations could inform 

effective artificial roost placement and identification of high-quality natural roost sites. 

The physiological state of bats in roosts can significantly impact roost 

temperature. Physiological components influencing microclimate include colony size, 

which can influence temperature and humidity, and the metabolic state of the bats 

occupying the roost (Bartonicka and Rehak 2007; Willis and Brigham 2007). For 

example, the differential use of torpor and normothermia can influence roost 

microclimate, as bats can drop their body temperature to within a few degrees of 

ambient conditions, thus exerting minimal influence on roost temperature. Bats 

maintaining an active body temperature could impact roost microclimate substantially 

on days when ambient temperature is low (Hamilton and Barclay 1994; Dietz and 

Kalko 2005; Willis and Brigham 2007; Dzal and Brigham 2013). For instance, Willis 
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and Brigham (2007) found that the presence of bats in a roost could increase roost 

temperatures by as much as 7ºC. Interactions among physiological factors likely have 

an impact on the microclimate provided by a roost and may determine its overall 

suitability. Developing a better understanding of how different combinations of 

physiological components influence roost microclimate is critical to improve future 

conservation efforts and artificial roost design. 

Artificial roosts (e.g., bat boxes), which are often deployed as mitigation tools, 

have been under much scrutiny recently as a result of ongoing investigations into their 

efficacy, microclimate, and proper usage. Current studies show that many modern 

artificial roost types are inadequate at buffering against extreme temperatures 

(Bideguren et al. 2018; Hoeh et al. 2018; Rueegger 2019), and do not retain heat at 

night (Kerth et al. 2001; Lourenço and Palmeirim 2004). Finding roosts that support 

favorable microclimates could be critical for the summer survival of bats impacted by 

WNS (Wilcox and Willis 2016). Additionally, in Australia, Rueegger et al. (2019) 

found that bats rarely used artificial roosts deployed for mitigation on degraded 

landscapes and noted that current designs may not be effective substitutes for natural 

roosts for some bat species. Artificial roost design, microclimate, landscape position, 

and local climate likely interact to influence bat occupancy and abundance. 

 Due to the gaps in our knowledge and deficiencies noted regarding current 

artificial roost designs, microclimates, and landscape positions, continued rigorous 

investigation of these factors is needed to further justify and revise the use of artificial 

bat roosts as mitigation tools. For the present study, we aimed to profile the 

microclimates of 4 rocket box style artificial roosts specifically altered to manipulate 
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microclimate compared to a reference design, and to further investigate the effects of 

landscape position, weather, and bat occupancy and abundance on roost microclimate. 

STUDY SITES 

Historically, the Indiana bat ranged throughout most of the east-central United 

States, with the core of their range in the Midwest (USFWS 2007) and with many major 

hibernacula throughout Indiana and Kentucky (USFWS 2007). The two field sites for 

this study have known maternity colonies of Indiana bats and are in the central part of 

the species’ range. 

The first site is the Indianapolis Airport mitigation site in central Indiana 

(39°38'59"N, 86°20'57"W; hereafter, the Indiana site) and the second site is located at 

Veterans Memorial Wildlife Management Area in north-eastern Kentucky (38°19'20"N, 

84°32'57"W; hereafter, the Kentucky site). The Indiana field site is located within the 

Eastern Corn Belt Plains ecoregion and is characterized by an abundance of soybean, 

corn, and wheat fields with small mixed forest fragments (U.S. Environmental 

Protection Agency 1997). The Indiana bat maternity colony at this site has used 

artificial structures as roosts since ~2003–2019 (Ritzi et al. 2005; Whitaker et al. 2006; 

Hoeh et al. 2018). In the mid-1990s, Whitaker et al. (2006) observed the deployment of 

over 3,000 artificial roosts, of varying designs, at the Indiana site and documented 

minimal roost occupancy. Recently, Hoeh et al. (2018) deployed 6 clusters of 3 roost 

types (rocket box, bark-mimic, and bat box style) at the Indiana site, of which Indiana 

bats preferred the rocket box style based on occupancy; these roost clusters have been in 

place since ~2015.  
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The Kentucky field site is located within the Interior Plateau ecoregion and is 

characterized by mostly forested rolling hills containing predominantly white oak 

(Quercus spp.), hickory (Carya spp.), and eastern red cedar (Juniperus virginiana) 

(Woods et al. 2002). At this site, the Indiana bat maternity colony was previously 

documented using BrandenBark™ artificial roost structures that were installed around 

Summer 2016 (pers. comm. KDFWR). These structures are composed of a polyurethane 

sheet of synthetic bark wrapped around and affixed to the top of a 7.6 meter tall 

telephone pole (Gumbert et al. 2013). During the spring of 2019, 17 of the 18 original 

Brandenbark™ roosts were removed and replaced by 18 newer versions, as the posts for 

the old roosts were badly decayed and posed a safety hazard. A total of 3 roost clusters 

are spread across the site, 2 of the clusters containing 6 BrandenBark™ artificial roosts 

and 1 cluster containing 7 roosts (6 new and 1 old, 19 total at site) (pers. comm. 

KDFWR). 

METHODS 

Box Construction~ 

We constructed 4 replicates of 5 designs (i.e., 20 rocket boxes total) at Eastern 

Kentucky University for deployment at the Kentucky field site. Concurrent efforts were 

directed by Francis Tillman at Indiana State University to produce the same 

complement of boxes for deployment at the Indiana field site. All designs were 

modifications of the reference rocket box design described by Tillman (2019) (Figure 

2-1). Designs developed include: reference (REF), vent removal (VR), chimney (CH),

white tile roof (WTR), and external water jacket (EXTJ) (Table 2-1). Each altered 
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design was intended to promote a microclimate different from the REF design, though 

each design provided equal entrance area, roosting surface area, and volume. 

All rocket boxes were constructed from 1” thick (3/4” actual; 1.9cm) untreated 

pine (Pinus spp.) lumber. Untreated lumber is preferred as various lumber treatments 

can be harmful to bats (Racey and Swift 1986). We used 1” x 8” x 8’ (1.9cm x 20.3cm x 

2.43m) boards to cut inner shell pieces, and 1” x 10” x 6’ (1.9cm x 25.4cm x 1.8m) 

boards to cut outer shells. Inner shell boards measured 42” (106.7cm) long and 5-3/4” 

(14.6cm) wide. When attached to the other inner shell pieces with an edge overlap for 

anchoring (Figure 2-1), total inner shell face width was 6.5” (16.5cm). We cut outer 

shell boards to 36” (91.4cm) long and 8-3/4” (22.2cm) wide, and with edge overlap 

from other outer shell boards, outer shell box faces measured 9.5” (24.1cm) wide. We 

used exterior grade plywood for both the inner and outer roofs, measuring 6.5” 

(16.5cm) and 9.5” (24.1cm), respectively (EXTJ outer roof 12-3/4”). Boxes were 

mounted around the top of one untreated 4” x 4” x 12’ (8.9cm x 8.9cm x 3.7m) post. 

For the EXTJ design, we added an additional 3/4” (1.9cm) chamber to the 

exterior of the box. We did this by sistering two 6” x 36” (15.2cm x 91.4cm) boards 

together with three 2” X 3/8” (5.1cm x 0.95cm) pine dowel rods spaced 6” (15.2cm) 

from the top, 18” (45.7cm) down, and 6” (15.2cm) from the bottom of the board; 

anchored with wood glue. This resulted in external chamber boards measuring 12” 

(30.5cm) wide, so that the boards encompassed the outer shell of the reference rocket 

box design. Thus, we filled the resultant external chamber with 12 water packets (3 

packets per side) each measuring 11” x 11” (27.9cm x 27.9cm) (Figure 2-2). Packets 

were filled with 750ml of DI water and four foam supports which supported the edges. 
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Packets were constructed using heavy duty plastic and a commercial vacuum sealer for 

food storage. This additional chamber was sealed off with four 10.5” (26.7cm) wood 

spacers to prevent entry by vertebrates. Additionally, we used two 6” (15.2cm) spacers 

to separate water packets within the chamber. 

We used 1-1/4” (3.2cm) exterior grade screws to attach spacers to the 4” x 4” 

(8.9cm x 8.9cm) posts and inner shells and used a 1-1/2” (3.8cm) hole-saw to cut a 

transfer hole 18” (45.7cm) from the top of the inner shell. This transfer hole gives bats 

the option to move between the inner and outer chambers without leaving the interior of 

the box. We used 1-5/8” (4.1cm) exterior grade screws to assemble the inner and outer 

shell pieces, and we used 2” (5.1cm) exterior grade screws to anchor the inner shells to 

their respective posts. The portion of the 4” x 4” (8.9cm x 8.9cm) post inside the roost, 

in addition to the inner shell boards, were scuffed using a 1-1/2” (3.8cm) hole-saw held 

at an acute angle (Figure 2-3). Scuffing provides bats with footholds for roosting and 

climbing inside boxes. We sealed all seams with clear paintable latex caulk to increase 

weather and rain resistance. We covered exteriors of all outer shells and outer roofs 

with 2 coats of a flat brown exterior grade paint. We reinforced the bottom corners of 

the outer shell with 2.5” (6.4cm) metal corner brackets. For all designs, excluding the 

WTR, a dark colored roofing shingle was cut to fit and attached with roofing tar. 

Completed rocket boxes were subsequently attached to an additional 4” x 4” x 12’ 

(8.9cm x 8.9cm x 3.7m) treated base post using 2” x 4” x 4’ (4.4cm x 8.9cm x 1.2m) 

boards on each side of the post seam fastened down with 3” (7.6cm)exterior grade 

screws. We used treated base posts to increase the longevity of the boxes on the 

landscape, as untreated base posts would deteriorate much faster once in the ground. 



52 

Fi
gu

re
 2

-1
: R

E
F 

ro
ck

et
 b

ox
 d

es
ig

n 
as

 d
es

cr
ib

ed
 b

y 
T

ill
m

an
 (2

01
9)

 (r
en

de
ri

ng
 n

ot
 to

 sc
al

e)
. 



53 

Table 2-1: Details for all variant rocket box designs. All designs are derived from 
the standard design described by Tillman (2019) and provide the same roosting 
surface area, volume, and entrance area. 

Design ID Description Hypothesized effect 
Reference 
(REF) 

1 The is a 2 chambered box with two 6" x 
1/2" (15.2cm x 1.3cm) horizontal vents on 
the north and south sides of the box. Vents 
are located 12" (30.5cm) from the bottom 
of the outer shell. 

This box will serve as the 
reference to which all boxes will 
be compared. 

Vent 
Removal 
(VR) 

2 The vent removal design is identical to the 
standard design but lacks vents. 

This box will support a warmer 
microclimate than all other 
designs and will increase 
minimum temperatures on cold 
days. 

Chimney 
(CH) 

3 The chimney design is identical to the 
standard design, but adds a 3' (91.4cm) 
foot tall, 3" (7.6cm) diameter black PVC 
chimney to the roof. The hole in the outer 
roof is 2 1/2" (6.4cm) in diameter. 

This box will reduce maximum 
temperatures by venting heat out 
of the top of the chimney. The 
black chimney should facilitate 
heat rise. 

White Tile 
Roof 
(WTR) 

4 The white tile roof design is identical to the 
standard design but adds an 8mm thick 
white glazed ceramic tile to the roof 
instead of a shingle. 

This box will reduce maximum 
temperatures by reflecting solar 
radiation with the white roof tile. 

External 
Water Jacket 
(EXTJ) 

5 The external water jacket design adds a 
3/4" (1.9cm) chamber around the outer 
shell. Each side of this new chamber is 
filled with 3 packets containing 750ml of 
DI water and foam to support the edges of 
the packet. This chamber is then sealed to 
prevent access by vertebrates. 

Being buffered by an additional 
water-filled chamber, this box 
should provide a more stable 
microclimate that resists extreme 
temperatures as water takes longer 
to heat and cool than air. 
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Figure 2-2: Placement of water packets within the EXTJ designs insulated shell. 

Figure 2-3: Scuffed post and inner shell half prior to inner shell attachment. 
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Microclimate Data Collection~ 

For each of the 40 boxes deployed, we recorded internal roost temperature with 

Thermochron iButtons (Thermochron iButton DS1921G, Maxim Integrated, 0.5˚C 

increments at ± 1.0 ˚C accuracy, range -40 to 85˚C). We placed 12 iButtons inside the 

outer chamber of each rocket box. We only placed iButtons in the outer chamber 

because inner chambers are typically more stable than those on the periphery 

(Brittingham and Williams 2000; Rueegger 2019), and we were fundamentally 

interested in the thermal extremes experienced by these boxes as temperature extremes 

are likely to impact suitability. We placed 3 iButtons at the top (5cm beneath the 

roofline), middle (43cm from the roof), and bottom (7.5cm from bottom) levels along 

each of the 4 box faces (Figure 2-4).  

We set iButtons to record temperature every other hour, programming half of 

the iButtons to record on even hour intervals and half to record on odd hour intervals. 

Even and odd hour iButtons were alternated at each level within the roost to ensure that 

temperature data was collected every hour at every level within the roost (i.e., top, 

middle, and bottom). Setting the iButtons to record on an every other hour schedule was 

necessary to conserve memory space (Model #DS1921G can hold 2048 temperature 

recordings). Our schedule insured that temperature data collection spanned the duration 

of the study; data collection occurred from 1 April to 15 September 2019. 

We placed iButtons inside cages, with the serial number facing outward, to 

prevent bats from touching the iButton’s surface and potentially altering temperature 

readings (Figure 2-5). We constructed cages from 1/2” (1.3cm) plastic bushings with 

1/4" (0.6cm) wire domes added to the top, secured by 24-gauge bailing wire. Wire 
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domes did not restrict airflow over the surface of the iButton. A square of double-sided 

mounting tape was used to hold iButtons in place within the cage. Once in cages, we 

attached iButtons to a 3’6” (91.4cm) strand of 30lbs (13.6kg) nylon-coated steel fishing 

line using flag crimp rings (Figure 2-5). We attached iButton lines to quick release 

systems (Figure 2-6) located at the top of the inner chambers. We made quick releases 

by sinking a 5/8” (1.6cm) eye-screw in the edge of the inner roof board offset 2-3/4” 

(7cm) from the left edge of the roof. We attached 5/8” (1.6cm) paper clips to iButton 

lines and looped the paperclips through the eye-screws, securing iButtons in place. We 

placed a staple at the bottom of each line, flush with the bottom edge of the inner shell 

to reduce the risk of entangling for bats. Pulling on the bottom of the line opened the 

paperclip and allowed the iButtons to fall from the roost, allowing for non-invasive 

iButton removal. Once airborne, iButtons hung down in a straight line in their 

respective positions.  

Prior to deployment, we assessed the influence of plastic bushings on iButton 

temperature records. We compared hourly air temperatures recorded by 30 iButtons 

with bushings to 30 iButtons without bushings. We set iButtons to record air 

temperature hourly within an incubator, which we alternated air temperature between 

20ºC, 30ºC, and 40ºC for at least 18 hours for each temperature setting. We compared 

recorded temperatures for both groups using with a Wilcoxon rank sum test. No 

significant difference was found in recorded temperature between groups (p > 0.05), 

thus, no temperature correction was needed. 
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Figure 2-4: Relative placement of iButtons in cages attached to the quick release 
line prior to box closure. 

Figure 2-5: iButton cage designed to prevent bats from coming into direct contact 
with the sensors surface. 
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Figure 2-6: iButton quick release system. 

Rocket Box Deployment~ 

All boxes were in place by 1 April 2019. At each field site, rocket boxes were 

deployed in 4 clusters, with 5 boxes (1 per design) present within each cluster (n = 8 

total clusters between both field sites). Each box was marked with a unique tree tag with 

the last digit on the tag identifying its design. Rocket box clusters ran along a north-

south axis, and boxes within each cluster were spaced 2m apart. We randomly 

determined the order of rocket box designs within each cluster. We set boxes in ~1.3m 

deep holes so that the top of each rocket box was ~6.1m above ground. Boxes were set 

in 45.4 kg of fast-setting concrete and the above-ground base of each box post was 

braced with 4 angled 2” x 4” x 4’ boards.  

We deployed boxes in clusters to facilitate roost discovery, roost switching, and 

provide bats a variety of available microclimates within one locality (Lewis 1995; 

Rueegger 2016), from which we could potentially delineate roost design and solar 
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exposure preference. One “open” cluster was located away from tree lines so that boxes 

received solar exposure throughout the day. A “forest” cluster was in a closed canopy 

condition in which boxes would receive little to no direct solar exposure. An “easterly 

sun” cluster was ~5m from an east-facing tree line such that boxes primarily received 

morning solar exposure. A “westerly sun” cluster was ~5m from a west-facing tree line 

such that boxes primarily received afternoon solar exposure. This deployment strategy 

exposed box designs to varied solar conditions, thus potentially altering the 

performance of each design in a particular situation. 

Weather Data Collection~ 

To monitor cluster-specific weather conditions, we collected hourly weather 

data at each cluster via Ambient Weather WS-1201 weather stations powered by a 12v-

18amh battery and locked in weatherproof Pelican (Model 1500) cases (4 stations per 

site, n = 8 total). Each weather station was mounted on a 3.2m tall fence top rail post 

and was concreted into the ground so that each weather station was 3m above ground. 

Each station was placed 2m from the south side of each rocket box cluster so that the 

stations would not be shaded by the boxes.  

Weather stations recorded temperature (ºF, accuracy ± 2ºF, converted to ºC after 

download), solar radiation (lux, ± 15%, converted to w/m2), rainfall (inches, ± accuracy 

0.01 inches, converted to mm), and wind speed (mph, accuracy ± 2.2mph, converted to 

m/s). While weather stations recorded data hourly, data were not able to be collected on 

the hour. Rather, stations recorded on a 60-min time interval starting when power was 

connected to the station. Thus, this interval changed each time the power supply for a 
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weather station’s data receiver was changed (roughly every 2–3 days). Subsequently, 

we binned data on an hourly basis. 

Roost Checks~ 

To survey all 40 rocket box roosts, of 8 different roost clusters, for the daily 

presence/absence (P/A) and abundance of Indiana bats, we performed spotlight checks 

2–4 times per week at both the Indiana and Kentucky field sites. The number of surveys 

per week varied based on weather and conflicts with hunting seasons. Spotlight checks 

began on 6 April 2019 and ended on 15 September 2019 at the Kentucky field site and 

began on 28 March 2019 and ended on 10 October 2019 at the Indiana field site. 

Spotlight checks involved shining a ~1000 lumen spotlight (Stanley Fatmax Model 

#SL10LEDS) up into each roost and visually determining P/A of bats (Whitaker et al. 

2006; De La Cruz et al. 2018; Hoeh et al. 2018). When two observers were present, 

each individually checked the roost and conferred on their assessments. For roosts 

where bats were present, bats were visually counted to estimate abundance and to aid in 

determining where to conduct emergence counts. We classified bats to genus visually 

via spotlight checks and took non-flash photos when conditions were favorable. To 

minimize stress to bats, spotlight checks typically lasted < 20 seconds. We made a 

concerted effort to not check roost clusters in the same order in consecutive visits to 

field sites, this reduced the effect of time of day and solar position on our ability to 

detect bats in a roost.  

We conducted emergence counts 2–4 times per week, weather dependent, at 

roosts we considered likely to contain the most bats based on spotlight checks and 

guano accumulation. Emergence counts help to reduce the error in abundance estimates 
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based on data collected from spotlight checks, given that bat counts from spotlight 

surveys are less accurate for larger colony sizes. Observers arrived at roosts ~30 min 

before sunset and stayed at least 10 min after the last bat emerged or 30 min after sunset 

if no bats emerged (Arndt et al. 2018; Hoeh et al. 2018; Oyler-McCance et al. 2018). 

Observers recorded the roost ID number, time of first emergence, time of last 

emergence, and total number of bats emerged for each roost watched. Each observer 

typically watched ~3 roosts within a cluster during emergence counts, varying based on 

weather and visibility. The total number of roosts counted per night varied with 

personnel availability. 

iButton Removal~ 

We removed iButton data loggers at the end of the study following 3 

consecutive days of no bat detections at each field site (4 November 2019 at the Indiana 

site and 19 November 2019 at the Kentucky site). We removed iButtons from roosts 

using a gaff consisting of a blunted wire hook attached to a telescoping painter’s pole. 

We used the gaff to hook the lowest iButton within the roost and pulled downward to 

break the quick release system, thus, causing the iButtons to fall from the roost. All 

roosts were spotlight checked for bats immediately before removal took place; all 

iButtons were successfully recovered. 

Calculation of Daily Availability, Variability, and Suitability~ 

All analyses and visualizations were conducted in R (version 3.6.2; R Core 

Team 2019). Daily roost temperature variability, defined as the range of temperature 

experience by a roost over the course a day (daily TMAX–TMIN), was calculated for each 

rocket box. We calculated hourly roost availability, defined as the range of temperature 
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available within a roost in a given hour (hourly TMAX–TMIN), for every 24hr day of data 

collection. Hourly availability values were then averaged providing the mean daily 

availability for each roost. We defined roost suitability following Tillman (2019), with 

roost temperatures between 15–40ºC considered suitable. These suitable temperature 

thresholds are buffered from potentially lethal/harmful values as Licht and Leitner 

(1967) found that temperatures > 40ºC resulted in heat stress response from 3 species of 

bats and prolonged exposure to these temperatures often resulted in mortality. Further, 

the entry and arousal costs of torpor are higher with decreasing ambient temperature 

(Davis and Reite 1967; Wojciechowski et al. 2006). Hourly recordings were marked as 

suitable if they were within this range or unsuitable if they were outside this range. We 

calculated daily suitability for each roost by dividing the total count of suitable hourly 

recordings for each day by the total number of recordings for each day, resulting in the 

proportion of suitable roosting space. All means are reported as x ± SE unless otherwise 

stated. 

Analysis~ 

Roosts at the Kentucky field site were opened for bats on 4 April; thus, no 

microclimate readings were used before this date for this site. Additionally, we note that 

on 25 June the easterly sun EXTJ roost (Box1605) at the Indiana field site was 

damaged, thus, no microclimate readings for this roost were used on or after this date. 

Additionally, due to damage to Box1605, the middle tier iButton of the west box face 

was damaged and data was not recoverable; all data prior to 25 June for Box1605 

comes from 11 iButtons. Lastly, on 19 August the east aspect strand of 3 iButtons fell 

from the westerly sun REF box at the Indiana site, subsequently, no temperature data 
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points were used from this date on for that strand and all remaining recordings from this 

roost resulted from 9 remaining iButtons. 

We conducted 3 microclimate analyses. We followed and information theoretic 

approach to compare competing models for all 3 analyses (Burnham and Anderson 

2002). All models were based on ecologically relevant hypotheses attempting to explain 

drivers of roost microclimate. The first analysis, East/West, modeled daily rocket box 

availability, variability, and suitability for the easterly and westerly sun clusters during 

the months of June, July, and August. These solar treatments were primarily chosen to 

assess the impact of roost occupancy on our response variables. Open and forest solar 

treatments were not used in this analysis, as bats rarely used these roosts. We chose the 

months of June–August because bat occupancy peaked during these months at each site; 

in this analysis, we did not use data for the cooler months with lower occupancy which 

occurred earlier and later in the season. We compared 17 candidate models (Table 2-2). 

Each model included the fixed effects of box design and solar treatment along with 

some combination of these covariates: total bats, mean daily temperature (ºC; 

AvgTemp), daily ambient temperature range (ºC; TaRange), mean daily solar radiation 

(w/m2; AvgSolRad), and mean daily windspeed (m/s; AvgWind). 

The second analysis, Open/Forest, modeled daily rocket box availability, 

variability, and suitability for the open and forest solar treatments from April–

September. Because these roosts experienced little to no usage during the field season, 

we deemed it appropriate to model the effects of box design, solar treatment, and 

weather on these treatments that were opposite in terms of solar exposure. We 

compared 8 candidate models (Table 2-3). Each model included the fixed effects of box 
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design, and solar treatment along with some combination of these covariates: mean 

daily temperature, daily ambient temperature range, mean daily solar radiation, and 

mean daily wind speed. We did not include total bats as a covariate because bats were 

largely absent from these solar treatments; we excluded data from days where we 

detected > 2 bats in the forest solar treatments. 

The third analysis, Spring, involved modeling the daily suitability of all roost 

solar treatments during April and May, when roost use was low across all solar 

treatments. We chose to only model suitability during this time period as it has been 

shown that roosts often become entirely unsuitable during cold weather conditions 

(Hoeh et al. 2018); availability and variability in an entirely unsuitably cold roost would 

have little meaning. The months of April and May correspond to the coolest months of 

the study period (See Appendix A). This analysis allowed comparison of the 

effectiveness of designs during cool weather conditions and assesses the interaction of 

design performance in relation to landscape position. We compared 5 candidate models 

(Table 2-4). The Spring analysis only considered box design and solar treatment, as this 

analysis was aimed specifically at detailing the effectiveness of box designs in different 

solar treatments during the coldest period of the study. 

For all 3 analyses, we ranked models via AICC (Akaike’s Information Criterion 

corrected for small sample sizes) and considered models to be competing if they were 

within ∆AICC ≤ 2 of the best ranked model. We made inferences from the top ranked 

model if it had substantial support (i.e., wi ≥ 0.90; Burnham and Anderson 2002) and no 

models within ∆AICC ≤ 2. If competing models existed, we constructed a 90% 

confidence set and averaged models using the R package MuMIN (Barton 2020), basing 
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inference on parameters included in the competing models. We identified informative 

parameters as those for which 85% confidence intervals did not overlap zero, as this 

practice has been found to be less likely to exclude biologically relevant model 

parameters (Arnold 2010). Means are reported as x ± SE and 85% confidence intervals 

are displayed unless otherwise stated. Weather parameters are not discussed unless they 

interacted with total bats, box design, or solar treatment. Loess smoothed regression 

lines are shown for relationships that were not strictly linear. 

This research was approved by Eastern Kentucky University IACUC protocol 

number 01-2019. 
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Table 2-2: Candidate set of 17 models used in the East/West analysis. 
Model K Included predictors 
Null 2 - 
m2 7 Total Bats + Design 
m3 4 Total Bats + Solar Treatment 
m4 7 Design + Solar Treatment 
m5 8 Total Bats + Design + Solar Treatment 
m6 11 Total Bats + Design + Total Bats*Design 
m7 5 Total Bats + Solar Treatment + Total Bats*Solar 

Treatment 
m8 11 Design + Solar Treatment + Design*Solar Treatment 
m9 13 Total Bats + Design + Solar Treatment + Total 

Bats*Design + Total Bats*Solar Treatment 
m10 11 Total Bats + Design + AvgTemp + TaRange + AvgSolRad 

+ AvgWind
m11 8 Total Bats + Solar Treatment + AvgTemp + TaRange

+AvgSolRad + AvgWind
m12 11 Design + Solar Treatment + AvgTemp + TaRange 

+AvgSolRad + AvgWind
m13 12 Total Bats + Design + Solar Treatment + AvgTemp + 

TaRange + AvgSolRad + AvgWind  
m14 18 Total Bats + Design + AvgTemp + TaRange + AvgSolRad 

+ AvgWind + Total Bats*Design + Total Bats*AvgTemp
+ Total Bats*AvgWind +Total Bats*AvgSolRad

m15 12 Total Bats + Solar Treatment + AvgTemp + TaRange + 
AvgSolRad + AvgWind + Total Bats*Solar Treatment  
+Total Bats*AvgTemp + Total Bats*AvgWind + Total
Bats*AvgSolRad

m16 20 Design + Solar Treatment + AvgTemp + TaRange + 
AvgSolRad + AvgWind + Design*Solar Treatment + 
Design*TaRange + Solar Treatment*AvgWind 

m17 23 Total Bats + Design + Solar Treatment + AvgTemp + 
TaRange + AvgSolRad + AvgWind + Total Bats*Design 
+ Total Bats*Solar Treatment + Total Bats*AvgTemp +
Design*TaRange + Solar Treatment*AvgWind
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Table 2-3: Candidate set of 8 models used in the Open/Forest analysis. 
Model K Included predictors 
Null 2 - 
m2 11 Solar Treatment + Design + Solar Treatment*Design 
m3 9 Solar Treatment + AvgTemp + AvgWind +TaRange + 

Solar Treatment*AvgTemp + Solar Treatment*AvgWind 
+Solar Treatment*TaRange

m4 21 Design + AvgTemp + AvgWind + TaRange + 
Design*AvgTemp + Design*AvgWind + 
Design*TaRange 

m5 10 Solar Treatment + Design + AvgTemp + TaRange + 
AvgWind 

m6 14 Solar Treatment + Design + AvgTemp + TaRange + 
AvgWind + Solar Treatment*Design 

m7 17 
Solar Treatment + Design + AvgTemp + AvgWind 
+TaRange + Solar Treatment*Design + Solar
Treatment*AvgTemp + Solar Treatment*AvgWind +
Solar Treatment*TaRange

m8 26 Design +Solar Treatment + AvgTemp + AvgWind + 
TaRange + Design*Solar Treatment + Design*AvgTemp 
+ Design*AvgWind + Design*TaRange

Table 2-4: Candidate set of 5 models used in the Spring Month analysis. 
Model K Included predictors 
Null 2 - 
m2 5 Solar Treatment 
m3 6 Design 
m4 9 Solar Treatment + Design 
m5 21 Solar Treatment + Design + Solar Treatment*Design 

RESULTS 

Weather~ 

At the Indiana site, from 11 April (date of weather station installation for IN) to 

10 October 2019, ambient air temperature (Ta) across roost clusters ranged from 1.2–

34.7ºC (mean = 19.7ºC). Hourly wind speeds ranged from 0–10.4 m/s (mean = 0.51 

m/s) across roost clusters, though gusts likely exceeded the recorded hourly wind speed. 

Total rainfall accumulation for the study period at the Indiana site amounted to 677.7 
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mm. Solar radiation ranged from 0–1116 w/m2 (mean = 154.03 w/m2) across roost

clusters. Differences in tree line density and forest composition likely influenced all 

microsite weather parameters. 

At the Kentucky site, from 5 April (date of weather station installation for KY) 

to 15 September 2019, Ta across roost clusters ranged from 2.5–36.4ºC (mean = 20.8ºC; 

See Appendix A). Hourly wind speeds ranged from 0–9.9 m/s (mean = 0.46 m/s) across 

roost clusters. Total rainfall accumulation for the study period was 803.7 mm. Solar 

radiation ranged from 0–1138 w/m2 (mean = 168.93) across roost clusters. Differences 

in tree line density and forest composition likely influenced all microsite weather 

parameters. 

Microclimate Overview~ 

From 1 April to 15 September 2019 our iButtons collected 980,992 hourly 

microclimate recordings. Precluding lost or discarded data, we were left with 945,060 

raw microclimate recordings across all 40 roosts. Across both sites, a total of 9,171 

unsuitably hot hourly temperature recordings were logged (< 1% of recordings; Figure 

1-2: A). The Kentucky site logged 6,303 unsuitably hot records and the Indiana site

logged 2,868 unsuitably hot records. The majority of unsuitably hot temperature 

recordings were logged in VR designs (3,288 recordings), and the fewest were logged 

in EXTJ designs (651 recordings). Most unsuitably hot recordings occurred in the 

easterly and westerly solar treatments (3,657 and 3,328 recordings, respectively), with 

the fewest occurring in the forest solar treatments (25 recordings; all of which occurring 

in Kentucky). Further, most unsuitably hot events occurred at the top positions within 

roosts (8,594 recordings; 93.7% of observations; Figure 2-7: C); 6.1% were in the 



69 

middle layer (561 recordings) and only 0.2% were at the bottoms of roosts (16 

recordings). In contrast, 140,398 unsuitably cold hourly temperature records were 

logged (14.9% of recordings; Figure 2-7: B). CH designs logged the most unsuitably 

cold temperature events (29,789), while EXTJ designs logged the fewest (24,044). Most 

unsuitably cold recordings occurred in the westerly (35,324 recordings) and easterly 

solar treatments (35,214 recordings). The open and forest solar treatments recorded 

similar numbers of unsuitably cold temperatures (34,888 and 34,972, respectively). 

Unsuitably cold recordings most often occurred at the bottom roost positions (52,345 

recordings; 37.3%), though similar numbers were recorded at the middle (44,693 

recordings) and top positions (43,360 recordings) (Figure 2-7: D). No boxes completely 

overheated during the study (i.e., no instances where all 12 iButtons simultaneously 

recorded temperatures ≥ 40ºC). However, there were 115 instances when the daily 

maximum box temperature did not exceed 15ºC (93 events at the Indiana site and 22 at 

the Kentucky site). 
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Figure 2-7: Count of unsuitably hot (UH) and unsuitably cold (UC) hourly 
microclimate recordings by solar treatment and design (A, B) and by solar 
treatment and position (C, D). 

East/West Analysis~ 

Daily Availability: 

We accumulated 795 observations of mean daily roost availability for our East/West 

analysis. When we examined models predicting availability in the East/West solar 

treatments, we found that model 17 received top rank with 97.4% of the cumulative 

Akaike weights (Table 2-5). There were no competing models within 2 AICc units 

of model 17. The evidence ratio (w1/wi) for our top ranked model compared to the 

2nd highest ranked model is 37.5 to 1, indicating substantial support for model 17 

as the best overall model for this candidate set. Based on overwhelming support 
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 for model 17, we based all inference on this model for daily availability and identified 

9 informative parameters based on their 85% confidence intervals not overlapping 0 

(Table 2-6).  

From informative parameters, we delineate several trends. As the total number of 

bats in a roost increased, the availability within the roost increased (Figure 2-8). The 

WTR and EXTJ designs had larger increases in mean daily availability with increasing 

numbers of bats as compared to the REF design. Though not substantially different from 

the REF design, mean daily availability was typically 2ºC lower in the CH design 

(Figure 2-8). At low mean daily temperatures (< 20 ºC), small (≤ 29 bats) and large (≥ 

30 bats) groups of bats tended to promote higher mean daily availability when compared 

to unoccupied boxes (Figure 2-9). At mean daily temperatures below 20ºC, mean daily 

availability could be ~4ºC higher in roosts with large colony sizes compared to empty 

roosts (Figure 2-9). As mean daily temperature increased, large groups of bats tended to 

decrease mean daily availability. Small groups of bats exerted less influence over roost 

availability and generally roosts containing small groups tracked changes in availability 

due to increasing mean daily temperature. As ambient air temperature range increased, 

availability was ~2ºC lower in the CH design than in the REF design (Figure 2-10). All 

other designs seemingly mirrored the REF design when the ambient temperature range 

increased. Increasing mean daily wind speeds had a greater negative impact on the 

westerly sun clusters than the easterly sun clusters, due to the west cluster experiencing 

greater wind speeds (Figure 2-11). 
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Table 2-5: AICC ranks of the 17 candidate models for mean daily availability 
(East/West analysis; June-August 2019). 
Model Name ∆AICC K wi 
m17 0.0 23 0.9740 
m14 7.3 18 0.0260 
m13 28.6 12 <0.001 
m10 35.0 11 <0.001 
m15 101.1 12 <0.001 
m11 109.7 8 <0.001 
m16 111.8 20 <0.001 
m12 119.4 11 <0.001 
m9 229.6 13 <0.001 
m6 242.6 11 <0.001 
m5 249.7 8 <0.001 
m2 261.0 7 <0.001 
m7 305.0 5 <0.001 
m3 305.4 4 <0.001 
m8 334.2 11 <0.001 
m4 338.0 7 <0.001 
Null 440.0 2 <0.001 
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Table 2-6: Parameter estimates and 85% confidence intervals for the top-ranked 
daily availability model (East/West analysis; June-August 2019; informative 
parameters bolded). 
Parameter Estimate 85% Confidence Interval 

Lower Upper 
(Intercept) 0.023 -0.861 0.906 
Total.Bats 0.062 0.037 0.087 
DesignCH -0.117 -0.937 0.703 
DesignEXTJ 0.373 -0.470 1.215 
DesignVR -0.015 -0.855 0.826 
DesignWTR -0.066 -0.880 0.749 
ClusterWest -0.203 -0.411 0.006 
AvgTemp 0.161 0.132 0.190 
TaRange 0.199 0.150 0.247 
AvgSolRad 0.000 -0.002 0.001 
AvgWind -0.837 -1.330 -0.344
Total.Bats:DesignCH -0.001 -0.017 0.014
Total.Bats:DesignEXTJ 0.021 0.005 0.037
Total.Bats:DesignVR -0.001 -0.008 0.006
Total.Bats:DesignWTR 0.026 0.018 0.034
Total.Bats:ClusterWest 0.002 -0.006 0.009
Total.Bats:AvgTemp -0.002 -0.003 -0.001
DesignCH:TaRange -0.090 -0.152 -0.028
DesignEXTJ:TaRange -0.051 -0.116 0.013
DesignVR:TaRange 0.010 -0.053 0.074
DesignWTR:TaRange -0.062 -0.124 0.000
ClusterWest:AvgWind -0.697 -1.271 -0.123
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Figure 2-8: Regression lines and 85% confidence intervals for the interactive effect 
of box design and emergence count on mean daily availability (85% confidence 
intervals are displayed, as informative parameters were selected based on 85% 
confidence intervals; not 95%). 

Figure 2-9: Regression lines and 85% confidence intervals showing the interaction 
of unoccupied (0), small (≤ 29), and large groups of bats (≥30) and mean daily 
temperature on mean daily box availability. 
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Figure 2-10: Regression lines and 85% confidence intervals showing the 
interaction of box design and ambient temperature range on mean daily 
availability. 

Figure 2-11: Regression lines and 85% confidence intervals showing the 
interaction of roost solar treatment (cluster) on mean daily availability. 
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Daily Variability: 

We accumulated 795 observations of daily roost variability for our East/West 

analysis. When we examined models predicting variability in the East/West clusters, we 

found that model 14 received top rank with 53% of the cumulative model weights. 

Model 10 was competing, with a ∆AICC of 1.4 from model 14 (Table 2-7). The 

evidence ratio of model 14 to model 10 is 1.97 to 1. Based on the existence of 

competing models and no substantial support for a single model, we constructed a 90% 

candidate set of models for averaging based on Akaike weights. This confidence set 

included models 14, 10, and 13. From the model averaged results, we identified 8 

informative parameters contained within competing models (Table 2-8). 

When compared to the REF design, the VR design performed similarly, but 

EXTJ, WTR, and CH designs generally supported lower daily variability (Figure 2-12). 

Large and small groups of bats increased the variability of all designs with decreasing 

mean daily temperature (Figure 2-13), differing from empty roosts by ~5ºC when mean 

daily temperatures were ≤ 20ºC. Furthermore, as mean daily temperature increased, 

variability became similar across empty and occupied roosts. Both large and small 

groups of bats increased daily variability, but when mean daily solar radiation was > 

300w/m2, large groups of bats increased variability by ~5ºC as compared to empty 

roosts (Figure 2-14) 
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Table 2-7: AICC ranks of the 17 candidate models for daily variability (East/West 
analysis; June-August 2019). 
Model Name ∆AICC K wi 
m14 0.0 18 0.5329 
m10 1.4 11 0.2704 
m13 2.3 12 0.1702 
m12 7.7 11 0.0113 
m16 7.8 20 0.0105 
m17 9.5 23 0.0046 
m15 143.4 12 <0.001 
m11 146.3 8 <0.001 
m2 275.7 7 <0.001 
m5 276.8 8 <0.001 
m6 279.7 11 <0.001 
m9 282.4 13 <0.001 
m4 288.7 7 <0.001 
m8 293.6 11 <0.001 
m3 379.7 4 <0.001 
m7 381.3 5 <0.001 
Null 406.6 2 <0.001 

Table 2-8: Model averaged parameter estimates and 85% confidence intervals for 
the 90% confidence set daily variability models (East/West analysis; June-August 
2019; informative parameters bolded). 
Parameter Estimate 85% Confidence Interval 

Lower Upper 
(Intercept) 8.515 6.062 10.969 
Total.Bats 0.041 -0.031 0.112 
DesignCH -3.395 -4.162 -2.628
DesignEXTJ -5.658 -6.478 -4.838
DesignVR 0.547 -0.253 1.348
DesignWTR -2.388 -3.166 -1.611
AvgTemp 0.353 0.251 0.455
TaRange 0.775 0.675 0.875
AvgSolRad -0.001 -0.006 0.005
AvgWind -3.671 -4.573 -2.768
DesignCH:Total.Bats 0.019 -0.035 0.073
DesignEXTJ:Total.Bats 0.028 -0.027 0.084
DesignVR:Total.Bats 0.011 -0.013 0.035
DesignWTR:Total.Bats 0.007 -0.019 0.032
AvgTemp:Total.Bats -0.006 -0.010 -0.002
AvgWind:Total.Bats 0.042 -0.008 0.092
AvgSolRad:Total.Bats 0.0003 0.0002 0.0005
ClusterWest 0.384 -0.139 0.907
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Figure 2-12: Box and whisker plot showing the effect of box design on daily 
variability. 

Figure 2-13: Regression lines and 85% confidence intervals showing the interactive 
effect of emergence count size and mean daily temperature on daily variability. 



80 

Figure 2-14: Regression lines and 85% confidence intervals showing the interactive 
effect of emergence count size and mean daily solar radiation on daily variability. 

Daily Suitability: 

We accumulated 795 observations of daily roost suitability for our East/West analysis. 

When comparing daily suitability models for the East/West clusters, we found that 

model 12 received top rank, carrying 44% of the model weights. Additionally, we found 

support for models 10 and 13, which were within ∆AICC of ≤ 2 of the top ranked model 

(Table 2-9). The evidence ratio of the top ranked model (model 12) compared to the 2nd 

highest ranked model (model 10) was 1.82 to 1. Due to the presence of these competing 

models and the lack of substantial support for the top ranked model, we established a 

90% confidence set for model averaging. This confidence set included models 12, 10, 

13, and 14, from which we identified 7 informative parameters within competing 

models (Table 2-10).
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 From our 7 informative parameters, we found the EXTJ, WTR, and CH 

designs all generally provided higher daily suitability than the REF design (Figure 

2-15). Further, westerly solar treatments generally supported 100% suitable 

microclimates more frequently than easterly solar treatments (Figure 2-16). 

Table 2-9: AICC ranks of the 17 candidate models for daily suitability (East/West 
analysis; June-August 2019). 
Model Name ∆AICC K wi 
m12 0.0 11 0.4353 
m10 1.2 11 0.2391 
m13 1.4 12 0.2195 
m14 4.2 18 0.0525 
m16 4.5 20 0.0459 
m17 8.1 23 0.0077 
m15 33.0 12 <0.001 
m11 38.6 8 <0.001 
m2 101.8 7 <0.001 
m5 103.1 8 <0.001 
m4 103.4 7 <0.001 
m8 106.2 11 <0.001 
m6 108.5 11 <0.001 
m9 111.7 13 <0.001 
m3 130.3 4 <0.001 
m7 131.7 5 <0.001 
Null 135.3 2 <0.001 
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Table 2-10: Model averaged parameter estimates and 85% confidence Intervals 
for the 90% confidence set daily suitability models (East/West analysis; June-
August 2019; informative parameters bolded). 

Parameter Estimate 
85% Confidence 

Interval 
    Lower Upper 
(Intercept) 2.902 2.399 3.406 
DesignCH 0.441 0.290 0.593 
DesignEXTJ 0.579 0.417 0.741 
DesignVR -0.046 -0.195 0.104 
DesignWTR 0.295 0.146 0.444 
ClusterWest 0.108 0.003 0.212 
AvgTemp 0.032 0.012 0.051 
TaRange -0.127 -0.148 -0.107 
AvgSolRad 0.002 0.001 0.003 
AvgWind 0.084 -0.103 0.270 
Total.Bats 0.002 -0.012 0.015 
DesignCH:Total.Bats -0.005 -0.017 0.006 
DesignEXTJ:Total.Bats 0.007 -0.005 0.018 
DesignVR:Total.Bats -0.003 -0.007 0.002 
DesignWTR:Total.Bats 0.001 -0.003 0.006 
AvgTemp:Total.Bats -0.001 -0.002 0.000 
AvgWind:Total.Bats -0.002 -0.011 0.008 
AvgSolRad:Total.Bats -0.00004 -0.00007 -0.00001 

 

 

Figure 2-15: Box and whisker plot showing the effect of box design on daily 
suitability. 
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Figure 2-16: Violin plot showing the relative frequency of suitability recordings in 
the easterly and westerly sun solar treatments (wider colored areas indicate a 
higher recorded frequency of occurrence). 

Open/Forest Analysis~ 

Daily Availability: 

We accumulated 1144 observations of mean daily roost availability for our 

Open/Forest analysis. When comparing models predicting availability in the 

Open/Forest clusters, we found that, model 7 received top rank with 100% of the 

model weights (Table 2-11). No competing models were present within the candidate 

set. The 2nd highest ranked model was 34.3 AICC units away from the top rank model. 

Based on overwhelming support for model 7, we based all inferences on its 13 

informative parameters (Table 2-12). 



84 

From informative parameters, we found that all box designs supported higher 

mean daily availability in the open solar treatments when compared to the forest solar 

treatments (Figure 2-17). The EXTJ and WTR designs typcially supported lower 

availability than the REF design in the open solar treatments. The VR design in the 

open solar treatment generally supported the highest mean daily availability. In contrast, 

the EXTJ design in the forest solar treatments generally supported the highest 

availability. As the mean daily temperature increased, mean daily availability remained 

around 2ºC in the forest solar treatments, but increased rapidly for open solar treatment 

boxes, such that there was a difference of ≥ 3ºC between the open and forest treatments 

at a mean ambient temperature of 25ºC (Figure 2-18). Roosts in open solar treatments 

experienced higher mean daily windspeeds than the forest solar treatment roosts, and 

responded with a strong decrease in mean daily roost temperature availability (Figure 

2-19).

Table 2-11: AICC ranks of the 8 candidate models for daily availability 
(Open/Forest analysis; April-September 2019). 
Model Name ∆AICC K wi 
m7 0.0 17 1.0000 
m6 34.3 14 <0.001 
m8 48.0 26 <0.001 
m5 81.6 10 <0.001 
m3 95.3 9 <0.001 
m2 451.7 11 <0.001 
m4 753.5 21 <0.001 
Null 1290.1 2 <0.001 
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Table 2-12: Parameter estimates and 85% confidence intervals for the top ranked 
daily availability model (Open/Forest analysis; April-September 2019; informative 
parameters bolded). 
Parameter Estimate 85% Confidence Interval 
    Lower Upper 
(Intercept) 0.921 0.790 1.051 
ClusterOpen 0.281 0.090 0.472 
DesignCH -0.123 -0.177 -0.069 
DesignEXTJ 0.108 0.054 0.162 
DesignVR -0.125 -0.181 -0.068 
DesignWTR -0.067 -0.122 -0.011 
AvgTemp 0.007 0.001 0.012 
AvgWind 0.282 0.017 0.548 
TaRange 0.037 0.032 0.043 
ClusterOpen:DesignCH -0.070 -0.145 0.006 
ClusterOpen:DesignEXTJ -0.233 -0.309 -0.158 
ClusterOpen:DesignVR 0.160 0.082 0.237 
ClusterOpen:DesignWTR -0.105 -0.182 -0.028 
ClusterOpen:AvgTemp 0.029 0.022 0.036 
ClusterOpen:AvgWind -0.499 -0.767 -0.231 
ClusterOpen:TaRange -0.002 -0.009 0.005 

 

 

Figure 2-17: Box and whisker plot showing mean daily roost temperature 
availability as a function of each design within the open and forest solar 
treatments. 
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Figure 2-18: Regression lines and 85% confidence intervals showing the interactive 
impact of mean daily air temperature and solar treatment on mean daily 
availability within our rocket boxes. 
 

 

Figure 2-19: Regression lines and 85% confidence intervals showing the interactive 
effect of mean daily wind speed and solar treatment on mean daily roost 
temperature availability (data points are shown to highlight the positive slope 
exhibited by the forest solar treatment is likely an artifact of low experienced wind 
speeds). 
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Daily Variability: 

 We accumulated 1144 observations of daily roost variability for our Open/Forest 

analysis When we examined models that predicted variability in the Open/Forest 

clusters, we found that model 7 received top rank, carrying 100% of the cumulative 

model weights (Table 2-13). No competing models were within ∆AICC ≤ 2 units of the 

top model. The 2nd highest ranked model was 24.5 AICC units away from the top ranked 

model. Based on the overwhelming support for model 7 as the best overall model from 

this candidate set, we based all inference off this model and identified 9 informative 

parameters (Table 2-14). 

 From these informative parameters, we note open solar treatment roosts 

experienced greater variability than forest solar treatment roosts (Figure 2-20). The CH 

and EXTJ designs within the open solar treatment were more stable (less variable) than 

the REF design. Roosts in the open cluster showed a greater change in daily roost 

temperature variability with increasing mean ambient temperature than was observed 

for roosts in the forest solar treatment (Figure 2-21). Finally, increasing mean daily 

wind speeds had a strong negative impact on the daily variability experienced in open 

solar treatment roosts (Figure 2-22).  

Table 2-13: AICC ranks of the 8 candidate models for daily variability 
(Open/Forest analysis; April-September 2019). 
Model Name ∆AICC K wi 
m7 0.0 17 1.0000 
m6 24.5 14 <0.001 
m8 34.0 26 <0.001 
m5 48.8 10 <0.001 
m3 146.6 9 <0.001 
m4 369.9 21 <0.001 
m2 582.8 11 <0.001 
Null 1062.0 2 <0.001 
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Table 2-14: Parameter estimates and 85% confidence intervals for the top ranked 
daily variability model (Open/Forest analysis; April-September 2019; informative 
parameters bolded). 
Parameter Estimate 85% Confidence Interval 
    Lower Upper 
(Intercept) -0.019 -1.903 1.866 
ClusterOpen 5.673 2.921 8.426 
DesignCH -0.541 -1.322 0.240 
DesignEXTJ -1.990 -2.770 -1.211 
DesignVR -0.150 -0.966 0.665 
DesignWTR -0.108 -0.908 0.692 
AvgTemp 0.218 0.139 0.296 
AvgWind 10.370 6.535 14.204 
TaRange 0.819 0.743 0.896 
ClusterOpen:DesignCH -1.417 -2.508 -0.326 
ClusterOpen:DesignEXTJ -3.272 -4.362 -2.183 
ClusterOpen:DesignVR 0.800 -0.315 1.916 
ClusterOpen:DesignWTR -0.838 -1.942 0.266 
ClusterOpen:AvgTemp 0.191 0.083 0.299 
ClusterOpen:AvgWind -12.601 -16.469 -8.733 
ClusterOpen:TaRange -0.067 -0.174 0.040 

 

 

Figure 2-20: Box and whisker plot showing the interactive effect of box design 
within solar treatment on daily variability. 
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Figure 2-21: Regression lines and 85% confidence intervals showing the interactive 
effect of solar treatment and increasing mean daily air temperature on daily box 
variability. 
 

 

Figure 2-22: Regression lines and 85% confidence intervals showing the interactive 
effect of solar treatment and mean daily wind speed on daily box variability. 



90 

Daily Suitability: 

 We accumulated 1144 observations of daily roost suitability for our Open/Forest 

analysis. When comparing models predicting suitability within the Open/Forest clusters, 

we found that model 3 received top rank, carrying 52% of the cumulative model 

weights (Table 2-15). Model 7 was a competing model, being 0.2 AICC units away from 

the top model and carrying 48% of the cumulative model weights. The evidence ratio 

comparing these 2 models is 1.08 to 1. Thus, we constructed a 90% confidence set, 

including models 3 and 7, for model averaging. We identified 7 informative parameters 

based on model averaged results (Table 2-16).  

 From informative parameters, we note both solar treatments generally increased 

in suitability with increasing mean daily temperature, though the forest solar treatment 

has a stronger positive slope from ~15–20ºC (Figure 2-23). The open solar treatments 

generally were less suitable for bats than the forest solar treatments. When mean daily 

air temperature exceeded ~21ºC, both solar treatments level off in suitability as days 

become subsequently warmer. Increasing mean daily wind speeds decrease daily 

suitability in both solar treatments, with the forest solar treatments experiencing a more 

extreme negative response at low wind speeds (Figure 2-24). Roosts in the forest solar 

treatment generally were more suitable at low ambient temperature ranges compared to 

the open solar treatment roosts (Figure 2-25), though both solar treatments show 

decreased suitability when ambient temperature ranges exceed ~7ºC. 
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Table 2-15: AICC ranks of the 8 candidate models for daily suitability 
(Open/Forest analysis; April-September 2019). 
Model Name ∆AICC K wi 
m3 0.0 9 0.5200 
m7 0.2 17 0.4800 
m5 21.7 10 <0.001 
m6 26.7 14 <0.001 
m4 39.9 21 <0.001 
m8 43.4 26 <0.001 
m2 247.8 11 <0.001 
Null 261.2 2 <0.001 

 

Table 2-16: Parameter estimates and 85% confidence intervals for the top ranked 
daily suitability model (Open/Forest analysis; April-September 2019; informative 
parameters bolded). 
Parameter Estimate 85% Confidence Interval 
    Lower Upper 
(Intercept) -2.512 -2.999 -2.024 
ClusterOpen 2.075 1.364 2.786 
AvgTemp 0.236 0.215 0.257 
AvgWind -1.950 -2.954 -0.947 
TaRange -0.021 -0.040 -0.001 
AvgTemp:ClusterOpen -0.089 -0.117 -0.060 
AvgWind:ClusterOpen 1.725 0.713 2.738 
ClusterOpen:TaRange -0.044 -0.072 -0.016 
DesignCH -0.026 -0.229 0.177 
DesignEXTJ 0.144 -0.058 0.345 
DesignVR 0.035 -0.176 0.247 
DesignWTR -0.009 -0.216 0.199 
ClusterOpen:DesignCH 0.174 -0.110 0.459 
ClusterOpen:DesignEXTJ 0.272 -0.011 0.555 
ClusterOpen:DesignVR -0.073 -0.364 0.218 
ClusterOpen:DesignWTR 0.071 -0.217 0.358 
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Figure 2-23: Loess smoothed regression lines and 85% confidence intervals 
showing the interactive effect of solar treatment and mean daily air temperature 
on daily box suitability. 
 

 

Figure 2-24: Regression lines and 85% confidence intervals showing the interactive 
effect of solar treatment and mean daily wind speed on daily box suitability. 
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Figure 2-25: Loess smoothed regression lines and 85% confidence intervals 
showing the interactive effect of solar treatment and ambient temperature range 
on daily box suitability. 

Spring Analysis~ 

Daily suitability: 

We accumulated 463 observations of daily suitability for our Spring analysis. 

Based on AICC model selection, the null intercept model was the top ranked model 

with ~90% of the cumulative model weights ( Table 2-17). There were no competing 

models within 2 AICC units of this top model, and the evidence ratio for the top model 

compared to the 2nd highest rank model is 12.4 to 1. Based on the strong support for the 

null model, we infer that box design and solar treatment had little influence on daily 

suitability (Table 2-18; Figure 2-26), and that all boxes provided similar suitability 

under springtime conditions. 
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Table 2-17: AICC ranks of the 5 candidate models for daily suitability (Spring 
analysis; April-May 2019). 
Model Name ∆AICC K wi 
Null 0.0 2 0.8997 
m2 5.0 5 0.0723 
m3 7.1 6 0.026 
m4 12.2 9 0.0021 
m5 37.5 21 <0.001 

 

Table 2-18: Parameter estimate and 85% confidence intervals for the top ranked 
daily suitability model (Spring analysis; April-May 2019). 
Parameter Estimate 85% Confidence Interval 
    Lower Upper 
(Intercept) 0.977 0.879 1.075 

 

 

Figure 2-26: Box and whisker plot showing the daily suitability of box designs 
within each solar treatment. 
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DISCUSSION 

Artificial roosts are often deployed by resource managers as tools for 

conservation of at-risk bat species. These structures have been successful rehousing 

displaced maternity colonies (Brittingham and Williams 2000; Garland et al. 2017; 

Arias et al. 2020), in addition to supplementing a lack of natural roosts (Flaquer et al. 

2006; Adams et al. 2015). Thus, artificial roosts are showing promise as mitigation tools 

for bats in varied situations. Even so, several studies suggest improper deployment of 

potentially suitable designs can lead to limited occupancy, and poor designs in 

inappropriate locations can lead to unsuitable microclimates potentially harmful to bats 

(Whitaker et al. 2006; Bideguren et al. 2018; Rueegger et al. 2019). To complicate 

matters, strong design preference in conjunction with the influence of solar exposure 

has been documented for several species (Brittingham and Williams 2000; Mering and 

Chambers 2012; Doty et al. 2016; Hoeh et al. 2018). Roost preferences are likely 

species specific and should be evaluated on this basis. For example, northern long-eared 

bats (Myotis septentrionalis) are more likely to roost in cavities, live trees, and in areas 

with higher canopy cover as compared to the Indiana bat (Foster and Kurta 1999); this 

difference in roost selection should be reflected in targeted artificial roost deployments 

(Mering and Chambers 2014). Uncertainty and lack of guidance regarding proper roost 

design and deployment may lead to poor management decisions and negative long-term 

outcomes for bats (Rueegger et al. 2019). Herein we show that roost design, placement, 

and occupancy can alter artificial roost microclimate. Further, we demonstrate that 

some roost designs, have varying performance, depending on the deployment location.  
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Design has ben repeatedly documented as a critical factor influencing the risk of 

overheating in artificial roosts (Lourenço and Palmeirim 2004; Bideguren et al. 2018; 

Hoeh et al. 2018). Our results expand on previous studies, demonstrating that simple 

design alterations can have a considerable impact of the microclimate provided to bats 

(this study; Tillman 2019). For example, the VR and REF designs recorded the highest 

frequency of unsuitably hot temperatures, potentially due to a lack of adequate 

ventilation, lower mass (compared to EXTJ), or small, ineffective vents. In contrast, 

CH, EXTJ, and WTR designs accounted for considerably fewer overheating events. 

Thus, CH, EXTJ, and WTR designs hold promise for reducing the risk of overheating 

events in warm climate regions or during heat waves. Though further modification and 

testing is merited, these designs could be useful, as climate change may increase the 

frequency of heat waves (Meehl and Tebaldi 2004) and may exacerbate the risk of 

overheating occurring in bat boxes (Bideguren et al. 2018). 

Following a common trend, all designs in our study performed poorly during 

cold weather periods, with entire roosts frequently supporting temperatures below 15ºC. 

Hoeh et al (2018) similarly note that all artificial roost styles tested in their study did not 

effectively buffer against cold temperatures, with roosts showing low suitability at 

ambient temperatures below 10ºC. Further, Kerth et al. (2001) found that artificial 

roosts supported significantly different temperature profiles during the day, but that all 

supported virtually identical microclimates roughly 1–3 hours after sunset. Lourenço 

and Palmeirim (2004) and Bartonicka and Rehak (2007) similarly note the lack of heat 

retention by roosts of different types. Even though limited knowledge is available on 

natural tree roost microclimates, one recent study shows that nighttime temperature 
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variance under exfoliating bark can differ by as much as 4.5ºC among tree species and 

shows that larger diameter trees radiate heat longer into the night compared to trees of 

lower mass (Lacki et al. 2013). Further, nest boxes deployed for marsupials in Australia 

were more variable in temperature and overheated more often than naturally occurring 

tree hollows (Rowland et al. 2017). These findings, in conjunction with our own, 

highlight the widespread pattern that artificial roost designs are generally inadequate at 

retaining heat captured during the day and may not be adequate surrogates for natural 

roosts. As such, we suggest future work designing and testing artificial roosts is 

necessary to mitigate against negative energetic effects of cold roosts, as cold 

conditions are not favorable to pup development (Hoying and Kunz 1998; Wilde et al. 

1999; Lausen and Barclay 2006). We note our EXTJ design exhibited some capacity to 

reduce the number of unsuitably cold temperature recordings, but we judge this unlikely 

to be effective during extended cold periods, as the EXTJ design requires warm 

temperatures to build up heat. The EXTJ design is likely effective at buffering against 

short duration drops in temperature (i.e., lasting no more than a day). For example, 

minimum temperature availability within the EXTJ design was typically reached 4–5 

hours later in the morning (mode occurrence at 0900 hours) compared to all other 

designs. Prolonged buffering against cold ambient temperatures would likely require 

roosts to be heated (Wilcox and Willis 2016). Even so, marginal gains in cold weather 

suitability could lead to substantial energetic savings for reproductively active bats. 

 While the EXTJ design holds promise as a roost resistant to unsuitably hot and 

cold temperatures, we note a structural flaw that must be addressed to enhance 

durability and utility of the design. Due to the increased mass of this design, the roofs of 
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the EXTJ design began to separate from the outer shell boards. This led to the outer 

shells of 2 boxes (25% of total), 1 in Indiana and 1 in Kentucky, to separate and slide 

down the 4”x4” posts. Though no bats were injured during these 2 events, this structural 

flaw poses a serious threat to roosting bats. As a result, all 8 EXTJ boxes were removed 

from our field sites at the end of the study. Subsequent reconfiguration and 

improvement of this design will be undergone before reinstallation at our sites. This 

highlights that long-term maintenance and construction costs should be carefully 

considered when designing and deploying novel roost designs (Rueegger 2016), as 

short-lived, high-cost roosts are not practical for effective conservation. 

Artificial roost positioning on the landscape is critical to providing bats with 

safe and effective alternative roosting options. Solar exposure, in relation to landscape 

position, is a key determinant of Indiana bat natural and artificial roost selection 

(Callahan et al. 1997; Hammond et al. 2016; Bergeson et al. 2018). We found that 

easterly and westerly sun treatments logged the most overheating events. In contrast, 

roosts in forest solar treatments rarely experienced overheating events, likely due to 

canopy shading reducing the ambient temperature and blocking solar radiation. Open 

solar treatments, though receiving all-day solar exposure, experienced fewer 

overheating events than the easterly and westerly sun roosts, which only receive partial 

solar exposure. A plausible explanation of this observation is that convective cooling 

was more extreme at the open solar treatments, as recorded mean daily wind speeds 

were greater at the open solar treatments as compared to the easterly and westerly sun 

clusters (~0.5 m/s greater; Appendix A). High winds leading to strong convective 

cooling likely reduce roost temperature and overheating risk. Our observations align 
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with Tillman (2019), who noted greater wind speeds decrease roost temperature 

availability and variability across rocket box designs. Open solar treatment roost 

deployments could feasibly reduce the risk of overheating events and be effective 

deployments if the focal species is amenable to roosting in such locations.  

Though forest and open solar treatments experience fewer unsuitably hot and 

cold temperatures compared to easterly and westerly sun treatments, bats still preferred 

to roost in forest edge treatments (See Results Chapter 2). Bats avoided open solar 

treatments and rarely used forest solar treatments. We posit bats likely avoided forest 

solar treatment roosts due to inadequate solar exposure leading to cooler-less optimal 

maternity roosting conditions, as pup development is enhanced by warm conditions 

(Zahn 1999; Lausen and Barclay 2006). Further, Indiana bats generally select maternity 

roost that receive high amounts of solar exposure (Callahan et al. 1997; Britzke et al. 

2003; O’Keefe and Loeb 2017). We suspect Indiana bats likely avoided open solar 

treatments, as they are a relatively slow-flying, clutter-adapted species, and may 

perceive a higher predation risk when flying and emerging from roosts on open 

landscapes (Lesiński et al. 2009; Lima and O’Keefe 2013). For example, Arndt et al. 

(2019) show that Indiana bats emerge later relative to sunset with increasing proximity 

to open habitats. This trade-off between microclimate and predation risk likely led to 

bats’ preference for easterly and westerly sun roosts, as these placements allow for both 

solar exposure and quick access to cover upon emergence. 

Groups size influences microclimate~ 

 To date, most artificial roost microclimate studies focus on the impact of design, 

placement, and region on roost microclimate without examining the potential influence 
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of bats on roost microclimate (Brittingham and Williams 2000; Griffiths et al. 2017; 

Bideguren et al. 2018; Hoeh et al. 2018; Rueegger 2019). For bats that roost under 

poorly insulated exfoliating bark, like the Indiana bat, insulation resulting from social 

thermoregulation could be increasingly important for energy savings (Russo et al. 

2017). While exclusion studies are necessary to assess roost safety prior to large scale 

deployment for bats, researchers should further consider evidence that bats may 

substantially impact microclimate and subsequent suitability of roosts. We found that 

large primary maternity groups and smaller groups of Indiana bats, in a field-based 

setting, substantially altered the hourly availability and daily variability of temperature 

within rocket boxes, in addition to having varying microclimate effect strengths-based 

roost design. This is similar to the results of Willis and Brigham (2007), who note the 

presence of bats can alter roost temperature by as much as 7ºC. Further, artificial roosts 

occupied by Bechstein’s bats (Myotis bechsteinii) supported roost temperatures that 

were on average 4.6ºC higher than ambient temperature when compared to unoccupied 

roosts, which only supported mean temperatures 0.5ºC higher than ambient (Pretzlaff et 

al. 2010). These authors noted that the energetic benefits of social thermoregulation 

were greater on cold weather days, which also corroborates our findings. The impact of 

bats on the “realized” roost microclimate should be considered when selecting a design 

for deployment. 

  With decreasing mean daily ambient temperature, large primary and small non-

primary groups of bats increased mean daily availability and variability in roosts, as 

compared to unoccupied roosts. Body heat collectively generated by bats on cooler days 

likely results in a larger vertical temperature gradient in roosts. This result highlights the 
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potential metabolic advantages associated with social thermoregulation by large groups 

of bats during the maternity season (Trune and Slobodchikoff 1976; Willis and Brigham 

2007; Pretzlaff et al. 2010; Russo et al. 2017). Similarly, big brown bats have been 

shown to aggregate in larger numbers when the difference between roost and ambient 

temperature is low, presumably attempting to negate the negative effects of a cold roost 

through social thermoregulation (Webber and Willis 2018). In our study, large and 

small groups of bats increased daily variability as mean daily solar radiation increased. 

A possible explanation for this is that roosts cool significantly at night (Kerth et al. 

2001; Lourenço and Palmeirim 2004; Bartonicka and Rehak 2007) when bats are likely 

out foraging; the subsequent arrival of bats to roosts at dawn combined with high levels 

of solar radiation during the day likely result in a large increase in maximum roost 

temperatures as compared to overnight minimums.  

  Expanding upon our results, bats had a stronger warming effect in 2 designs that 

could either not effectively vent heat generated internally or that reflected radiant heat 

(i.e., EXTJ and WTR). The WTR design is intended to reflect radiant heat from the sun 

thus has no mechanism to buffer metabolic heat generated within. The EXTJ design 

likely traps internal heat generated by the bats due to increased mass and the lack of 

vents. The CH design typically supported the lowest mean daily availably and 

variability, likely because of the design’s capacity to dissipate internal metabolic heat 

production by bats through the chimney. This result highlights that bats cannot be 

expected to have the same effect across all types of roost structures (Kurta 1985). 

Designs that better retain heat generated by bats (i.e., EXTJ and WTR) may be more 

valuable for promoting the development of pups during the maternity season, as heat 
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retention by roosts is a trait often selected for by maternity roosting bats (Sedgeley 

2001; Lausen and Barclay 2002, 2006). Designs that dissipate internal heat (like CH) 

may negate the benefits of social thermoregulation, but this does not discount the utility 

of the CH design as this style could serve as a temporary refugia during heat waves and 

could be a more suitable roost design to use in warmer and more humid environments. 

While roost designs in our study provided the same volume and entrance area, we 

expect that bats would have a proportionally stronger influence on the microclimates of 

small volume roosts as opposed to large volume roosts (Kurta 1985). 

Further investigation into the relative humidity within rocket boxes is merited. 

We suspect the CH design will support lower humidity, through warm,moist air venting 

through the chimney, which could lower the heat index but conversely increase 

evaporative water loss (EWL) of roosting bats. This effect could pose serious health 

risks for bats, as up to 30% of their body mass could be lost daily through EWL at low 

(< 20%) humidity (Webb et al. 1995). At ambient temperatures of 25ºC EWL by bats is 

65% lower under high humidity conditions compared to low humidity conditions 

(Webb et al. 1995). Further, some bat species often occupy roosts that support higher 

humidity than ambient conditions (Sedgeley 2001; Bartonicka and Rehak 2007), though 

this humidity could be generated by EWL from bats through respiration.  

We note that daily suitability within easterly and westerly sun treatments was 

not substantially influenced by occupancy, but rather by box design and weather. This is 

likely because bats are most influential during cold weather conditions (Pretzlaff et al. 

2010), whereas this analysis focused on the warmest months. While bats can increase 

minimum roost temperature (e.g., Willis and Brigham 2007), they cannot decrease 
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maximum temperatures. Westerly sun clusters generally had higher frequency of 100% 

suitability as compared to the easterly solar treatments, likely due to greater wind 

speeds at the west clusters increasing convective cooling and decreasing the risk of 

overheating. 

Design, location, and weather influence microclimate~ 

Solar exposure is a critical determinant of artificial roost microclimate, and is a 

roost trait often influencing selection by bats (Brittingham and Williams 2000; Mering 

and Chambers 2012). For reproductively active Indiana bats, high solar exposure is 

important to roost habitat selection (Britzke et al. 2003; Hammond et al. 2016; 

Bergeson et al. 2018). Open solar treatment roosts, which provided a higher gradient of 

temperature than forest solar treatments offered bats a wider variety of roosting 

temperatures from which they could attempt to balance their energetic budgets 

(Williams and Brittingham 1997; Brittingham and Williams 2000; Lourenço and 

Palmeirim 2004; Rueegger 2019). Increasing wind speeds substantially reduced roost 

temperature availability within open solar treatments, however this effect was not 

observed within forest solar treatments. This observation is likely the result of dense 

forest vegetation buffering against high wind speeds, thus, reducing the impact of 

convective cooling. For example, foliage-roosting hoary bats (Lasiurus cinereous) 

select southeast-facing roosting positions where the vegetation buffers prevailing winds; 

this lessen the costs of convective cooling on metabolic heat production (Willis and 

Brigham 2005). Our results also highlight that the risk of windthrow at forest interior 

roosts may be less and could offer bats with refugia during windy spring and fall 

periods, when Indiana bats migrate to and from maternity sites (Pettit and O’Keefe 
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2017). Further, less canopy closure during spring months may mitigate the 

microclimatic effects of reduced solar exposure (i.e., cooler temperatures) typically 

experienced by forest solar treatments. The EXTJ roost within the forest solar treatment 

typically supported the highest mean daily availability, though only marginally so. 

Within open solar treatments, the EXTJ, CH, and WTR designs typically supported 

lower availability than the REF design. This is likely because these 3 designs can buffer 

against high temperatures and, thus, do not support as large of a temperature gradient 

from top to bottom within the roost. 

Open solar treatment roosts were more variable than forest solar treatment 

roosts, likely due to higher average temperatures and associated increases in solar 

radiation for the unshaded by open solar treatment. The high variability provided by 

open solar treatment roosts may allow bats to passively rewarm in the morning and 

evening (Hamilton and Barclay 1994; Lacki et al. 2013). Further, non-reproductive 

females and male bats may also take advantage of the relatively low variability 

experienced by forest clusters, which could promote cooler overall temperatures and 

facilitate deeper bouts of torpor (Hamilton and Barclay 1994; Lacki et al. 2013). Higher 

mean windspeeds decreased variability in roosts in the open solar treatment, likely as a 

result of heat loss through convective cooling.  

Roost temperature stability can have major implications on bat fitness and life 

history (Lausen and Barclay 2003a; Russo et al. 2017; Bideguren et al. 2018). Roosts 

offering stable microclimates may also be better at buffering highly variable ambient 

temperatures. For instance, in Australia, when ambient temperatures exceeded 48ºC, a 

little broad-nosed bat (Scotorepens greyii) roosting in a poorly insulated slender branch 
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(30 cm circumference) abandoned the roost 3.2 hours after it began to actively 

thermoregulate (Bondarenco et al. 2014). On the same day a male inland freetail bat 

(Mormopterus spp.) roosting within the main truck of a larger river red gum tree (130 

cm in circumference) was able to remain within this better-insulated roost during this 

extreme temperature event, and was largely able to thermoconform at an elevated body 

temperature (Bondarenco et al. 2014). These observations highlight the critical 

importance of roost selection when ambient temperature is extreme. The higher 

stability, relative to the REF design, of the EXTJ (via increased mass) and CH designs 

(via a heat venting chimney) could be valuable to keep bats safe from heat waves as 

these roosts were better at buffering highly variable ambient temperature. Our 2 most 

variable box designs, REF and VR, recorded the hottest temperatures seen during the 

study (53.5 and 54.5ºC, respectively). Likewise, Hoeh et al. (2018) found that of 3 

artificial roost designs tested in a side-by-side comparison, the roost that generally 

supported the highest variability (up to 40ºC) on 0% cloud cover days, also recorded the 

highest maximum roost temperature of 61ºC. This supports the idea that roosts prone to 

high variability may be more likely to subject bats to lethal temperatures. The well 

insulated EXTJ design, alongside the CH design that can vent excess heat through its 

chimney, should be further investigated as potentially valuable mitigation tools for bats 

especially with the increasing threat of climate change. 

While supporting greater suitability, the cooler microclimates of forest solar 

treatment roosts might not be ideal for maternity colonies. For example, Lourenço and 

Palmeirim (2004) found soprano pipistrelles routinely shifted to the warmest positions 

within an attic roost just below their theoretical upper thermal tolerance threshold of 
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40ºC. This suggests that some bat species may seek roost temperatures just below their 

theoretical critical limits, as such conditions should minimize metabolic energy lost to 

generating body heat. Further, it has been shown that bats often preferentially select 

artificial roost designs that promote warm microclimates (Lourenço and Palmeirim 

2004; Doty et al. 2016; Wilcox and Willis 2016). Forest solar treatment roosts rarely 

reached temperatures ≥ 40ºC, likely as a result of increased canopy shading, suggesting 

that forest deployments of a varied box designs may serve as refugia during periods of 

extreme heat. The forest solar treatment was generally more suitable than the open solar 

treatment with increasing ambient temperature range likely due to decreased roost 

variability experienced by the forest buffering against extreme temperature fluxes; 

though increased variability may allow open solar treatments to reach suitable 

temperatures faster on cold days. If bats can seek refugia within artificial roosts during 

extreme temperature events, artificial roosts are less likely to function as ecological 

traps, at least in terms of microclimate. Researchers and resource managers should 

carefully weigh the risks of deploying roosts in locations that increase the risk of 

overheating with the potential benefits associated with warmer maternity roosting 

conditions. 

Cold temperatures homogenize roost microclimate~ 

The capacity of bats to locate suitable springtime roosting habitat that 

maximizes energetic savings immediately after emergence from hibernation is thought 

to be critical for the recovery of WNS-affected bats (Wilcox and Willis 2016). By 

conserving energy, bats may be able to build greater fat stores and, thus, potentially 

increase their overwinter survival probability when experiencing WNS infection (Cheng 
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et al. 2018). Further, as bats impacted by WNS may leave hibernacula earlier than 

expected in search of food, the confounding effects of variable spring weather could be 

detrimental to female survival and fecundity (Norquay and Willis 2014). These 

considerations underscore the need for enhanced spring roosting habitat to minimize the 

energetic expenditure of WNS weakened bats. 

From our Spring analysis of all roosts and solar treatments for the months of 

April and May, we found that roost design and position had no discernable impact on 

microclimate suitability when assessed at this scale (though subtle differences in roost 

design microclimate likely exist). Predominantly cooler weather conditions (such as 

spring and nighttime conditions), likely homogenized the microclimates of each roost, 

thus resulting in similar microclimates (Kerth et al. 2001; Lourenço and Palmeirim 

2004; Bartonicka and Rehak 2007). This cooling effect is similar to that documented by 

Hoeh et al. (2018), who found that cloudy days resulted in roost microclimates 

indistinguishable across the roost designs tested, even though designs promoted 

significantly different microclimates under clearer skies and warmer conditions. We 

note, however, that even small difference in roost microclimate could have substantial 

biological importance and should be investigated. In the absence of artificially heating 

roosts during cold weather periods (e.g., Wilcox and Willis 2016; Webber and Willis 

2018), we caution against the construction of roosts that can naturally generate enough 

heat (i.e., absorption of solar radiation) to reach suitable temperatures during cold 

periods, as such roosts may prove dangerous during summer months as the risk of 

overheating could be exacerbated. For example, in a controlled setting black artificial 

roosts provide normothermic bats with substantial energetic savings when compare to 
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cooler microclimate white roosts and were preferentially selected by Gould’s long-eared 

bats (Nyctophilus gouldi) (Doty et al. 2016); however, black roost designs are at higher 

risk of overheating in certain climates (Bideguren et al. 2018; Rueegger 2019). While 

they should provide warmer microclimates during cold weather periods, black artificial 

roosts could potentially function as an ecological trap (as defined by Battin 2004) in 

which bats may preferentially select them and subsequently experience fitness decline 

or mortality resulting from an unsuitably hot microclimate during warm weather 

conditions. We suggest that researchers develop and test roost designs that can insulate, 

like our EXTJ design, and be more efficient at buffering both hot and cold ambient 

temperatures. Insulated artificial roosts could be key to retaining body heat generated by 

bats, thus potentially increasing roost temperature on cold weather days. 

Management considerations~ 

 It is clear that managers must account for a variety of complex issues when 

considering if and where to deploy artificial roosts. Regional climate should be 

evaluated in relation to roost microclimate (e.g., Bideguren et al. 2018). We note that 

while mean ambient temperature at the Kentucky field site was 1.1ºC higher than that at 

the Indiana site, the Kentucky site logged over twice as many unsuitably hot 

temperature recordings. Which shows that even slight differences in local climate could 

severely impact roost microclimate. The relative ease of modification makes the rocket 

box adaptable across an array of environmental conditions. Managers in warm, arid 

regions should consider the benefits of deploying roosts like the WTR, EXTJ, and CH 

designs tested in this study, as these designs may reduce the risk of overheating events. 

In cool climates, managers should consider deploying insulated roosts similar to the 
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EXTJ design or other roosts with higher thermal mass, as such roosts may help bats 

reduce their energetic expenditure during the maternity season, without substantially 

increasing the risk of overheating events.  

 We suggest that resource managers think critically about the life history traits of 

their focal species and evaluate what deployment strategies would be most effective for 

maximizing energetic benefits. Specifically, the typical colony sizes of a bat species 

should be considered when selecting a roost design. We show that large colony sizes 

can have a substantial impact on roost microclimate, but if a species generally forms 

smaller maternity groups (i.e., < 30 individuals) resource managers should consider 

deploying smaller volume roosts that could potentially enhance the social 

thermoregulatory benefits of a smaller group (Kurta 1985). In addition, deployment 

locations on the landscape should be carefully scrutinized. For example, forest 

deployments, while potentially less optimal for pup rearing, may yet offer refugia 

during heat waves. Alternatively, deploying roosts along forest edges could provide bats 

with optimal solar exposure while also decreasing the perceived (and presumable) risk 

of predation.  

Flight morphology is likely a key trait determining the appropriateness of a 

deployment strategy. In our case, Indiana bats possess relatively low wing loading and 

low aspect ratios (Norberg and Rayner 1987); their clutter-adapted traits may contribute 

to their perception of a higher risk of predation in open habitats (Lima and O’Keefe 

2013; Arndt et al. 2018). In contrast, species with high wing loading and high aspect 

ratios (e.g., Eptesicus fuscus) may perceive a lower risk when flying in open areas 

(Lima and O’Keefe 2013) and may be more likely to select roost in open locations. 
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 We recommend that resource managers first consider the need for artificial 

roosts on their landscape by assessing the quality of natural roosting habitat and 

foraging space, in addition to considering the long-term goals for the site. Ideally, 

artificial roosts will be phased out as natural roosting habitat is restored. If artificial 

roosts are deemed necessary, we recommend that resource managers deploy a variety of 

roost designs, in clusters, in a variety of locations on the landscape (e.g., tree line and 

forest interior deployments). This cluster and design strategy would provide bats with a 

variety of microclimates within one microsite and could facilitate the discovery of 

roosts in addition to facilitating the ease of roost switching (Lewis 1995; Mering and 

Chambers 2012; Rueegger 2016). Deploying a variety of designs in a variety of 

locations could give bats refugia during weather extremes and thus potentially increase 

fitness and survival. Further, by providing multiple roosts on the landscape, bats would 

be able to switch between structures to potentially avoid high parasite loads associated 

with large colony sizes and long-term roost use (Bartonička and Gaisler 2007; 

Bartonička and Růžičková 2012, 2013).  

Future work~ 

Though our work has shed light on a variety of topics, we have also delineated 

areas that warrant further investigation. None of our roost designs were effective at 

combating cold weather conditions, which is a common trend across artificial roost 

studies (Kerth et al. 2001; Lourenço and Palmeirim 2004; Bartonicka and Rehak 2007; 

Hoeh et al. 2018; Rueegger 2019); A more define, nuanced investigation is needed to 

delineate biologically meaningful differences on a day to day basis under variable cool 

weather conditions. Further development and testing of additional roost designs is 
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needed to address this issue, as enhanced cold weather and springtime roosting habitat 

could be critical for the survival and reproduction of bats weakened by WNS (Wilcox 

and Willis 2016; Webber and Willis 2018). Our finding that bats still preferred to roost 

in clusters that experience the most overheating events highlights the need for 

developing roost designs that can combat these extreme temperatures to protect roosting 

bats. The potential exists that bats’ preference for warm roosts that overheat often could 

result in an ecological or evolutionary trap (Schlaepfer et al. 2002; Battin 2004). 

Though our observation is likely the result of a predator/microclimate trade-off, 

reducing the frequency and intensity of overheating events is critical with the increasing 

risks of climate change. Additional work profiling the microclimates of both novel and 

commercially available artificial roost designs is needed, as concerns have increased 

regarding the potential for overheating events in bat boxes (Flaquer et al. 2014; 

Bideguren et al. 2018). The proliferation of inappropriate roost designs, be it by retailer, 

environmental consultants, or well-intentioned but misinformed conservationists, could 

lead to negative long-term consequences for bats across the globe. Lastly, artificial 

roosts potentially provide Indiana bats with roosting microclimates that are very 

different from that of natural roosts and, thus, further research is needed assessing this 

paucity of information on natural roost microclimate in addition to measures of 

reproductive success and survival in artificial roosts. Demographic statistics will be 

critical to support or refute the future use of artificial roosts on our landscapes. 
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