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ABSTRACT 

 One of the major issues concerning the increase in global temperature is with 

the elevating levels of CO2 in the atmosphere. Combustion of fossil fuels in power plants 

is a leading contributor to the elevated anthropogenic CO2 concentration. To help 

alleviate this issue, the investigation of aqueous amines being implemented for the 

capture of CO2 in the post-combustion carbon capture (PCCC) in power plants has been 

a growing interest to chemists. One of the concerns with aqueous amines, is their ability 

to thermally degrade. Thermal degradation is a prominent aspect for the loss of 

aqueous amines during the stripper process in powerplants. The focus of this research 

was to investigate the structural effect on the thermal degradation of aqueous amines. 

The method for this investigation involved the degradation of a 30 wt% amine solution 

loaded with a 0.4 ratio of moles CO2/moles of amine, over a one-week span at 125, 135, 

and 145˚C. After which, the degraded species were analyzed using high-performance 

liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). A computational 

analysis using the B3LYP functional for the thermodynamics of CO2 binding to aqueous 

amines was attempted and compared to the results acquired from HPLC and NMR 

experimentation to help quantify the favorability of thermal degradation based on the 

structure of certain amines. 
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Chapter 1. Introduction 

1.1 Climate Change and the Greenhouse Effect 

 Since 1880, the global average temperature has been tracked by the Goddard 

Institute for Space Studies (GISS) from the National Aeronautics and Space 

Administration (NASA) by using weather reports from the past and data collected from 

the ocean to have increased by approximately 0.8˚C causing climate change.1,2 The 

increase in seasonal average change in the global temperature from 1880-2019 is 

demonstrated by Figure 1-1.1,2 While there are multiple contributions towards the 

Figure 1-1. Average global temperature change from 1880-2019 with a key describing 
the colors that represent specific time frames, Reproduced from References (1) and 
(2). (Sources: (1) GISTEMP Team, 2019: GISS Surface Temperature Analysis (GISTEMP), 
version 4. NASA Goddard Institute for Space Studies. Dataset accessed 2019-12-29 at 
https://data.giss.nasa.gov/gistemp/ and (2) Lenssen, N., G. Schmidt, J. Hansen, M. 
Menne,A. Persin,R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP 
uncertainty model. J. Geophys. Res. Atmos. 124, 12, 6307-6326.) 
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increase in global temperature, one of the major components is the presence of 

greenhouse gases into the troposphere.3,4 

 Greenhouse gases are gases that possess a net dipole moment allowing the gas 

molecules to absorb infrared radiation (IR) with a wavelength range of 10-6-10-3 m. The 

absorbed radiation can cause vibrational or rotational motions of a gas molecule.3 

Because of this, greenhouse gases can absorb heat from the earth and then reradiate 

some of the warmth back to the Earth and other atmospheric gases such as N2 and O2 

(Figure 1-2), creating what is known as the greenhouse effect.4-5 

 The major greenhouse gases include: water (H2O), carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O).3,4 Not including H2O, the National Oceanic and 

Atmospheric Administration’s (NOAA) Earth System Research Laboratory’s (ESRL) 

Global Monitoring System (GMS) provides the current concentration of CO2, CH4, and 

N2O as 410.27 ppm, 1863.6 ppb, and 331.9 ppb respectively.6-8 Although these are the 

major greenhouse gases, halocarbons and sulfur hexafluoride (SF6) are also present in 

the troposphere the current concentration of 10.07 ppt.3,9 The concentration of 

greenhouse gases plays a major role in the absorption of heat. For example, CH4 is 

approximately 24 times more effective at absorbing IR than CO2, however, CO2 is more 
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abundant as a greenhouse gas due to anthropogenic sources, and accounts for 7.5% of 

the greenhouse effect.3 

1.2 CO2 as a Direct Indicator of the Greenhouse Effect 

 One of the major contributions towards the rising average global temperature 

is due to the emissions of CO2 by the combustion of fossil fuels.3,4,10-15 It can be 

demonstrated that the average global temperature has a direct dependence on the 

concentration of CO2 in the atmosphere; a comparison between Figure 1-1 and Figure 

1-3 demonstrates how the altering seasonal concentrations of CO2 and the global 

average temperature are related.10 It is important to note that the variations from 

month-to-month, when comparing CO2 concentration to temperature, could be due to 

Figure 1-3 being data at the Mauna Loa Observatory, while Figure 1-1 is of the global 

average temperature. Regardless, it is demonstrated that the CO2 concentration is 

Figure 1-2. Demonstration of the greenhouse effect, where the solid blue color 
represents C, green is F, white is H, red is O, and yellow is S, and make up the 
greenhouse gasses: CO2, SF6, and CH4. The linear molecule on the far right with the red 
and blue shading represents N2O. Reproduced from Reference (5). (Source: Photo 
courtesy of Barb Deluisi, NOAA, Boulder, Colorado, USA (http://esrl.noaa.gov/gmd/)) 
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directly related to the increase in global temperature.10 Figure 1-4 also demonstrates 

the direct relation of the increase in CO2 on the global temperature. As the 

concentration of CO2 increased, so has the global temperature. 

 The data demonstrated by Figures 1-3 and 1-4 was collected by the Mauna Loa 

Observatory. The observatory is positioned upon the slopes of the Mauna Loa volcano 

in Hawaii because, the bare lava that surrounds the slopes allows the accurate 

determination of CO2 concentration in the surrounding area.16 The bare lava means 

little-to-no soil and vegetation that can serve as CO2 sinks. Due to this, if a baseline 

measurement of the air in the area is measured, any fluctuation in CO2 could be readily 

detected.16  

Figure 1-3. Seasonal concentration of CO2 from December 2018-December 2019. 
Reproduced from Reference (6). (Source: Data provided by NOAA ESRL Global 
Monitoring Division, Boulder, Colorado, USA (http://esrl.noaa.gov/gmd/)) 
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CO2 can absorb IR due to the different vibrational modes, one stretching mode 

(asymmetric) and two bending modes (out-of-plane and in-plane bending).3 Therefore, 

IR spectroscopy can be used to accurately determine the CO2 concentration in the 

sample due to the fact that the greater the CO2 concentration, the more IR that will be 

absorbed.16  

1.3 Sequestering of Post-Combustion CO2 using Aqueous Amines 

 While there are multiple techniques proposed towards sequestering CO2 from 

flue gas in power plants, the use of aqueous amines seems to be the most auspicious 

technique.11 This technique is based on the same technology used for natural gas 

sweetening, and is able to be performed by retrofitting existing power plants.10 With 

Figure 1-4. Demonstration of the increase in CO2 concentration since 1980. 
Reproduced from Reference (6). (Source: Data provided by NOAA ESRL Global 
Monitoring Division, Boulder, Colorado, USA (http://esrl.noaa.gov/gmd/)) 
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this process, monoethanolamine (MEA) is the benchmark solvent, and the discussion 

on the sequestration process will be described using temperatures correlated with 

MEA (absorber at approximately 40-50˚C and stripper at approximately 100-140˚C).4,11 

It is important to note that the temperatures used for the absorber and stripper varies 

based on the specific amine solvent and its thermal stability.4 

 Flue gas containing CO2, N2, and O2 are brought to the absorber-desorber 

(stripper) system.4,11 It is important to note that flue gas contains NOx and SOx 

particulates, however, these should be removed prior to entering the absorber-

stripper system by a pretreatment of the flue gas.4,17 The absorber-stripper system is 

demonstrated by Figure 1-5. Using Figure 1-5, the flue gas enters from the bottom of 

the absorber, and flows through the amine solvent in an ascending fashion, while the 

amine solvent is flowing in a descending manner.4,11 With the opposing currents, a 

packing material is also present inside of the absorber, which ensures the two phases 

meet.4,18-19 It was estimated that with a properly designed absorber column, the 

efficiency for the removal of CO2 could range anywhere between 70-99%.17  

 After the amine solvent absorbs CO2, the CO2-rich solvent flows into the 

stripper at a much higher temperature, where the temperature is dependent on the 

thermal stability of the CO2-rich solvent.4,11,17-19 The temperature needs to be high 

enough to be able to remove CO2 from the CO2-rich solvent. Steam from the power 

plant is used to heat up the regenerated solvent in the stripper, and consequently, this 

is the most expensive part of the absorber-stripper system due to high energy 

consumption.11 The heat exchanger, demonstrated by Figure 1-5, heats up the CO2-
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rich solvent before it enters the stripper. This is accomplished by allowing the steam 

collected in the power plant to heat up the CO2 rich solvent, removing CO2, which 

becomes CO2-lean solvent that will then flow back into the absorber through the heat 

exchanger which will not only heat up the CO2-rich solvent as it enters the stripper but 

also cool down the CO2-lean solvent as it returns to the absorber.18 

 Upon the regeneration of the CO2-lean solvent, the CO2 and H2O gas produced 

leaves through the top of the stripper. The H2O can be removed, and pure CO2 is then 

compressed and stored for future use.4,11 The CO2-lean solvent then flows to the heat 

exchanger, and the cooled solvent is brought back to the absorber for further 

usage.4,11,17-18 

1.4 Aqueous Amines and CO2 Absorption 

 Here, the evaluation of the different amines, or alkanolamines, including the 

coordination, CO2 capture mechanisms, and structural effects is discussed. Primary and 

Figure 1-5. Typical Absorber-stripper system for the sequestering of post-combustion 
CO2.4, 11,17-19 
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secondary amines are given a section together due to their similar behaviors during 

CO2 capture, however the differences between the two will be addressed. The overall 

characterization of amines is demonstrated in section 1.4.1, however, this same 

reasoning can be used to describe tertiary amines. The differences being in the 

absorption of CO2, and coordination. 

1.4.1 Primary and Secondary Amines 

 Like the coordination of substituted carbons, amine groups are specified 

according to how many carbons are attached to the nitrogen atom. A primary amine is 

an amine that contains two hydrogen atoms and one substituent, which is typically an 

alkyl group.20 Likewise, a secondary amine has two substituents and a single hydrogen 

atom.20 Treating the substituent as an alkyl group, the amine and the substituent(s) 

would have a σ bond due to the amine possessing sp3 hybridized orbitals.20 However, 

this is the case only when the arrangement of the nitrogen and its substituents is 

pyramidal. There are cases in which the substituted amine could take on a planar 

arrangement, changing from an sp3 arrangement to an sp2 hybridization, such as in 

arylamines and amides.20 

 The aqueous amines can range in concentrations (experimental concentrations 

found as low as 3 wt% and as high as 40 wt%), however, as an example, MEA is 

typically used as 30 wt%.4,21 It was demonstrated that too much amine in the solution 

could cause harm to the absorber-stripper system by corrosion, thus, a threshold 

concentration for each aqueous amine must be determined to avoid damage and 
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solvent degradation.4 Also, upon experimental comparisons for the energy required 

for CO2 absorption between 20 wt% and 30 wt% MEA, the 30 wt% solution required 

28% less energy for the absorption.4 This information is important when other amines 

are being considered for CO2 absorption, demonstrating that different concentrations 

should be tested to determine the best fit that requires the least amount of energy 

and will not increase corrosion or solvent degradation.4 

 Before the analysis of CO2 absorption by primary and secondary amines, the 

reactions between H2O with CO2 should be demonstrated as they can occur 

concurrently during CO2 absorption into the aqueous amine solution, and these 

possibilities are shown by Figure 1-6. The reactions demonstrated by Figure 1-6 are 

more important for the reactions dealing with tertiary amines, due to the lack of 

hydrogen on the nitrogen atom, and will be discussed further in section 1.4.2, but it is 

Figure 1-6. Probable reactions that could occur between CO2 and H2O during CO2 
absorption into an amine solution.22-25 
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important to recognize the other reactions that can occur during the absorption of 

CO2. 

 For the analysis of CO2 absorption with aqueous amines, MEA will be used as 

the example. While MEA is a primary amine, secondary amines absorb CO2 in the same 

process. However, the first mechanism of the CO2 absorption, that has been 

extensively studied with MEA, includes the production of a zwitterion intermediate.22-

23,26-28 The zwitterion production has been determined as the rate-determining step, 

and is demonstrated by Figure 1-7.28 The zwitterion then undergoes deprotonation to 

form carbamate and protonated MEA with the presence of other MEA molecules 

demonstrated by Figure 1-8.22 The free MEA involved in the reaction demonstrated by 

Figure 1-8, acquires the proton from the zwitterion, to produce MEA carbamate and 

the deprotonated MEA. In many cases, the reaction in Figure 1-8 is demonstrated by 

the nucleophilic attack by MEA to CO2, specifically, attacking the carbon.4 While the 

MEA carbamate species is in equilibrium with bicarbonate and MEA, this reaction will 

be excluded, but it is important to understand the side reactions that could occur.4 

Figure 1-7. Zwitterion intermediate production with MEA and CO2.22-23,25-28 

Figure 1-8. Zwitterion deprotonation with MEA to form MEA carbamate and 
protonated MEA.22-23,25-28 
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Figure 1-9 demonstrates the overall reaction, in terms of the ionic species, for the CO2 

absorption by MEA, which can be applied to other primary and secondary amines. 

 With the reaction mechanisms for the absorption of CO2 by MEA, the 

absorption capacity must also be evaluated, as it is dependent upon the structure of 

the amine.22,29 It was determined that sterically hindered amines have a higher CO2 

absorption capacity due to the formation of bicarbonate as opposed to carbamate, 

much like the reactions demonstrated by Figure 1-6.4,22,29 Carbamates are more stable 

and as a result, require more energy to release the captured CO2 and regenerate the 

amine.4,29 While sterically hindered amines have a higher CO2 absorption capacity, 

non-sterically hindered amines have faster reaction kinetics.4,29 A general relationship 

can be used to explain this phenomenon: CO2 absorption capacity is proportional to 

the ability of an amine to form carbamate (more carbamate formation, less absorption 

capacity), which is dependent on the structure of the amine.4,29 

1.4.2 Tertiary Amines 

 Tertiary amines behave similarly to sterically hindered primary and secondary 

amines, in terms of CO2 absorption, and have similar hybridizations that were 

demonstrated in section 1.4.1.20 Since, much of the information presented in section 

Figure 1-9. Typical CO2 absorption reaction for MEA produced MEA carbamate and 
protonated MEA.4,22-32 
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1.4.1 can be related to tertiary amines, this section is going to outline the major 

differences of tertiary amines from primary and secondary amines, especially that of 

CO2 absorption capacity and the reaction mechanism of CO2 absorption. 

 The reaction mechanism for CO2 absorption by tertiary amines is demonstrated 

by N-methyldiethanolamine (MDEA), one of the most researched tertiary amine for 

CO2 absorption, by Figure 1-10. In the reaction demonstrated by Figure 1-10, the base-

catalytic hydration of CO2 by MDEA forms bicarbonate and protonated MDEA.4,34 The 

reactions shown in Figure 1-6, demonstrates the production of bicarbonate that would 

occur in this reaction. The role of the tertiary amines for CO2 absorption is for the 

hydrolysis of CO2, which is possible due to tertiary amines, such as MDEA, not 

possessing a hydrogen bond with nitrogen.4,21 Primary and secondary amines have at 

least one hydrogen bond with the nitrogen, allowing the formation of stable 

carbamates, whereas tertiary amines allow the formation of unstable bicarbonate.4,33 

 Due to the formations of bicarbonate with tertiary amines, the regeneration of 

the tertiary amine requires less energy than it would if a primary or secondary amine 

was used with the production of a carbamate.21,33-36 However, tertiary amines are less 

reactive than an unhindered primary and secondary amine.21,33-36 Thus, it is a trade-off; 

more efficient regeneration, but slow and inefficient CO2 absorption. 

Figure 1-10. Reaction pathway for the absorption of CO2 by MDEA.4,21,33-36 
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1.5 Thermal Degradation of Aqueous Amines 

 As mentioned in section 1.3, CO2 is released by heating the CO2-rich solvent in 

the stripper portion of the absorber-stripper system to regenerate the amine solution, 

which will cause the thermal degradation of amines at high temperature.4,37-42 During 

thermal degradation, imidazolidones, ureas, aldehydes, oxazolidones, amine dimers, 

amine trimers, polymeric and cyclic compounds are all possible products for the 

degradation of an aqueous amine.4,37,39 For unhindered primary and secondary 

amines, the production of polymeric compounds was determined to be the main 

pathway.4 Regardless of the product formed, thermal degradation reduces the CO2 

capacity of regenerated amine solutions, increases the energy required for amine 

regeneration, and could cause fouling and foaming which may produce a hazard to the 

system due to the volatility of some degradation products.4,38,42 

 Before the demonstration and discussion of two examples of degradation for 

the primary amine MEA and secondary amine piperazine (PZ), general trends have 

been observed based on the study of the amine structure that effect thermal 

degradation. While steric hindrance of the amines effects the CO2 absorption capacity 

of amines, it also effects the thermal degradation of amines.40 Sterically hindered 

amines would have a lower degradation rate compared to unhindered amines due to 

the formation of bicarbonate and unstable carbamates, as opposed to the stable 

carbamates formed with unhindered amines.40 In a study conducted with 

aminosilicone carbamates and temperature, it was determined that high temperature 

and CO2 loadings led to more thermal degradation.41 The same conclusions were also 
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demonstrated in a study on PZ, where an increase in temperature demonstrated an 

increase in the degradation rate, and that with higher CO2 loadings, more degradation 

occurred. However, the degradation rate was demonstrated to reach a plateau with 

different CO2 loading ratios up to a ratio of 0.4 mol CO2/mol PZ.38-39 Thus, while a 

higher CO2 loading does enhance the thermal degradation, there is a possibility, when 

comparing PZ to other amines, that other amines could possess a threshold CO2 where 

the thermal degradation rate can decrease once above this threshold.39 Since, 

Freeman et al. demonstrated that with a CO2 loading above 0.4 mol CO2/mol PZ, the 

thermal degradation rate rapidly decreased, which could be explained by the existence 

of lower amounts of reactive species present and with the presence of bicarbonate.38-

39 

 The possible degradation pathways for MEA will be discussed first and is 

demonstrated by Figure 1-11. Reaction (1), demonstrated by Figure 1-11 (when 

referring to the different reactions from Figure 1-11 henceforth will be denoted by the 

numbered reaction), is the capture of CO2 by MEA to form MEA carbamate.4 It is then 

possible, at high temperatures, that instead of the release of CO2, an OH group and an 

H atom from the other OH groups could be released, and the molecule can undergo 

intramolecular cyclization to produce oxazolidine-2-one (OZD) demonstrated by (2).4 

The produced OZD is then subject to ring opening reactions with an MEA molecule.4 

The amine group of MEA could nucleophilically attack the carbon adjacent to the 

oxygen, to produce N-(2-hydroxyethyl)ethylenediamine (HEEDA) demonstrated by (3).4 

Following HEEDA, HEEDA can then capture CO2 demonstrated by (4).4 Upon amine 
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regeneration, the HEEDA carbamate could then undergo an intramolecular cyclization, 

similar to the formation of OZD, to form hydroxyethylimidazolidone (HEIA) 

demonstrated by (5).4 HEEDA also has the capability to nucleophilically attack the 

thermal degradation product OZD, to form N-(2-hydroxyethyl) diethylenetriamine 

(HEDETA) and releasing CO2 demonstrated by (6).4 It is important to note that HEEDA 

was found to be the most abundant degradation species, accounting for approximately 

50% of the MEA loss at 145˚C.4 The pathways demonstrated by (2)-(6) could be 

repeated to form oligomers demonstrated by (7) until completion.4 Finally, the MEA 

carbamate species can undergo a thermal degradation pathway other than the 

Figure 1-11. Proposed thermal degradation reactions of MEA produced by reference 
(4).4,25 



16 

intramolecular cyclization. The MEA that could still be present after CO2 absorption, 

could act as a nucleophile and attack the carbonyl carbon of the MEA carbamate to 

produce N,N’-bis (2-hydroxyethyl)urea (BHEU) demonstrated by (8).4 It is important to 

note that BHEU was found to be the second most abundant species, followed by HEIA, 

OZD, and HEDETA.4,37 On the basis of urea formation, an increased abundance of urea 

species could be effected by having a higher concentration of carbamates, lower water 

concentrations, and higher temperatures, which could explain why BHEU was the 

second most abundant species found at 145˚C.1,41 

 With piperazine, the CO2 absorption reaction would follow that of MEA, 

producing PZ carbamate and a protonated PZ.38 However, unlike the thermal 

degradation of MEA, it was proposed that the first thermal degradation product for PZ 

occurs by the nucleophilic attack by PZ on one of the α-carbons of a protonated PZ 

species, in a ring opening reaction to produce 1-[2-{(2-aminoethyl)amino}ethyl] 

piperazine (AEAEPZ) demonstrated by reaction (1) in Figure 1-12 (just like with the 

description of the thermal degradation pathway for MEA, when referring to a specific 

reaction from Figure 1-12, on the reaction number will be presented).39 Following the 

production of AEAEPZ, AEAEPZ could capture CO2 to be in an equilibrium with urea 

AEAPZ (2).39 The AEAPZ species could then be protonated, as demonstrated by (3), and 

have two different pathways it could undergo due to the nucleophilic attack by PZ (4-

5).39 In (4), the PZ attacks an adjacent carbon to the protonated amino functional, in a 

way that would produce 1,1’-(1,2-ethanediyl)bis-piperazine (PEP) and ethylenediamine 

(EN).39 The other pathway, (5), PZ attacks an adjacent carbon to protonated amino 



17 

functional in a way that would produce N-(2-aminoethyl)piperazine (AEP).39 The final 

two reactions being used for the discussion of the thermal degradation of PZ (6-7), 

involves Hofmann elimination and anti-Markovnikov hydration.39 For (6), protonated 

PEP undergoes Hofmann elimination to produce 1-ethenylpiperazine and PZ.39 

Sequentially, 1-ethenylpiperazine could undergo anti-Markovnikov hydration to 

produce N-(2-hydroxyethyl)piperazine (HEP).39 

 While Figure 1-11 and Figure 1-12 demonstrate proposed thermal degradation 

pathways for MEA and PZ, the thermal degradation pathway and species for MEA and 

PZ are not limited to those demonstrated. However, the proposed pathways described 

Figure 1-12. Proposed thermal degradation pathways for PZ produced by reference 
(39).25,39 
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are the main reaction pathways likely to occur during thermal degradation of the two 

species. 

1.6 Research Objectives 

 The overarching goal for this research is to determine how the structure of 

aqueous amines effects thermal degradation. Unlike many of the thermal degradation 

studies, this research is set to compare seven different aqueous amines all at the same 

concentration, CO2 loading, and degraded under the same conditions, to compare the 

extent of degradation based on different functional groups and structure. The 

standard is MEA, and the other aqueous amines will be compared to the results from 

MEA in this research. While other studies give an idea about how structure could 

affect thermal degradation based, the uniformity between the aqueous amines being 

used will help develop a better understanding for how much of an extent the structure 

plays on thermal degradation, instead of focusing on the CO2 loading. In doing so, this 

information could help in the development of a better suited amine for CO2 capture. 

To achieve this, 1H,13C, DEPT-90, DEPT-135, and 15N nuclear Overhauser effect (NOE) 

nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), 

and Gaussian09, a computational software, were utilized. 
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Chapter 2. Experimental Methods and Computational Details 

2.1 Aqueous Amines Chosen for Study 

 Seven aqueous amines were chosen for this research and are listed in Table 2-

1. 

Table 2-1. List of Aqueous Amines Chosen for this Research.25 

Amine Structure Source Purity (%) 

Monoethanolamine (MEA) 
 

Alfa Aesar ≥99 

DL-1-Amino-2-propanol (1A2P) 
 

Acros 

Organics 
94 

Ethylenediamine (EN) 
 

Fisher 

Chemical 
≥99 

(3-aminopropyl)trimethoxysilane 

(3APT)  
Alfa Aesar 97 

2-(Butylamino)ethanol (2BAE)  

Aldrich 

Chemistry 
≥98 

N-Methyldiethanolamine (MDEA) 
 

Aldrich 

Chemistry 
≥99 

Piperazine (PZ) 

 

Oakwood 

Chemical 
99 
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2.2 Thermal Degradation 

2.2.1 Sample Preparation 

 For the preparation of the aqueous amine solutions with CO2, the targeted 

concentration was 30 wt% and a CO2 loading ratio of 0.4 mol CO2/mol amine was 

desired, as these are conventional parameters used for MEA in industrial practices.4 To 

accomplish this, each amine was individually added to a separate flask on a balance 

and 18.2 MΩ Milli-Q H2O dispensed from a Q-pod manufactured by Millipore, was 

added to each solution to achieve an approximate concentration of 30 wt%. The 

following are the measured concentrations of each aqueous amine prepared: 30.8143 

wt% MEA, 30.0343 wt% 1A2P, 30.0378 wt% EN, 30.1837 wt% 3APT, 30.1984 wt% 

2BAE, 29.7817 wt% MDEA, and 29.7704 wt% PZ. 

 For the loading of CO2, multiple calculations were accomplished to determine 

the amount of time required to bubble the CO2 through the amine solution. The first 

step was to determine how much volume of CO2 gas would need to be bubbled to 

produce the ratio 0.4 mol CO2/mol amine. Since, the mass of the amine being used 

was known, the mass was converted to moles and the moles of CO2 required was 

calculated for each amine using the ratio. The ideal gas law was then used with 

laboratory temperature and pressure during the time the sample was loaded. It is 

important to note that PZ started as a solid, and in order to dissolve, required heating 

around 25-30˚C for the amount that was used for this research. Highly pure CO2 from 

the Scott-Gross Company, Inc. was then bubbled into the solution by a mass flow 
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controller (GFC) from AALBORG at a rate of 0.5 L/min. The amount of time required for 

CO2 bubbling was found by inversing the rate and then multiplying it by the volume of 

CO2 to satisfy the targeted ratio. Each solution was capped and sealed with Parafilm 

“M” from American National Can until needed. 

2.2.2 Thermal Degradation of Prepared Samples 

 Metal cylinders made of 316 steel with a length of 6.16’’ and width 1.00’’ and 

HY-LOK 316 HML and 316 HBC ½’’ sealing caps were used as sample containment 

vessels. One end of the steel vessels was welded shut, leaving the other open for 

sample injection and vessel sealing, demonstrated by Figure 2-1. It is important to note 

that the threads of the metal vessel were wrapped with ½’’x260’’ 

polytetrafluoroethylene (PTFE) Megatape designed for gas and water lines to prevent 

leaking.  

 Approximately 5 mL of each sample was individually measured out and placed 

in separate steel vessels. The steel vessels were then tightly sealed and placed in a 

VWR gravity convection oven with vacuum capabilities for thermal degradation. The 

pre-weighed samples were kept stagnant for one week at each temperature of 125˚C, 

Figure 2-1. Steel vessel used for housing the aqueous amine solutions loaded with CO2 
for thermal degradation. 
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135˚C, and 145˚C. After degradation, the samples were weighed and any sample with 

≥2.5% weight loss was excluded. However, it must be noted that the MEA sample 

degraded at 125˚C gained a small amount of mass (0.09342%), which could have 

resulted from leftover waste in the oven from previous trials that leaked and went 

unnoticed during measurements. There are other possible sources for this error, 

however, due to the small mass change, the sample was believed to be viable and 

5.324 g of the degraded MEA sample was transferred and collected for future 

measurements. 

 Each degraded solution was capped, sealed with Parafilm “M,” and placed in a 

refrigerator which held its temperature around 4.8˚C to prevent further degradation. 

Table 2-2 demonstrates the labels associated with each degraded sample for 

referencing. Sample S is not included as it was a confirmation test of MEA at 145˚C. 

Table 2-2. Reference Letter for Each Degraded Sample. 

Amine 
Temperature (˚C) 

125 135 145 

MEA A E I 

1A2P B F L 

EN C G J 

3APT D H K 

2BAE M P T 

MDEA N Q U 

PZ O R V 
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2.3 Nuclear Magnetic Resonance (NMR) 

2.3.1 Sample Preparation 

 The degraded amine samples and parent amines for NMR analysis were 

prepared by loading NMR tubes that were approximately 7.10’’ long, with about 1 cm 

of degraded solution and approximately 4 cm of deuterated chemical and capped on 

the open end. For samples that were highly concentrated, less than 1 cm of degraded 

sample was added, with the deuterated chemical added to have a total of 4 cm, 

however, slightly more deuterated chemical was added for further dilution of the 

sample if necessary. For all the samples except for those containing PZ, deuterium 

oxide from Acros Organics containing 99.8 atom % D, was used as the solvent. For the 

PZ samples, chloroform-d from Acros Organics containing 99.8 atom % D was used as 

the solvent as it demonstrated better dissolution capabilities for PZ compared to 

deuterium oxide at room temperature. It should be noted, that if a sample was 

prepared for NMR analysis and was unable to be analyzed the day of preparation, the 

sample was stored in a refrigerator around 4.8˚C until analysis could be accomplished. 

 With each sample, except for the parent amines, water was present after 

degradation. A technique was used to try and remove the water, by evaporation of the 

water under a vacuum in a gravity convection oven at approximately 40˚C, but this 

proved to further degrade the sample. Thus, the NMR samples were prepared with 

unaltered degraded species. 



24 

2.3.2 Analysis 

 After the preparation of samples, the samples were individually placed in an 

autosampler attached to the JEOL ECS-400 NMR instrument with multiple nuclei 

analysis capabilities demonstrated by Figure 2-2. With this NMR, 1H, 13C, Dept-90, 

DEPT-135, and 15N NOE was accomplished. The NMR probe was preset with an LF1 

tune of 2681, an LF1 match of 3549, and the coarse at A, which allowed the analysis of 

1H, 13C, DEPT-90, and DEPT-135. For 1H NMR, the instrument operated at a frequency 

of 399.78 MHz, and for the analysis containing 13C, the frequency was 100.53 MHz. 

However, for 15N analysis, the LF1 tune was set to 5274, the LF1 Match to 4179, and 

the coarse was changed to C on the external dials of the NMR probe. The frequency 

used for 15N NOE analysis was 40.51 MHZ. 

Figure 2-2. JEOL ECS-400 NMR instrument used for this research at Eastern Kentucky 
University in Richmond, KY. 
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2.3.3 Theory 

 For this discussion, the general theory for how NMR works will be introduced, 

as well as the theory behind the distortionless enhancement by polarization transfer 

(DEPT) and 15N nuclear Overhauser effect (NOE). The nuclides and their natural 

abundance used for this research were; 1H (99.9885%), 13C (1.07%), and 15N 

(0.368%).43 

 NMR takes advantage of quantum mechanical and classical mechanical models 

by altering the intrinsic angular momentum of nuclei.43 To begin, each nuclei will 

possess a nuclear spin angular momentum value, I, and a nuclear magnetic moment, 

μ.43 For this specific research, I=1/2, is the nuclear spin angular momentum value for 

all of the nuclei used for analysis.43 In assessing the nuclear magnetic moment, the 

analogy of a planet in the solar system with a nuclei is a useful technique, although, is 

not accurate relative to the actual occurrence. The imagery, which is a classical 

mechanical approach, is the spinning of nuclides about its μ-axis, while the nuclides 

also undergo a precession about, for the case of a magnetic, like NMR, the magnetic 

field B0. 43 The μ-axis is simply the vector of the net intrinsic angular momentum of 

each nuclei.43 

 Moving into the magnetic field and the electrons, NMR takes full advantage of 

the different electron orientations; α and β. For α electrons, the quantum number, m, 

also referred to as electron spin, is denoted m=1/2, while β electrons have m=-1/2. 

This is important, as each electron will be in a different energy level, dependent on the 

m. With I=1/2, there will be two different energy levels, with α electrons occupying the 
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lowest energy state, and β the highest. The differences in the energy fields can be 

demonstrated by equation 2-1, 

 ∆𝐸 = (
ℎ𝛾

2𝜋
) 𝐵0         (2-1) 

where h is Planck’s constant and γ is the nuclei specific magnetogyric ratio.43 Equation 

2-1 also demonstrates the proportionality between the energy change, ΔE, and 

magnetic field strength, B0. Each nuclei requires a specific radiofrequency that matches 

the required ratio for resonance of, 
𝛾

2𝜋
, to allow the transition of an electron in the 

lower energy state to the higher energy state.43 For example, a 1H nuclei would require 

a radiofrequency of 300 MHz.43 

 For the acquisition of data by free induction decay (FID), the sample is pulsed 

quickly by a strong radiofrequency.43 The excited nuclei would then precess about the 

direction of the magnetic field (z-axis), which would create a current that can be 

recorded.43  

 After excitation, relaxation would occur, which effects the FID read-out.43 

Relaxation, is the occurrence of the excited nuclei returning to an equilibrium nuclear 

spin magnetization.43 There are two different types of relaxations; longitudinal spin, or 

spin-lattice, and spin-spin.43 Longitudinal spin relaxation is described by the Boltzmann 

distribution for the excited nuclides about the z-axis to re-establish equilibrium, while 

spin-spin relaxation deals with the xy-axes nuclides and is described by these nuclides 

approaching zero.43 Spin-spin relaxation has a direct effect on the readout acquired by 

NMR.43 Shorter FIDs and broader peaks are due to a faster spin-spin relaxation, and 

vice-versa.43 
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 Distortionless enhancement by polarization transfer (DEPT) uses the theory of 

NMR for analysis, however, it can determine the amount of hydrogens bonded to a 13C 

nuclei.43 The difference, is the variable proton pulse angle which can determine 

whether a -CH, -CH2, -CH3, or -C- groups is present.43 The proton pulse angles used for 

this experiment, and are two of the most common DEPT analysis was DEPT-90 and 

DEPT-135 where the 90 and 135 represent angles. 

 The nuclear Overhauser effect (NOE) allows the determination of the proton 

environment around a specific nuclei.43 For this research, 15N NOE was used to 

evaluate the protons that are close to the nitrogen group(s). This is accomplished by 

cross-relaxation which is based on dipolar interactions between spins.43 Using 15N also 

allows the intensity to increase considerably with the presence of 1H, without the need 

for 15N doping due to the very low abundance of 15N isotopes .43 

2.3.4 Objectives 

 The original objective for NMR analysis was to acquire spectral data that could 

be used to help with the structural determination of the degraded species with the 

results acquired from ion chromatography (IC), comparisons to be made between the 

parent amine and the degraded samples, and the comparison of 1H and 13C NMR 

spectra for a single species at the different degradation temperatures with the results 

acquired from HPLC. However, since the IC was unavailable for this research, the first 

original objective was discarded, but the last two were retained. The data that was to 

be used for comparisons with IC (15N, Dept-90, and Dept-135) are included in this work 
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with the hope of future evaluation of the species present after degradation of the 

seven amines at varying temperatures.  

2.4 High-Performance Liquid Chromatography (HPLC) 

2.4.1 Dilutions 

 Stock samples of 30 wt% for the seven amines were prepared for dilution to 

enable the construction of a calibration curve. These sample must be produced 

exclusive from those already produced, to have 30 wt% solutions that did not contain 

CO2 so that the concentration of the base amine in the degraded solution could be 

accurately determined. Beginning with the stock 30 wt% solutions, 100x dilutions by 

mass were accomplished for each solution for the first concentration for analysis. For 

example, 0.1109 g of 30 wt% MEA had 10.0279 g of 18.2 MΩ H2O added to have 

approximately a 100x dilution factor. The dilution factor did not have to be exact, 

however, the concentrations of each were necessary to maintain and record for the 

successful construction of a calibration curve for each amine. The 30 wt% amines were 

then diluted by a further factor of 2x (total dilution factor of stock concentration by 

200), 5x (500), 8x (800), and 10x (1000). The concentrations of each sample used for 

analysis with HPLC to produce a calibration curve is demonstrated by Table 2-3. It is 

important to note that the concentration of amine for the diluted solutions was 

determined by multiplying the mass of the 30 wt% solution measured by the 

concentration (0.30400 for MEA for example) to determine the mass of the MEA in the 
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homogeneous solution and then divided it by the mass summation of the 18.2 MΩ H2O 

and then converting to wt%. 

Table 2-3. Concentrations of the Diluted Pure Amines. 

Amine 
Stock 

(wt%) 

100x 

(wt%) 

200x 

(wt%) 

500x 

(wt%) 

800x 

(wt%) 

1000x 

(wt%) 

MEA 30.400 0.3336 0.148 0.0589 0.0375 0.0253 

1A2P 30.362 0.3247 0.158 0.0557 0.0378 0.0275 

EN 30.461 0.3427 0.124 0.0576 0.0362 0.0331 

3APT 30.014 0.3154 0.138 0.0529 0.0389 0.0256 

2BAE 29.728 0.3339 0.127 0.0604 0.0373 0.0296 

MDEA 30.087 0.3159 0.161 0.0603 0.0385 0.0297 

PZ 30.388 0.3880 0.175 0.0604 0.0356 0.0300 

 For the dilution of the degraded amine solutions, an initial dilution of 100x was 

accomplished, exactly like the preparations with the 30 wt% amine solutions. If the 

sample was still too concentration, a similar dilution factor would be applied, stepwise, 

until the solution was dilute enough for HPLC analysis. 

 Demonstrated by Table 2-3, as the dilution factor got larger, the significant 

figures dropped, and the dilution become more difficult, as the dilutions were made 

inside of the containment vessels for storage. These vessels could only hold between 

20-25 g of H2O making the dilutions require very small portions of sample for dilution. 

After the dilution of each sample, each were sealed with Parafilm and placed in a 

refrigerator at approximately 4.8˚C until analysis was conducted. 
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2.4.2 Analysis 

 For HPLC analysis, the procedure used in the dissertation research by Huang 

was used for this research as it was proven to work well.4 After the preparation of 

samples, the samples were individually placed in a small vial specifically designed to fit 

in the autosampler of an Agilent 1260 Infinity II HPLC instrument demonstrated by 

Figure 2-3. The mobile phase mixture was produced with 90.0 mL 18.2 MΩ H2O, 10.0 

mL methanol, and about two small drops of formic acid, where more of the same 

quantity was produced as needed. The methanol and formic acid used were 

redistributed by the Eastern Kentucky University chemical storage facility. A Polaris 

3μm C18-A 50 × 3.0 mm column was used with the reverse phase Agilent 1260 Infinity II 

HPLC. As with previous research, the flow rate was set to 0.3 mL/min and the injection 

Figure 2-3. Agilent 1260 Infinity II HPLC instrument used for this research at Eastern 
Kentucky University in Richmond, KY. 
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volume at 5μL. The total run time that was used for this research was 10 min, with the 

column temperature being that of room temperature during the time of operation. 

2.4.3 Theory 

 The general idea for how a reversed-phase HPLC works, is by the entrance of a 

polar mobile phase by a pump which will push the mobile phase to the injection port 

where the analyte is injected. At this point, the analyte and the mobile phase will pass 

through a nonpolar column, which leads to the separation of the analyte. The column, 

while more detail will be explained in this section, is housed in a column oven, allowing 

the temperature to be increased if necessary. The separated species is then brought to 

a detector, a photodiode array detector for this discussion, and the intensity versus 

retention time chromatogram for the separated analyte is displayed. 

 It was mentioned that there is a column oven associated with the reversed-

phase HPLC. By using the column oven, it can reduce the pressure needed to push the 

mobile phase and analyte through the column by decreasing the viscosity of the 

solvent, decrease the retention time, and increase the flow rate.44 However, if 

reproducible retention times are required for comparisons, the heating of the column 

is not advised.44 

 With the column itself, the inside of the column has a microporous silica 

coating.44 Attached to the silica coating, is a stationary phase, for this specific column, 

C18. For reversed-phase liquid chromatography, a polar mobile phase flowing through 

a nonpolar stationary phase, thus, C18, a nonpolar species, makes for an excellent 
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stationary phase. As a result, when the analyte contains a more nonpolar species, the 

nonpolar species will have a longer retention time due to interactions with the 

stationary phase, as opposed to polar species which would have a quicker retention 

time.44 Thus, with reversed-phase liquid chromatography, the more polar species will 

elute first, followed by slightly polar species, and lastly by nonpolar species.44 

 After the separated analyte passes through the column, it is passed through a 

flow cell before going to waste. During the time in the flow cell, transmitted light from 

a deuterium lamp is reflected from an elliptical mirror and is passed through the flow 

cell.44 The light travels through the species in the flow cell and passes through a thin 

slit to a second mirror that gets reflected to a grating polychromator, and finally being 

recorded by a photodiode array.44  

 The photodiode array allows the quick analysis of a complete spectrum for the 

separated species as they enter the flow cell.44 This is possible because of the current 

that is generate when the light that passed through the flow cell reaches the 

photodiode array.44 Before the light reaches the photodiode, reverse bias is applied to 

each diode consisting of p-type and n-type silicon.44 The reverse bias allows the 

production of a pn junction that acts as a capacitor that, in the absence of light, will 

only have a small amount dark current present.44 Thus, when the light hits the diodes, 

the pn junction will discharge due to the movement of free electrons and free holes to 

oppositely charged regions.44 
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2.4.4 Objectives 

 The objectives for HPLC analysis was to allow the approximate determination 

of the quantity of species present in the degraded solution, be able to determine the 

concentration of the original amine species present after degradation, and then to use 

thermodynamic techniques to determine the rate order and the thermal degradation 

activation energy of each amine. Since, IC was not possible in this research, future 

research endeavors could use the approximate quantity of species present in the 

degraded solutions for the determination of what species are giving rise to the signals 

acquired in this research. The concentration of the original amine species present after 

degradation was determined using a calibration curve, which then made 

thermodynamic evaluations possible. 

2.5 Computational Details 

2.5.1 Avogadro and the Universal Force Field 

 The molecular models of the pure amines, CO2, H2O, bicarbonate, and the 

neutral molecule of the CO2 captured amines (carbamates), with the exception of 

protonated MDEA, was constructed using Avogadro, an open source molecular editor 

and visualization tool.45 After the construction, each atom making up the molecule was 

organized according to the Universal Force Field (UFF) developed by Rappé et al.46 The 

main goal of UFF is the minimization of the potential energy of a molecule under the 

parameters set by UFF. To begin, the overall calculation for the potential energy of a 

molecule is represented by equation 2-2, 
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 𝐸 = 𝐸𝑅 + 𝐸𝜃 + 𝐸𝜙 + 𝐸𝜔 + 𝐸𝑣𝑑𝑤 + 𝐸𝑒𝑙     (2-2) 

where ER represents the bond stretching interactions, Eθ represents bond angle 

bending interactions, Eφ represents dihedral angle torsion, Eω represents inversion 

terms, Evdw represents van der Waals interactions, and Eel represents electrostatic 

interactions.46  

 With the overall equation representing the potential energy calculation, the 

individual components that give rise to the value will be defined, beginning with the 

bond stretching interactions, followed by the bond angle bending interactions and 

then the rest following the order.46 With the bond angle bending interactions, there 

are two different methods used for calculation, one is by treating the system as a 

harmonic oscillator (equation 2-3), and the other as a Morse function (equation 2-4).46  

 𝐸𝑅 =
1

2
𝑘𝐼𝐽(𝑟 − 𝑟𝐼𝐽)

2
        (2-3) 

 𝐸𝑅 = 𝐷𝐼𝐽[𝑒−𝛼(𝑟−𝑟𝐼𝐽) − 1]
2
       (2-4) 

From equation 2-3, the kIJ term represents the force constant, rIJ is the natural bond 

length (described by equation 2-5 where the rI and rJ terms are atom and bond 

specific, while rBO [the bond order correction] and rEN [the electronegativity correction] 

are described by equations 2-6 and 2-7 respectively), which is also present in equation 

2-4.46 

 𝑟𝐼𝐽 = 𝑟𝐼 + 𝑟𝐽 + 𝑟𝐵𝑂 + 𝑟𝐸𝑁       (2-5) 

 𝑟𝐵𝑂 = −𝜆(𝑟𝐼 + 𝑟𝐽) ln(𝑛)       (2-6) 

With equation 2-6, λ represents a proportionality constant.46 
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 𝑟𝐸𝑁 = 𝑟𝐼𝑟𝐽

(√𝑥𝐼−√𝑥𝐽)
2

(𝑥𝐼𝑟𝐼+𝑥𝐽𝑟𝐽)
        (2-7) 

The DIJ term in equation 2-4, represents the bond dissociation energy and the α term is 

described by equation 2-8.46 

 𝛼 = [
𝑘𝐼𝐽

2𝐷𝐼𝐽
]

1

2
         (2-8) 

 It was previously stated that kIJ represents a force constant, which will now be 

defined by equation 2-9 as, 

 𝑘𝐼𝐽 = (
𝜕2𝐸𝑟

𝜕𝑅2 )
0

= 664.12
𝑍𝐼

∗𝑍𝐽
∗

𝑟𝐼𝐽
3        (2-9) 

where the Z* terms represent the effective atomic charges.46 

 The next interaction that will be defined is that of bond angle bending 

demonstrated by equation 2-10, 

 𝐸𝜃 = 𝐾𝐼𝐽𝐾 ∑ 𝐶𝑛 cos 𝑛𝜃𝑚
𝑛=0                  (2-10) 

where Cn is a boundary condition which is dependent upon the existence of a 

minimum at the natural bond angle θ0.46 While there are multiple Fourier expansions 

that depend upon the molecule in question, only the simplest form will be 

demonstrated here by equation 2-11 through 2-13.46 

 𝐸𝜃 = 𝐾𝐼𝐽[1 + cos(𝑝𝜃 + Ψ)]                 (2-11) 

 𝑝 =
𝜋

(𝜋−𝜃0)
                   (2-12) 

 Ψ = 𝜋 − 𝑝𝜃0                   (2-13) 

The KIJ term is a force constant, and is described by equation 2-14, 

 𝐾𝐼𝐽 = (
𝜕2𝐸

𝜕𝜃2)
0

= 𝛽
𝑍𝐼

∗𝑍𝐾
∗

𝑟𝐼𝐾
5 𝑟𝐼𝐽𝑟𝐽𝐾[𝑟𝐼𝐽

3 𝑟𝐽𝐾(1 − (cos 𝜃0)2) − 𝑟𝐼𝐾
2 cos 𝜃0]            (2-14) 
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where β is an undetermined parameter that is best described by equation 2-15.46 

 𝛽 =
664.12

𝑟𝐼𝐽𝑟𝐽𝐾
                   (2-15) 

 The dihedral angle torsion interactions are defined by equation 2-16, 

 𝐸𝜑 = 𝐾𝐼𝐽𝐾𝐿 ∑ 𝐶𝑛 cos 𝑛𝜑𝐼𝐽𝐾𝐿
𝑚
𝑛=0                 (2-16) 

where KIJKL and Cn are coefficients which are dependent upon Vφ, the equilibrium angle 

and the periodicity of the potential, which are defined by equation 2-17 and 2-18.46 

 𝐶𝑛 = − cos 𝑛𝜑0                  (2-17) 

 𝐾𝐼𝐽𝐾𝐿 =
1

2
𝑉𝜑                   (2-18) 

With equation 2-17 and 2-18, equation 2-16 could be rewritten as equation 2-19.46 

 𝐸𝜑 =
1

2
𝑉𝜑[1 − cos 𝑛𝜑0 cos 𝑛𝜑]                (2-19) 

 The general equation for the interactions of the inversion terms can be 

expressed by equation 2-20, 

 𝐸𝜔 = 𝐾𝐼𝐽𝐾𝐿(𝐶0 + 𝐶1 cos 𝜔𝐼𝐽𝐾𝐿 + 𝐶2 cos 2𝜔𝐼𝐽𝐾𝐿)              (2-20) 

where KIJKL is a force constant, and ωIJKL represents the angle between the IL axis and 

IJK plane.46 Equation 2-20 could be rewritten in terms of a normal to the IJK plane and 

the IL axis, however, this will not be demonstrated here. 

 The van der Waals interactions are defined by equation 2-21, 

 𝐸𝑣𝑑𝑤 = 𝐷𝐼𝐽 {−2 [
𝑥𝐼𝐽

𝑥
]

6

+ [
𝑥𝐼𝐽

𝑥
]

12

}                (2-21) 

where xIJ is the van der Waals bond length, with the Lennard-Jones distance being 

described by equation 2-22, and the crystalline van der Waals terms by equation 2-23, 



37 

and DIJ is the well depth, defined by equation 2-24 where DI represents the atomic van 

der Waals energy.46 

 𝑥𝐼𝐽 =
1

2
(𝑥𝐼 + 𝑥𝐽)                  (2-22) 

 𝑥𝐼𝐽 = √𝑥𝐼 × 𝑥𝐽                  (2-23) 

 𝐷𝐼𝐽 = (𝐷𝐼𝐷𝐽)
1

2                   (2-24) 

For a more in-depth analysis of the van der Waals interactions and the derived 

variables, reference (46) is suggested. 

 Finally, the electrostatic interactions are defined by equation 2-25, 

 𝐸𝑒𝑙 = 332.0637 (
𝑄𝑖𝑄𝑗

𝜖𝑅𝑖𝑗
)                 (2-25) 

where Q represents the charge, ϵ is the dielectric constant, and RIJ represents the 

distance between the two charged particles.46 

2.5.2 Gaussian 09 with GaussView 

 Following the construction and organization of the molecules, each molecule 

file was extracted into a Gaussian 09 readable file. The calculation set up was then 

formed, with the basis set as 6-311++G(d,p). Density Functional Theory (DFT) with the 

B3LYP functional with the parameters: unrestricted, ground state, and with 

anharmonic corrections was used for optimization and frequency calculation for the 

molecules. The spin was dependent upon on the molecule, but each molecule was 

optimized with the solvation model Polarizable Continuum Model (PCM) and the 

solvent set to H2O (CO2 with both a solvation and gas phase model). The frequency and 
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optimization of each molecule, that was able to be run, was accomplished with these 

parameters and methods using Gaussian 09 with GaussView, like the computational 

methodology that was performed by Yamada, Yamada et al., and Hwang et al.26,32,47-48 

2.5.3 DFT, B3LYP, Basis Set, and Thermochemistry in Gaussian 09 

 The overarching idea of DFT is that with a known density, a Hamiltonian could 

be formed, and with the formation of a Hamiltonian, the Schrödinger equation could 

be solved giving the energy eigenvalues and the wave functions.49 With DFT however, 

the B3LYP functional was utilized, which is an Adiabatic Connection Method (ACM) 

which connects the non-interacting Kohn-Sham (KS) reference system with an 

interacting system.49 For this system, the exchange-correlation energy is calculated as 

demonstrated by equation 2-26, 

 𝐸𝑥𝑐 = ∫ 〈Ψ(𝜆)|𝑉𝑥𝑐(𝜆)|Ψ(𝜆)〉𝑑𝜆
1

0
                (2-26) 

where the extent of the interelectronic interaction from 0 to 1 is represented by λ, and 

the expectation value of Vxc is the area under the curve for the integrated function.49 

The Vxc term is defined by KS methodology with equation 2-27, 

 𝑉𝑥𝑐 =
𝜕𝐸𝑥𝑐

𝜕𝜌
                   (2-27) 

with the Greek letter ρ representing the electron density.49 From the evaluation of the 

curve produced by the integral, the total area under the curve could then be defined 

by equation 2-28, 

 𝐸𝑥𝑐 = 𝐸𝑥
𝐻𝐹 + 𝑧(𝐸𝑥𝑐

𝐷𝐹𝑇 − 𝐸𝑥
𝐻𝐹)                 (2-28) 
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where z is a fraction of the area above the curve, and HF refers to the Hartree-Fock 

theory.49 The fraction, z, is usually defined in terms of a, which is defined by 1-z and 

equation 2-28 can then be rewritten as equation 2-29, which brings the connection 

between the non-interacting system with the interacting system.49 

 𝐸𝑥𝑐 = (1 − 𝑎)𝐸𝑥𝑐
𝐷𝐹𝑇 + 𝑎𝐸𝑥

𝐻𝐹                 (2-29) 

 Specific to the B3LYP functional, is equation 2-30, a modified form of equation 

2-29.49 

 𝐸𝑥𝑐
𝐵3𝐿𝑌𝑃 = (1 − 𝑎)𝐸𝑥

𝐿𝑆𝐷𝐴 + 𝑎𝐸𝑥
𝐻𝐹 + 𝑏∆𝐸𝑥

𝐵 + (1 − 𝑐)𝐸𝑐
𝐿𝑆𝐷𝐴 + 𝑐𝐸𝑐

𝐿𝑌𝑃          (2-30) 

With equation 2-30, a is 0.20, b is 0.72, c is 0.81, LSDA represents local spin density 

approximation, LYP represents a GGA correlational functional, and B represents a GGA 

exchange functional that was developed by Becke.49 For more information on DFT and 

DFT functionals, reference (49) is suggested. 

 With the basis set, a general overview on what the individual components 

represent will be discussed here. The basis set used was 6-311++G(d,p), which defines 

the contraction scheme, coefficients, and exponents for each atom of the molecule 

under study.49 Since the first number is 6, there will be 6 primitives, which are 

nonlinear differential equations, used in the contracted core functions.49 The numbers 

after the hyphen, 311, indicates that there is a triple valence function indicated by ζ 

(triple-valence-ζ), where the number of primitives applied to the valence function is 

indicated by the numbers after the hyphen, 311.49 The ++ part of the basis set places 

diffuse functions with the operation which allows a weakly-bound electron to be more 

flexible in the sense that it has the ability to localize away from the remaining electron 
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density.49 Finally, the G(d,p) term in the basis set indicates that the d and p orbitals are 

being treated as Gaussian orbitals.49 

 A detailed example for how thermodynamic quantities could be calculated 

using Gaussian 09 is described in reference (50). For the discussion on the 

thermochemistry readout from the output file, the variables of interest will be 

discussed and how they were used for calculations. These terms include: the zero-

point vibrational energy, sum of electronic and thermal free enthalpies, and sum of 

electronic and thermal free energies.50 With each term, equation 2-31, 2-32, and 2-33 

were used for the individual reactions to find the CO2 binding energy (εbind) , ΔrH, and 

ΔrG respectively.50 

 𝜀𝑏𝑖𝑛𝑑 = ∑ 𝜀𝑍𝑃𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
− ∑ 𝜀𝑍𝑃𝐸𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

               (2-31) 

 ∆𝑟𝐻 = ∑(𝜀0 + 𝐻𝑐𝑜𝑟𝑟)
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

− ∑(𝜀0 + 𝐻𝑐𝑜𝑟𝑟)
𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

             (2-32) 

 ∆𝑟𝐺 = ∑(𝜀0 + 𝐺𝑐𝑜𝑟𝑟)
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

− ∑(𝜀0 + 𝐺𝑐𝑜𝑟𝑟)
𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

             (2-33) 

With equation 2-31, εZPE represents the zero-point vibrational energy and with 

equation 2-32 and 2-33, the terms ε0+Hcorr and εo+Gcorr represent the sum of electronic 

and thermal enthalpy and thermal free energies respectively.50 

2.5.4 Objectives 

 The objectives with the computational analysis was to compute values from 

equation 2-31 through 2-33 for each reaction between the amines and CO2. Also, using 

equation 2-31, the release of CO2 and the regeneration of the amine was attempted. 

With these values, the seven amines would be compared to each other, along with the 
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thermal degradation activation energy and extent of degradation acquired from HPLC, 

to determine if any correlation could be made. This was completed to determine if 

computational analysis could be used to predict which amine would be more 

susceptible of degradation over another based on the computational model used in 

this work. 

  



42 

Chapter 3. Degraded Solutions and NMR Evaluation 

“What we observe is not nature itself, but nature exposed to our method of 

questioning.” -Dr. Werner Karl Heisenberg 

3.1 Thermal Degradation Solution Appearances and Descriptions 

3.1.1 Sample Appearances 

 The appearances of the amines loaded with CO2 before and after degradation 

at the different temperatures are demonstrated by Figure 3-1. In relation to the CO2 

Figure 3-1. Starting on the left and going right the amines are: MEA, 1A2P, EN, 3APT, 
2BAE, MDEA, PZ. A.) The stock solutions of CO2 loaded amines before degradation. B.) 
Degradation at 125˚C. C.) Degradation at 135˚C. D.) Degradation at 145˚C. 
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loaded amines, the samples pictured are approximately two months old. It is 

important to note that they were all colorless solutions when they were first 

produced, but after being stored at room temperature in an undisturbed dark 

environment, slight coloration began to appear. However, MEA began to get a tint of 

color after one day and got darker as shown in Figure 3-1A. Also, with Figure 3-1A-D, 

as the temperature increased, the solution produced became darker, or stayed about 

the same. The only exception being with MEA, where the solution was about the same 

color after 125˚C and 135˚C, but became lighter after 145˚C. With this exception, and 

the fact that the rest of the amines, excluding EN which showed significant 

degradation and is hypothesized to be the most degraded species used, other 

hypothesis could not be evaluated besides that most of the amines appeared to have 

degraded about the same degree with the others based on their appearances. 

3.1.2 Sample Descriptions 

 With the samples pertaining to MEA (A, E, and I), the only differences between 

the samples was the color change and murkiness. Sample A was a red velvet, E a dark 

red velvet, and I a golden red-orange color. Each sample had low viscosity and a weak 

odor. 

 For the degraded samples of 1A2P, the individual samples were analyzed. 

Sample B and F had a faint yellow tint, a small black precipitate in the center of the 

solution with a faint thread-like material floating around the spot and possessed a low 

viscosity but had a strong odor. However, Sample L had a slight difference to it, being a 
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more prominent yellow, possessed no black spot, but had stray precipitates present 

including small black specks suspended in the solution, a low viscosity and a strong 

odor. 

 EN was an interesting case with degradation. Sample C was a blood-red color, 

which had some precipitates settled on the bottom of the vial, which dissipated after 

agitation of the solution, had a low viscosity and a low odor. Sample G was a black 

solution but had a red tint around the upper outer edges of the liquid surface, this 

sample had a sludge likeness to it, with low viscosity, and a medium odor. With sample 

J however, the sample was dark black, being a type of sludge that had a high viscosity 

and a weak odor. Upon agitation of sample J, the precipitates present were deposited 

upon the sides of the vial. 

 All the samples for 3APT possessed the sample properties, except for the slight 

color change from a light yellow-green tint to a more defined yellow-green color. The 

samples had a thick white gel-like precipitate which hovered slightly below the surface 

of the solution, and having a medium viscosity for each, but the viscosity increased 

slightly with the increasing temperatures, and a strong odor. 

 The samples of degraded 2BAE will be described individually as each one has a 

slight difference from the others. Sample M was a light yellow-green color with a low 

viscosity and medium odor. Sample P was a pale yellow-green color that also 

possessed a low viscosity but had a strong odor. The most significant difference lies 

within Sample T which was a clear yellow color and had a transparent oil-like 
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precipitate present, that would dissipate after agitation, with low viscosity and a 

strong odor. 

 MDEA samples (N, Q, and U) were nearly identical, except for a few differences 

which will be described. Sample U was a dark golden yellow color while samples N and 

Q were golden yellow. Samples N and Q also had a black spot, which was darker for N 

than Q, which had a precipitate thread coming off the spot. Sample U also had the 

black spot; however, no precipitate thread was noticed. Each sample had a low 

viscosity, with an increase in odor with increasing degradation temperature (N had a 

medium odor, Q and U had a strong odor). 

 Finally, the PZ samples (O, R, and V) were analyzed. Sample O was cloudy and 

colorless. There were shard-like precipitate present throughout the solution, which 

was hypothesized to have been liberated PZ due to the shards dissolving upon the 

warming up of the solution, much like the properties of PZ. The sample had a medium 

odor and was low to medium viscosity due to the precipitate and would be considered 

low viscosity if the precipitate was not present. Sample R was nearly identical to 

sample O except for being a cloudy, pale-yellow color, with a strong odor. Sample V 

was a near colorless pale-yellow color, which did not have a noticeable precipitate 

present in the solution, with a low viscosity and a strong odor. 
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3.2 NMR Analysis 

3.2.1 Overview 

 For the analysis with NMR, the 1H and 13C spectra will be used, with the DEPT-

90, DEPT-135, and 15N NOE spectra.* Since, structural identification could not be 

accomplished in this research, the hope is that these spectra could be useful for 

helping with the identification of the species present after degradation in future work. 

However, this section will present and use the 1H and 13C spectra for each species to 

approximate the extent of degradation for each amine at the different temperatures. 

3.2.2 1H and 13C analysis 

 Each amine and their degraded samples will be presented in order. For 

example, when MEA is presented, the following data presented will be MEA degraded 

at 125˚C, and so on. The 1H for each sample will be positioned adjacent to the 13C data 

of the same sample. Figure 3-2 through Figure 3-8 presents the data acquired for each 

of the parent amines followed by degradation at 125˚C, 135˚C, and 145˚C. 

                                                      
* These spectra can be found in Appendix A-G. 
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Figure 3-2. 1H and 13C NMR data acquired for MEA and its degraded samples. MEA is 
labelled, and the letters indicate the degraded sample. 

Figure 3-3. 1H and 13C NMR data acquired for 1A2P and its degraded samples. 1A2P is 
labelled, and the letters indicate the degraded sample. 
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Figure 3-4. 1H and 13C NMR data acquired for EN and its degraded samples. EN is 
labelled, and the letters indicate the degraded sample. 

Figure 3-5. 1H and 13C NMR data acquired for 3APT and its degraded samples. 3APT is 
labelled, and the letters indicate the degraded sample. 
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Figure 3-6. 1H and 13C NMR data acquired for 2BAE and its degraded samples. 2BAE is 
labelled, and the letters indicate the degraded sample. 

Figure 3-7. 1H and 13C NMR data acquired for MDEA and its degraded samples. MDEA 
is labelled, and the letters indicate the degraded sample. 
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As demonstrated by Figure 3-2 through 3-8, the 1H spectra from each species 

demonstrated the hydrogens associated with the nitrogen atom to be dominate when 

degradation took place. In cases like 1A2P, Figure 3-3, the peaks were reduced 

considerably except for the N-H peak, which had clear superiority. In other cases, like 

PZ, Figure 3-8, the N-H peaks are still dominant, however, more hydrogen peaks 

emerged. These patterns were demonstrated for each amine, and since 

characterization of the other peaks was not possible, structural data on species 

produced by degradation could not be obtained. 

 The 13C peaks however, provided more information that could be compared 

across the amines used in this research. This was accomplished by counting significant 

peaks, peaks that were distinguishable from the baseline noise, and taking the 

difference of the number of 13C peaks from the parent amine peaks. This allowed a 

comparison between the 13C peaks, denoted Δ13C, giving an idea of how many 

Figure 3-8. 1H and 13C NMR data acquired for PZ and its degraded samples. PZ is 
labelled, and the letters indicate the degraded sample. 
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different carbon environments arose out of degradation, and thus provide a relative 

approximation of how much the amine degraded at the different temperatures. This 

was possible for each amine, except that of EN which had indistinguishable 13C peaks. 

With this method, the following ranking of the amines from most degraded to least 

was acquired: EN>2BAE>MEA>1A2P>PZ>MDEA>3APT. 

3.3 Summary of Key Results 

 The appearance of the amines, their viscosity, and odor could be used as a 

possible indication of both degradation and if it would be appropriate for CO2. For 

example, EN and MEA had the most significant color change and from this, could infer 

that they degraded more than the amines that stayed approximately the same color. 

In terms of viscosity, more so for 3APT, a highly viscous amine would not be ideal as 

this could increase the costs of operation and be more difficult to remove from the 

system. Especially, since 3APT demonstrated a higher viscosity as the temperature 

increased, indicating the degradation species have a higher viscosity then 3APT, which 

would not be a good choice for post-combustion CO2 capture. In terms of odor, if the 

odor becomes stronger, this could be an indication of degradation. In the case of 2BAE, 

the odor went from a medium odor, to a much stronger odor as the temperature 

increased, indicating further degradation with the production of species containing 

functional groups that could increase the odor, such as ureas or aldehydes.  

 1H NMR results could not be distinguished for comparisons amongst the 

amines, possibly due to the production of polymeric compounds, however, 13C was 

able to provide a method of comparisons. This was accomplished by calculating the 
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Δ13C values for each amine and their respective degraded samples. Using this method 

provided a ranking from the most degraded to the least as: 

EN>2BAE>MEA>1A2P>PZ>MDEA>3APT, which is reasonable. These findings, however, 

could not be deemed conclusive as this only provided different carbon environments 

and not concentrations. Concentrations were needed to evaluate the extent of 

degradation for each amine at the different temperatures. 
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Chapter 4. HPLC Concentrations of Each Amine and Kinetics Study on 

MEA, MDEA, and PZ 

4.1 Introduction 

 The organization of this chapter begins by first demonstrating and discussing 

the calibration curves with the concentrations calculated as well as an approximate 

quantity of species present for each temperature degradation using the equation of 

the line produced from the calibration curves for each amine. Each amine will have its 

own subsection for organization and quick comparisons between the amines studied. 

Following this section, is the discussion of the calculated thermal degradation 

activation energies for MEA, MDEA, and PZ. The end of the chapter summarizes key 

findings from the analysis with HPLC. 

 For the first section, with MEA, extra information is given and can be used for 

each amine, and thus will not be repeated. Any information specific to the amine of 

interest will be discussed in that amines’ subsection. 

4.2 Experimental 

4.2.1 Monoethanolamine 

 The calibration curve produced for the different diluted samples of MEA with 

18.2 MΩ H2O is demonstrated by Figure 4-1. The calibration curve demonstrated an 

exceptional linearity between the concentration of MEA at the specified concentration 

and the corresponding peak area. Using the equation of the line produced from Figure 
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4-1, the concentration of MEA after a one-week period of degradation at 125˚C, 135˚C, 

and 145˚C was accomplished, and is demonstrated by Figure 4-2. 
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Figure 4-1. Calibration Curve for MEA. 

Figure 4-2. Demonstration of the concentration of MEA after degradation at different 
temperatures. 
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 From Figure 4-2, the expected relationship for the concentration of MEA after 

degradation at the different temperatures was observed. With a higher temperature, 

more MEA was lost. The concentration of MEA steadily decreased at a rate of 

approximately -6.98×10-4 wt%/˚C. It is important to note that each degraded sample 

was diluted with the same dilution factor (100x for MEA samples) to allow proper 

comparisons amongst the degraded samples. With this rate however, it is important to 

understand that this rate cannot be used as an overall statement for the decrease in 

MEA concentration. This rate is only for the comparison for the different 

concentrations after degradation at the specified temperatures. This because, the 

loaded amine species could have a rapid degradation within the first few days and 

then start to level out as demonstrated in the work by Perry et al.41 While Perry et al. 

studied the depletion of aminosilicone carbamates over a much longer time span than 

a week, the data demonstrated a rapid depletion of the amine within the first ten days 

using 100% carbamate loading with no additional water in the system.41 Because of 

this, the rate of depletion for MEA from Figure 4-2 can only be used for comparisons 

between 125˚C, 135˚C, and 145˚C. 

 For the approximate quantity of species present after degradation, any 

distinguishable peak in the HPLC chromatogram was used to determine the 

approximation excluding the peak for MEA. For sample A and E, approximately six 

species are present, and for sample I, approximately eight species are present. A 

better approximation for the determination of the quantity of degradation products 

could be determined by using a more concentrated sample for HPLC analysis, however, 
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since no further investigation could be accomplished with the quantity of species after 

degradation, it is left here for future research into the matter. 

4.2.2 1-Amino-2-propanol 

 The calibration curve for the different dilutions of 1A2P is demonstrated by 

Figure 4-3. Using the calibration curve, the concentrations for the degraded samples 

(dilution factor 100x) was accomplished and is demonstrated by Figure 4-4. As 

demonstrated by Figure 4-4, the approximate rate of 1A2P loss was -0.0377 wt%/˚C. 

This rate is higher than that of MEA, which upon first appearance, it may be believed 

that MEA degrades less than 1A2P. However, the wt% values for 1A2P are higher than 

that of MEA, thus demonstrating that MEA degrades more than 1A2P. This further 

demonstrates that the slope produced can only be used to demonstrate the 

relationship between the concentrations degraded at the different temperatures for 

the amine of interest. 
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 The approximate quantity of degradation products for sample B was three, 

sample F was five, and sample L was eleven. Note, these are all approximations based 

on the peaks produced from the HPLC. Further analysis would need to be carried out 

to determine a more accurate representation of the quantity of species and what their 

identity. The important point to take from this is that as the temperature increased, so 

did the number of species present, or, the degraded species are at a greater 

concentration. Since, the same dilution factor was used for each sample, the blimps 

observed in the chromatogram for sample L may have also been present in sample B, 

just not in a concentration great enough to be detected as prominently as sample L. 
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Figure 4-4. Demonstration of the concentration of 1A2P after degradation at different 
temperatures. 
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4.2.3 Ethylenediamine 

 The calibration curve for EN diluted by the different factors is demonstrated by 

Figure 4-5. Using the produced calibration curve, the concentrations at the different 

degradation temperatures was acquired and is demonstrated by Figure 4-6. 
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Figure 4-5. Calibration Curve for EN. 
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 From Figure 4-5, it was demonstrated that the resulting concentrations from 

degradation were incredibly close together, producing a slope of -9.58×10-6 wt%/˚C. 

The degraded samples were diluted 100x, and then an additional dilution had to occur. 

Approximately, 0.1 g of each diluted samples was diluted 50x, which was the extent 

needed to have a clear solution. Having a more dilute sample may account for the low 

concentration of EN, however, all the samples were about the same concentration. 

This could imply that EN degrades very quickly and reaches its plateau very quickly, 

and no longer has any reagents for further degradation. Taking the appearance of the 

EN samples, the samples continued to get darker as the temperature increased, until 

becoming a sludge at 145˚C. Since, the concentration of EN was approximately the 

same after each of the degradations, this could imply that the degradation species 

continued to degrade as opposed to EN being lost. 

 For the approximate quantity of degraded species present, sample C, G, and J 

all had approximately two peaks on either side of the EN peak. This appeared to be 

unlikely since the 13C NMR spectra for the degraded EN samples demonstrated an 

indistinguishable number of peaks, implying the existence of many degraded species. 

The 1H NMR spectra for each EN sample showed to be roughly the sample hydrogen 

environments in each of the degraded species which matched up nicely with the pure 

EN spectrum. This phenomenon could be explained by the existence of many different 

polymeric compounds but at a concentration low enough to not be detected by the 

HPLC. The two peaks, excluding EN, could be demonstrating the existence of two other 

dominant degradation products present that have a concentration that could be 
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detected. Further evaluation of EN would need to be accomplished to understand this 

occurrence, however, from the results demonstrated from this research, EN was said 

to degrade rapidly and plateau within the week of degradation, and the degradation 

products were said to degraded further leading to the sludge like sample that would 

not be ideal for PCCC. 

4.2.4 (3-aminopropyl)trimethoxysilane 

 Figure 4-7 represents the calibration curve for 3APT when using all the diluted 

samples of 3APT. The linear relationship was insufficient, producing an R2 value of 

0.3831. However, since the area of the 3APT peak from the three degraded samples 

resembled the area of the peaks of a higher concentration of the 3APT dilutions, 

another calibration curve was produced using the data for the dilutions of 100x, 200x, 

500x, and 800x and is demonstrated by Figure 4-8. This new calibration curve was also 

produced as the concentration from 1000x was considerably different than the other 

values and was considered an outlier (more than 20 mAU*s difference from the 

average of the first four dilution peak areas). Using the calibration curve from Figure 4-

7, the concentrations for the degraded samples were acquired, and is demonstrated 

by Figure 4-9. The concentrations acquired by using Figure 4-7 will also be mentioned, 

but a graphical relationship will not be demonstrated since the calibration curve was 

demonstrated to be insufficient. 
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Figure 4-7. Insufficient calibration curve for 3APT. 
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Figure 4-8. Calibration curve for 3APT. 
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 Based on the concentration of 3APT after each degradation, it was observed 

that 3APT was the most resistive amine toward degradation of the studied amines. 

However, when the temperature was increased, 3APT appeared to approach a plateau 

demonstrated by the concentration at 135˚C and 145˚C. Thus, 3APT is more resistant 

to thermal degradation at 125˚C and would be much more susceptible to degradation 

with an increase in temperature. This was also demonstrated by the Figure 4-9, where 

the slope demonstrated the loss of 3APT as -0.0727 wt%/˚C. However, the difference 

between the concentration at 135˚C from that at 145˚C was only 0.217 wt%, as 

opposed to the difference between 125 and 135˚C of 1.24 wt%. When comparing the 

concentration of 3APT from the calibration curve in Figure 4-8 with those from Figure 

4-7 (concentration after 125˚C was 0.869 wt%, 135˚C was 0.334, and 145˚C was 0.241) 

the same relationship was demonstrated, only with smaller integers. 
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Figure 4-9. Demonstration of the concentration of 3APT after degradation at different 
temperatures. 
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 Interestingly, when the determination of the approximate products after 

degradation, the results acquired produced information that was not demonstrated in 

the 13C NMR evaluation. Sample D and H both had approximately three species 

present, excluding 3APT, after degradation, while sample K had approximately five. 

Since, the existence of new carbon environments was not demonstrated by 13C NMR, 

the degraded products may be polymeric compounds of 3APT. The captured CO2 may 

have provided a bridging between one 3APT molecule and another and was not able to 

be detected itself due to the much greater abundance of carbon environments given 

by the 3APT portions of the degraded product (see Chapter 6 for theoretical 

degradation products for 3APT and the other amines used in this research). 

4.2.5 2-(Butylamino)ethanol 

 The calibration curve for 2BAE is demonstrated by Figure 4-10 yielding 

satisfactory linearity between the data collected. With the equation of the calibration 

curve, Figure 4-11 was produced yielding interesting and unexpecting results for the 

concentration of 2BAE after degradation. 



64 

 

 

 

y = 37.116x + 64.315
R² = 0.9604

62

64

66

68

70

72

74

76

78

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ea

k 
A

re
a 

(m
A

U
*s

)

Concentration (wt%)

Figure 4-10. Calibration curve for 2BAE. 
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Figure 4-11. Demonstration of the concentration of 2BAE after degradation at different 
temperatures. 
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 Surprisingly, 2BAE demonstrated to be more resistant to thermal degradation 

at higher temperatures (Figure 4-11), contrary to the expected results for more 

degradation to occur as the temperature was increased.39,41 The rate of change 

between the three points however was 0.00421 wt%/˚C indicating that the points are 

relatively close in value, however, not as significant as EN, and not greater than the 

magnitude of the rate produced for MEA. Thus, the data was not considered as the 

plateau concentration. It is important to note that the degraded 2BAE samples had to 

be much more concentrated than the other samples (30x dilution factor for the 

original 2BAE degraded sample) as the 100x dilution factors led to a 2BAE 

concentration that produced negative concentrations. This demonstrated that 2BAE 

degraded tremendously at each of the temperatures, even though the concentration 

was higher for higher temperatures. 

 To explain this phenomenon, it may be possible that due to the higher 

temperature, different degradation species could have been formed as opposed to 

that at 125˚C. At lower temperatures, one product is more dominant over the other, 

and as the temperature is increased, a new product that is more thermally stable could 

be produced, and thus, having less of an activating effect on 2BAE to degrade, allowing 

more 2BAE to be present after degradation. The degradation product could also 

degrade in a manner that does not affect 2BAE, and thus, allowing the concentration 

of the degradation product to decrease while the concentration of 2BAE remained the 

same or decreased at a much slower rate. This proposed explanation would occur after 

or as an effect of the rapid degradation of 2BAE though, due to the need for a more 
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concentrated sample for analysis. However, further investigation of 2BAE is required 

to understand this phenomenon. It may be advantageous to study the thermal 

degradation at various temperatures over several days, and then to evaluate the 

species present and how much each species is present to determine if there is a 

correlation between the degraded species present and the concentration of 2BAE after 

degradation. 

 When determining the approximate quantity of species present, the different 

peaks were much more prominent with the 2BAE due to the greater concentration of 

the degraded sample as opposed to the more diluted samples. This information could 

be used for the identification of the degradation species, as more concentrated sample 

could be used for a more accurate determination of the quantity of species present 

after degradation. Also, a longer elution time would be required, as for 2BAE, one 

small peak appeared just before the ten-minute mark. For sample M, approximately 

six species were present after degradation, excluding 2BAE. Sample P had five, and 

sample T had about seven species present, not including 2BAE. It is reminded that the 

approximation of the quantity of species should be taken lightly as many of the species 

present may be unable to be detected, or detected well, and thus have not been 

included. It should be stated however, that with each of the three samples, there are 

two dominant peaks. One of these peaks was 2BAE, and the other was the most 

abundant degradation product. However, when comparing the heights between the 

two peaks, a possible area of interest was formed. The difference was relatively close 

for sample M and P (2.31 and 1.49 mAU*s respectively), however, for sample T, the 
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difference jumped to 7.16. Because the concentration of 2BAE was found to be larger 

for sample P than for sample M, conclusive evidence that the degraded product had a 

direct effect on the concentration of 2BAE could not be determined, however, due to 

the much larger difference between the peaks for sample T, there could some kind of 

relationship that could explain the hypothesis for the higher 2BAE concentration with 

higher temperatures. 

4.2.6 Methyldiethanolamine 

 Surprisingly, after the production of the calibration curves, demonstrated by 

Figure 4-12, the slope was negative. This is unlikely, since the concentration of MDEA 

was higher, yet it yielded a smaller peak area. This was more prominent with the 

dilution factor 100x when compared to the other dilution factors. Each factor was 

within 1.5 mAU*s of each other, except for the dilution factor at 100x, which when 

compared to the average peak area of the other four dilutions, produced a difference 

of 8.22 mAU*s. A similar occurrence appeared with PZ, that will be demonstrated in 

section 4.2.7. The concentration of the degraded MDEA samples calculated by using 

the calibration curve from Figure 4-12 is demonstrated by Figure 4-13. 
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Figure 4-12. Calibration curve for MDEA. 
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Figure 4-13. Demonstration of the concentration of MDEA after degradation at 
different temperatures. 
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 The concentration of MDEA after degradation at each temperature of interest, 

demonstrated similar results as that of 2BAE. However, before any further analysis of 

the results from MDEA, it should be stated that MDEA had to be diluted further after 

the initial dilution factor of 100x by the dilution method used for the EN samples. This 

was due to the production of negative concentration values when the peak area was 

used for calculation with the calibration curve equation. This implied that, due to the 

nature of the calibration curve, more MDEA was present after degradation than that 

compared to how much original amine was left for the other amines in this study.  

 When it comes to the comparison of MDEA concentration after degradation, 

the positive slope of 0.0025 wt%/˚C indicated an increase of MDEA concentration. The 

peak area from each of the peaks however, resembled the peak are from the 100x 

dilution. Since the concentration from each temperature are close together, it could be 

concluded that MDEA degraded approximately the same amount for each 

temperature. To evaluate the increase in concentration, the production of a calibration 

curve with dilutions around a factor of 100x, would allow a more accurate 

measurement of the concentration of MDEA after degradation. This would be done 

since the peak area for the degraded samples were closer to the 100x dilution factor, 

as opposed to the higher peak area cluster from the other dilution factors. If, this was 

accomplished, it would be possible that the slope could be positive, thus changing the 

concentrations demonstrating the expecting concentration results. Time did not allow 

further evaluation of this phenomenon, but this would be the next step forward for 

future research. 
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 For the determination of the approximate quantity of MDEA degradation 

products present also disagreed with the 13C NMR analysis, like 3APT, as much more 

degraded species were present in HPLC analysis than 13C environments present with 

the initial dilution factor of 100x. However, when the approximate quantity of  

degradation products for the dilution factor used for the concentration determined 

from Figure 4-13 was observed, results like the 13C NMR analysis was observed, and 

will be addressed for unity, however, the quantity from the more concentrated 

samples will be mentioned as well. It should be recognized though, like the other 

amine samples, a more concentrated sample and a longer elution time would be 

required to determine a more accurate quantity of degradation products. Further 

analysis would need to be accomplished to determine why this may have been the 

case, however, one likely possibility is that the degraded products were present in too 

small of a concentration for NMR to distinguish from the more abundant MDEA. For 

sample N (approximately four for the more concentrated sample) and Q (four for more 

concentrated sample), approximately one species, excluding MDEA, was observed. For 

sample U (eight for more concentrated) however, two species were present (one of 

the species present at lower concentrations was not present at higher concentrations 

for all samples). The small amount of species detected at a more diluted sample 

indicated the high thermal stability associated with MDEA, agreeing with the expected 

experimental results that tertiary amines are more thermally stable due to their lower 

reactivity than unhindered primary and secondary amines.21,33-36 
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4.2.7 Piperazine 

 The calibration curve for PZ is demonstrated by Figure 4-14, and surprisingly, 

had the same behavior as MDEA. The dilution factor at 100x produced a peak area 

significantly lower than the average cluster at the lower dilutions, a difference 

between the peak at 100x and the average of the cluster was 13.6 mAU*s, with the 

largest difference from the cluster was only 3.55 mAU*s. Using the calibration curve, 

the concentration of PZ from the degraded samples was accomplished and is 

demonstrated by Figure 4-15. 

 PZ behaved very similarly to MDEA, and thus, the same analysis of MDEA could 

be applied to PZ, including the calibration curve corrections for a more accurate 

determination. An exception to this, was that PZ followed more of the expected 

degradation results than MDEA did, producing a PZ loss rate of -0.00161 wt%/˚C. It 

should also be stated that PZ, like MDEA, was diluted further than the 100x due to the 
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Figure 4-14. Calibration curve for PZ. 
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production of negative concentrations with the 100x peak areas. However, since 

MDEA and PZ were both diluted the same amount, the two amines were able to be 

compared to each other, and MDEA was found to have a higher concentration than PZ, 

however, the two were the front runners for being the most thermally stable under 

these experimental parameters. 

 Like MDEA, the approximate quantity of species of PZ will be addressed in the 

same manner. For sample O, R, and V, only one other species peak was present, 

excluding PZ, which was not observed for the more concentrated samples, like the 

MDEA samples. For the more concentrated samples, sample O had two, R had three, 

and V had four other species present with PZ after degradation. 

y = -0.00161x + 0.53442
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Figure 4-15. Demonstration of the concentration of PZ after degradation at different 
temperatures. 
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4.3 Thermal Degradation Activation Energy 

 For the determination of the activation energies, stock solutions of CO2 loaded 

amines were used for 125˚C and 145˚C over two and four days. It was important to 

evaluate the stock solutions used as, if the solution was darker, then reactions took 

place that would possibly have a different starting concentration of amine. The stock 

solutions had been sitting in a dark cabinet, wrapped in Parafilm, and kept at room 

temperature for about a month after production. 

 The thermal degradation activation energies were found using equation 4-1, 

 ln
𝑘1

𝑘2
= (−

𝐸𝐴

𝑅
) (

1

𝑇1
−

1

𝑇2
) + 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    (4-1) 

where the rate constant k was determined by plotting the concentration of amine 

versus the time (two and four days) of degradation at 125˚C and 145˚C.51 Thus, the 

slope from equation 4-1 would be multiplied by the ideal gas law constant of 8.314 

J/mol·K to acquire the thermal degradation activation energy. 

 Table 4-1 summarizes the thermal degradation activation energies and related 

information for MEA, MDEA, and PZ. 
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Table 4-1. Thermal Degradation Activation Energies as well as their Associated Slope 
and Reaction Order for MEA, MDEA, and PZ. 

Amine Order Slope (K) 
Activation Energy 

(kJ/mol) 

MEA 

Zero 2294 19.1 

First 20440 170. 

MDEA 

Zero 1275 10.6 

Second -2572 21.4 

PZ Zero -3609 30.0 

4.3.1 Monoethanolamine 

 All the MEA stock solutions had a slightly darker tint, some more than others, 

however, the solution with the least amount of tint was used, which was not far from 

the tint of the initial production of MEA (after being stored in darkness at room 

temperature for 24 h). However, this proved to be a problem and the thermal 

degradation activation energy was determined using the data provided after the two 

and four days of degradation, and by treating the reaction as a first-order that was 

determined from previous work.4 Both resulting thermal degradation activation 

energies will be demonstrated and discussed.  

 Before the discussion on the determination of the thermal degradation 

activation energy, the plots that gave rise to the rate constants will be discussed. Using 
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all three data points (two, four, and seven days) the linearity of the plot portrayed a 

zero-order as opposed to a first-order reaction. It is important to note that while the 

linearity demonstrated zero-order, the observed linear regression at 125˚C·was 0.0528 

and for 145˚C was 0.615. Not only was the linear regression below par, the slopes for 

each plot were positive when it should have been negative. The slopes were made 

positive only due to the point after seven days from the initial degraded samples being 

included. Thus, this phenomenon could be explained by the starting MEA 

concentration being lower for the data collected for the two and four days of 

degradation. While this demonstrated significant error for the kinetics study for seven 

days, it provided insightful information that after MEA has captured CO2, it will 

degrade at room temperature when left alone, giving the species a relatively low 

amount of usage. 

 Table 4-1 demonstrates the data acquired for the zero-order reaction when all 

three points were included, and the first-order reaction for MEA when only the two- 

and four-day data points were included. 

 The thermal degradation activation energy for the zero-order reaction of MEA 

was found to be 19.1 kJ/mol, while that of first-order reaction was 170. kJ/mol. When 

comparing these results to those found by Huang, the 170. kJ/mol thermal 

degradation activation energy agreed with the work by Huang. Huang calculated the 

thermal degradation activation energy over the time intervals of 5 h, 10 h, and 14 h at 

125˚C, 135˚C, and 145˚C and found it to be 152 kJ/mol.4 The higher thermal 

degradation activation energy could be due to the lower concentration of MEA 
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present. Since the degradation of MEA increases with longer exposure to high 

temperatures, the further the degradation would take place. Had more time been 

available, new stock solutions would be prepared to evaluate the thermal degradation 

activation energy of MEA over a week for further comparisons, including analysis at 

135˚C. 

4.3.2 Methyldiethanolamine 

 MDEA provided interesting results. For the data collected over the time interval 

at 125˚C, a second-order reaction was observed (linear regression of 0.737). However, 

for the data 145˚C, a zero-order was observed (linear regression of 0.998). The 145˚C 

demonstrated a better fit, however, both reaction orders will be discussed here. The 

thermal activation energy for MDEA treating the reaction as a zero-order and as a 

second-order reaction is shown in Table 4-1. Unlike MEA, all three data points could be 

used, indicating MDEA degrades more slowly, if any, than MEA. 

 When treated as a zero-order reaction, the thermal degradation activation 

energy was demonstrated to be 10.6 kJ/mol, and with a second-order reaction, 21.4 

kJ/mol. Further investigation would need to be accomplished to evaluate the true 

order of the thermal degradation of MDEA, including data analysis over a set time 

interval at 135˚C. The activation energy for the thermal degradation of MDEA will be 

compared to MEA and PZ, however, compared to MEA, having a much lower activation 

would be expected as MDEA degraded much less than MEA. 
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4.3.3 Piperazine 

 PZ, like MDEA, was also able to include all three data points, indicating little to 

no degradation over the two months of static conditions. The linear regression fit best 

for the both temperatures as a zero-order reaction with the R2 value for the data 

collected at different time intervals was 0.556 at 125˚C, and was 0.982 for 145˚C, 

demonstrating similar characteristics of MDEA. The thermal degradation activation 

energy for the zero-order reaction of PZ is demonstrated by Table 4-1. 

 The thermal degradation activation energy was determined to be 30.0 kJ/mol 

under the parameters set by this research. It is important to recognize that Freeman et 

al. determined an activation energy for the thermal degradation of PZ, but over much 

different parameters. Their research involved 8 m PZ loaded with 0.3 mol CO2/mol 

alkalinity from 135˚C to 175˚C over the span of approximately 15 weeks.38 The 

activation energy of thermal degradation for PZ that they determined was found to be 

184 kJ/mol, which is significantly higher than that of this research.38 The difference in 

activation energy could be explained by the different parameters set, especially with 

the time period. Over the 15-week interval, PZ was demonstrated to have continued to 

degrade at 175˚C.38 However, when compared to MDEA, while the activation energies 

were close, PZ had a higher activation energy than MDEA, which agreed with the 

extent of thermal degradation observed for each. 



78 

4.4 Conclusions 

 HPLC analysis allowed the quantification of the concentration of each amine 

after degradation at 125˚C, 135˚C, and 145˚C. Based on strictly concentration, 

including whether a more dilute or more concentrated sample was required, the 

following ranking was acquired from most highest concentration to least: 

MDEA>PZ>1A2P>3APT>EN>MEA>2BAE. However, based on observation with 

concentrations, the order from highest thermal stability to least was found to be: 

MDEA>PZ>1A2P>3APT>MEA>2BAE,EN. The reason for 2BAE and EN being denoted as 

about the same in terms of thermal stability had to deal with the extreme 

characteristics observed for each. EN was demonstrated to degrade rapidly within a 

week at all three temperatures, with the degradation products producing a sludge-like 

substance. 2-BAE had to be in a much greater concentration than all other amines for 

HPLC analysis, demonstrating rapid degradation within the one-week time span.  

 Comparing the thermal stability ranking with that produced using the 13C NMR 

spectra, the two rankings were demonstrated to be quite similar. The difference being 

with the stability, or degradation, or 3APT, which was found to have no new 

distinguishable 13C peaks. After HPLC analysis was performed, 3APT was demonstrated 

to have degraded more than expected, being less stable than 1A2P, but more stable 

than MEA. This demonstrated that the methodology of using the 13C NMR spectra 

provided a starting point that provides a reasonable explanation on the thermal 

stability of amines, however, quantitative analysis on the concentration of each amine 

after degradation was still required, as demonstrated by the case with 3APT. 
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 The thermal degradation activation energies demonstrated agreement with the 

expectations from the structure and with the concentrations found after degradation. 

MEA was found to be in excellent agreement with the results demonstrated by Huang. 

The thermal degradation activation energy for MEA was determined to be 170. kJ/mol 

over four days at 125˚C and 145˚C, while Huang determined the activation energy over 

14 h at 125˚C, 135˚C, and 145˚C to be 152 kJ/mol. Due to the different parameters, 

and the lack of data from 135˚C, the activation energy would be expected to be higher 

for the thermal degradation set by this research, as more MEA would be expected to 

degrade more at 145˚C with a longer time interval. With MDEA, two thermal 

degradation activation energies are reported, as the two different temperatures 

demonstrated different reaction orders. The thermal degradation activation energy for 

MDEA as a zero-order reaction was found to be 10.6 kJ/mol, and as a second-order 

reaction, 21.4 kJ/mol. With PZ, the thermal degradation activation energy was 

demonstrated to be 30.0 kJ/mol as a zero-order reaction. The thermal degradation 

activation energies demonstrated that with more degradation, the energy values 

would be higher. This agreed with the HPLC results, as MDEA was determined to 

degrade the least, and, although there were two energy values, they were both lower 

than PZ and MEA. The ranking from highest to lowest thermal degradation activation 

energy was: MEA>PZ>MDEA, which agreed with the thermal stability demonstrated by 

amine concentration after degradation. 
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Chapter 5. Computational Investigation 

5.1 Introduction 

Before the demonstration of computational results, the system used must be 

defined. Figure 5-1 demonstrates the reaction that was used for each calculation with 

MEA as the example. Each amine was calculated separately, with the CO2 captured 

molecule being treated as that demonstrated by Figure 5-1, except for MDEA, which 

was unable to be completed in this computational investigation. For diamines, only a 

single COOH group was used for computations. Due to time restraints, only 

computations at 298.15 K were accomplished, and are the results demonstrated in this 

chapter. Also, due to there being no access to an advanced computing facility, all 

computations had to be run on an HP laptop with an i5 processor, which took each 

amine CPU days, and in many cases, CPU weeks. Thus, only four complete 

computations at 298.15 K for the smaller amines was able to be accomplished in this 

research. 

Figure 5-1. Reaction system used for the computational investigation. MEA is used as 
the example. 
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5.2 Computational Analysis 

5.2.1 Computational Results 

 The binding energy, εbind, ΔrH, and ΔrG from the computational model set by 

this research and calculated using equation 2-31 through 2-33, are demonstrated by 

Table 5-1. 

Table 5-1. Summary of Computational Results for εbind, ∆rH, and ∆rG. 

Amine εbind (kCal/mol) ΔrH (Hartrees) ΔrG (Hartrees) 

MEA 2.03116 -0.000885 0.017899 

1A2P 2.30038 -0.000127 0.016918 

EN 2.05758 -0.002118 0.016703 

PZ 1.74037 0.011461 0.027392 

5.3 Conclusions from Computational Results 

 Based on the computational results for the parameters set by this research, 

three separate rankings for comparisons were generated. The first, being the ranking 

of εbind from greatest to least as: 1A2P>EN>MEA>PZ. It is reminded that the order of 

thermal stability for the amines reported are was PZ>1A2P>MEA>EN. Thus, the CO2 

binding energy did not provide any significant insights into the predictability of the 

thermal stability of the amines. The next ranking was with the change in enthalpy of 

the reaction, ΔrH, from greatest to least: PZ>1A2P>MEA>EN. This ranking matched up 
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perfectly with the thermal stability ranking. Thus, at least for the amines computed 

under the parameters of this research, the ΔrH values could be used as a prediction of 

thermal stability. Indeed, a negative enthalpy change indicates an exothermic reaction 

while a positive indicates an endothermic reaction, however, the ranking was based 

solely on comparing the numerical values.51 Further analysis would need to be 

conducted with these four amines, to verify that the higher the ΔrH value for the 

capture of CO2, the more thermally stable the amine. The final ranking involved the 

change in Gibb’s energy of the reaction, ΔrG, from greatest to least: 

PZ>MEA>1A2P>EN. The results from the ΔrG values did not provide any insight into the 

predictability of thermal stability. 
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Chapter 6. Theoretical Degradation Products and Reaction Pathways 

6.1 Introduction 

This chapter demonstrates theoretical degradation reaction pathways and 

degradation products using the degradation pathway demonstrated by MEA. This 

pathway demonstrated the production of polymeric and cyclic degradation 

compounds, as well as urea formations, as shown by Huang and Matin et al.4,40 This 

process was used as it demonstrated to work not only for MEA, but also for 1A2P, 

which will be the only amine in this chapter where the degradation pathway and 

products were demonstrated by a reviewed article. It is important to note that, these 

pathways are only possibilities, and should not be taken as fact. Some reactions have a 

much higher probability of occurring than others, and any discussion needed will be 

provided with the amine of interest. A detailed description of each reaction will not be 

provided, as they follow the scheme demonstrated by Figure 1-11. Also, for the 

proposed thermal degradation reaction pathway of PZ by Freeman et al., see Figure 1-

12.39 

 For each reaction demonstrated, the urea production will be demonstrated as 

the last thermal degradation reaction pathway(s), except for 3APT which had many 

theoretical urea formations. Each amine will be demonstrated in a separate section 

where any description of the amine that is necessary will be included. 
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6.2 Theoretical Thermal Degradation Reaction Pathways 

6.2.1 1-Amino-2-propanol 

 Figure 6-1 demonstrates the thermal degradation pathways for 1A2P proposed 

by Matin et al.40 

 In relation to Figure 6-1, it is important to note that the product from reaction 

(4) was not demonstrated by Matin et al. Matin et al. went directly from reaction (3) to 

reaction (5). Reaction (4) was produced to try and explain the production of 1-(2-

hydroxypropyl)-5-methyl-2-imidazolidinone (HPMIZD) of reaction (5).40 Finally, the 

names of each degradation product will be presented. The products of reaction (2), (3), 

Figure 6-1. Thermal degradation reactions for 1A2P produced by reference (40).25,40 
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and (6) are: 5-methyl-2-oxazolidinone (MeOZD), 1-[(2-amino-1-methylethyl)amino]-2-

propanol, and N,N’-bis(2-hydroxypropyl)urea respectively.40 

6.2.2 Ethylenediamine 

 Figure 6-2 and 6-3 demonstrates the theoretical thermal degradation pathways 

for EN. 

 

 

 

 

 

Figure 6-2. Theoretical thermal degradation reactions for EN.25 
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 A few comments will be made here about the theoretical thermal degradation 

pathway for EN. The first being that reactions are demonstrated with either one 

captured CO2 molecule or with both amine groups having a captured CO2 molecule. 

Because of this, there would be more options for the thermal degradation of EN. EN is 

also a small linear diamine, which, when coming into proximity of another degradation 

product, EN would have a greater chance of having an amine group react with the 

product, furthering the degradation of EN. Also, in terms of the large degradation rings 

demonstrated by reaction (4), (7), and (8), these products would have a much lower 

probability of being produced than, for example, the products from reaction (3) and 

(10-12). 

Figure 6-3. Continued theoretical thermal degradation reactions for EN.25 
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6.2.3 (3-aminopropyl)trimethoxysilane 

 Figure 6-4 demonstrates the theoretical thermal degradation pathways for 

3APT. 

 Interestingly, with the theoretical degradation reactions of 3APT, it was 

demonstrated that a urea functional group was present in each product, which could 

be the source of the strong odor present in each degraded sample of 3APT. 

Figure 6-4. Theoretical thermal degradation reactions for 3APT.25 
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6.2.4 2-(Butylamino)ethanol 

 Figure 6-5 and 6-6 demonstrate the theoretical thermal degradation pathways 

for 2BAE. For the theoretical thermal degradation reactions of 2BAE, the source of the 

carbonate ion can be demonstrated by Figure 1-6. 

 

 

Figure 6-5. Theoretical thermal degradation reactions for 2BAE.25 

Figure 6-6. Continued theoretical thermal degradation reactions for 2BAE.25 
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 Like EN, the large ring formation from reaction (5) in Figure 6-5, would be 

unlikely to happen, however, is still included as it has a slight probability to occur and 

be a possible intermediate for the formation of the product demonstrated by reaction 

(7) in Figure 6-6. 

6.2.5 Methyldiethanolamine 

 The theoretical thermal degradation pathways for MDEA is demonstrated by 

Figure 6-7. 

 The ring formations of reaction (5) and (6) have a low probability of occurring, 

however, they are interesting possibilities. Knowing MDEA was the least degrading 

amine out of the seven in this study, reaction (3) and (4) would be the most probable 

reactions if MDEA follows this mechanism of degradation. If, however, MDEA follows a 

nonpredictive path as PZ, completely different products could be the result of MDEA 

Figure 6-7. Theoretical thermal degradation reactions for MDEA.25 



90 

thermal degradation. Regardless, further investigation on the thermal degradation 

products for MDEA, as well as the other amines, is required. 

6.3 Conclusions 

The proposed theoretical degradation reaction pathways were proposed based 

on the results from Huang and Matin et al.4,40 The degradation pathways could be 

tested as they not only provide an understanding of the degradation mechanism of 

different amines, but also some degradation products could serve as a potential 

function in different fields. 

Each theoretical thermal degradation pathway could serve as a guideline for 

future investigations on the thermal degradation pathway and kinetics. Instrumental 

methods, such as IC, could justify the existence of these degradation products and the 

proposed theoretical pathways. Kinetically, with the proposed reaction pathways, a 

better correlation between the reaction rate and the change in concentrations could 

be acquired, which could result in the reactions being optimized to avoid degradation. 
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Chapter 7. Conclusions and Future Directions 

7.1 Summary of Key Results from this Study 

 It was demonstrated that several factors used in determining the thermal 

stability of an amine. While, concentration values demonstrated how much of the 

parent amine was left after degradation, it does not portray the full picture. The 

solutions required attention as the properties of the solutions would play a major role 

in whether the amine would be a good candidate to use for CO2 capture.  

 13C NMR analysis proved to be a useful technique in the approximate 

determination of the extent of degradation for each sample. By analyzing the number 

of new, distinguishable, 13C peaks, the difference between the peaks demonstrated for 

the pure amine versus the degraded samples (Δ13C) provided a ranking from greatest 

Δ13C to least as: EN>2BAE>MEA>1A2P>PZ>MDEA>3APT. 

 Further analysis of the samples using HPLC provided quantitative information 

on the concentration of the parent amine after degradation. When only the 

concentration of each amine was observed, the ranking from highest concentration to 

least after degradation was found to be: MDEA>PZ>1A2P>3APT>EN>MEA>2BAE. It is 

reminded that MDEA, PZ, and EN had to have further dilutions, while 2BAE required a 

more concentrated sample for analysis.  

 The thermal degradation activation energy of MEA, PZ, and MDEA 

demonstrated a correlation with the thermal stability of each amine. MEA was shown 

to have a large thermal degradation activation energy over 4 days, with PZ and MDEA 
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have a much smaller energy value. However, the thermal degradation activation 

energy of PZ was demonstrated to be higher than MDEA, supporting the ranking of 

amines. 

 Computational modelling on the CO2 binding to an amine molecule was unable 

to provide much insight into how the capture of CO2 could predict the thermal 

degradation extent of the amine of interest. However, while the εbind and ΔrG did not 

provide any correlation with the experimental results, ΔrH did provide results that 

matched with the HPLC results. When only the numerical values, and not physical 

meaning, of ΔrH for each amine, the ranking from greatest to least was 

PZ>1A2P>MEA>EN, which agreed with experimental results, PZ being the most 

thermally stable, and EN being the least. 

 Combining the information provided by sample observation, 13C NMR, and 

HPLC analysis, an overall thermal stability ranking was produced from highest stability 

to least, under the conditions set by this experiment as: 

MDEA>PZ>1A2P>3APT>MEA>2BAE,EN. A representation of this ranking using the 

amine structures is demonstrated by Figure 7-1. EN dropped in ranking since, even 

though it did not have the lowest concentration, EN reached its plateau concentration 

rapidly and had an uncountable number of 13C peaks for each sample for analysis. EN 

also demonstrated to have tremendous degradation of its degradation products as, at 

135˚C and 145˚C, the sample became a sludge-like solution. 
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 MEA was low on the thermal stability ranking, and by comparing the structures, 

interesting results were demonstrated. When the hydroxyl group is removed from 

MEA and replaced by an amine group (EN), the amine is less stable. Interestingly, when 

a long carbon chain (2BAE) was attached to the amine group of MEA, the amine was 

also less stable. 3APT, which had a silane group in place of a hydroxyl group in MEA, 

the amine was shown to be more stable, however, 3APT and its degraded samples 

were shown to be highly viscous, making it another poor choice for CO2 capture. In the 

case of 1A2P, the amine was found to be much more stable than MEA thermally, which 

could be attributed to the greater steric hindrance of the amine group. Likewise, 

MDEA which was a tertiary amine was shown to have the least amount of degradation 

which could also be attributed to the hindrance about the nitrogen atom. Interestingly, 

PZ was shown to be second to MDEA in terms of degradation. Considering the nature 

of EN, it could be easy to assume that PZ would not perform as well as was 

demonstrated. The ring structure of PZ restricts the flexibility of the molecule, which 

could help explain the thermal degradation pathways of PZ and the higher thermal 

stability than MEA and EN. 

 Thus, amines with more shielding associated with the amine group were 

demonstrated to have a higher thermal stability. Also, the ring structure of PZ, a 

Figure 7-1. Structural representation for the thermal stability of the amines used in this 
study.25 
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secondary amine, was demonstrated to have a higher thermal stability than the 

secondary amine 2BAE. 

7.2 Future Directions 

 Using the parameters set by this study, further investigations on the thermal 

degradation activation energy for each amine could provide more details on the rate 

of thermal degradation over a set time period. Thus, it is suggested that further 

research on the kinetics of each amine used in this study be investigated. Along with 

the kinetics, a degradation mechanism for these amines should be conducted. This 

would provide a more in-depth study as to why and how the amines degrade. Knowing 

how the amines degrade would allow a profound understanding of the thermal 

stability of each amine. With the thermal degradation mechanisms, a more detailed 

description with the kinetics of each amine could be accomplished, much like that 

done by Huang with MEA.4 

 To help with the determination of the mechanisms and degradation products, 

IC, liquid chromatography-mass spectrometry (LC-MS), and two-dimensional (2-D) 

NMR analysis is suggested. The results from the 2-D NMR could be used alongside of 

the NMR data collected in this study to help with the identification of degradation 

products, if distinguishable results are acquired. 

 Computational models could also be used to evaluate the amines in this that 

were unable to be calculated in this study. This would determine if ΔrH agrees with the 

other amines in this study, or if it only applied to the ones accomplished. Also, 
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computational modelling of the degradation pathways could be accomplished to try 

and determine if a correlation could be made. An investigation into the computational 

modelling of the degradation system could help describe the energetics of the reaction 

to provide further understanding on the thermal degradation reactions involved with 

amines used for PCCC. 
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Appendix A. NMR Spectra for MEA 

 Figure A-1 through Figure A-3 demonstrate the DEPT-90, DEPT-135, and 15N 

NOE NMR spectra for MEA and the degraded MEA samples, respectively. 

 

 

 

 

 

Figure A-1. DEPT-90 NMR data acquired for MEA and its degraded samples. MEA is 
labelled, and the letters indicate the degraded sample. 
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Figure A-2. DEPT-135 NMR data acquired for MEA and its degraded samples. MEA is 
labelled, and the letters indicate the degraded sample. 

Figure A-3. 15N NOE NMR data acquired for MEA and its degraded samples. MEA is 

labelled, and the letters indicate the degraded sample. 
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Appendix B. NMR Spectra for 1A2P 

 Figure B-1 through B-3 demonstrate the DEPT-90, DEPT-135, and 15N NOE NMR 

spectra for 1A2P and the degraded 1A2P samples, respectively. 

 

 

 

 

 

 

 

Figure B-1. DEPT-90 NMR data acquired for 1A2P and its degraded samples. 1A2P is 
labelled, and the letters indicate the degraded sample. 
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Figure B-2. DEPT-135 NMR data acquired for 1A2P and its degraded samples. 1A2P is 
labelled, and the letters indicate the degraded sample. 

Figure B-3. 15N NOE NMR data acquired for 1A2P and its degraded samples. 1A2P is 

labelled, and the letters indicate the degraded sample. 
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Appendix C. NMR Spectra for EN 

 Figure C-1 through C-3 demonstrate the DEPT-90, DEPT-135, and 15N NOE NMR 

spectra for EN and the degraded EN samples, respectively. 

 

 

 

 

 

 

 

Figure C-1. DEPT-90 NMR data acquired for EN and its degraded samples. EN is 
labelled, and the letters indicate the degraded sample. 
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Figure C-2. DEPT-135 NMR data acquired for EN and its degraded samples. EN is 
labelled, and the letters indicate the degraded sample. 
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Figure C-3. 15N NOE NMR data acquired for EN and its degraded samples. EN is 
labelled, and the letters indicate the degraded sample. 
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Appendix D. NMR Spectra for 3APT 

 Figure D-1 through D-3 demonstrate the DEPT-90, DEPT-135, and 15N NOE NMR 

spectra for 3APT and the degraded 3APT samples, respectively. 

 

 

 

 

 

 

 

Figure D-1. DEPT-90 NMR data acquired for 3APT and its degraded samples. 3APT is 
labelled, and the letters indicate the degraded sample. 
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Figure D-2. DEPT-135 NMR data acquired for 3APT and its degraded samples. 3APT is 
labelled, and the letters indicate the degraded sample. 

Figure D-3. 15N NOE NMR data acquired for 3APT and its degraded samples. 3APT is 

labelled, and the letters indicate the degraded sample. 
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Appendix E. NMR Spectra for 2BAE 

 Figure E-1 through E-3 demonstrate the DEPT-90, DEPT-135, and 15N NOE NMR 

spectra for 2BAE and the degraded 2BAE samples, respectively. 

 

 

 

 

 

 

 

Figure E-1. DEPT-90 NMR data acquired for 2BAE and its degraded samples. 2BAE is 
labelled, and the letters indicate the degraded sample. 
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Figure E-2. DEPT-135 NMR data acquired for 2BAE and its degraded samples. 2BAE is 
labelled, and the letters indicate the degraded sample. 

Figure E-3. 15N NOE NMR data acquired for 2BAE and its degraded samples. 2BAE is 

labelled, and the letters indicate the degraded sample. 
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Appendix F. NMR Spectra for MDEA 

 Figure F-1 through F-3 demonstrate the DEPT-90, DEPT-135, and 15N NOE NMR 

spectra for MDEA and the degraded MDEA samples, respectively. 

 

 

 

 

 

 

 

Figure F-1. DEPT-90 NMR data acquired for MDEA and its degraded samples. MDEA is 
labelled, and the letters indicate the degraded sample. 
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Figure F-2. DEPT-135 NMR data acquired for MDEA and its degraded samples. MDEA is 
labelled, and the letters indicate the degraded sample. 

Figure F-3. 15N NOE NMR data acquired for MDEA and its degraded samples. MDEA is 

labelled, and the letters indicate the degraded sample. 
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Appendix G. NMR Spectra for PZ 

 Figure G-1 through G-3 demonstrate the DEPT-90, DEPT-135, and 15N NOE NMR 

spectra for PZ and the degraded PZ samples, respectively. 

 

 

 

 

 

 

 

Figure G-1. DEPT-90 NMR data acquired for PZ and its degraded samples. PZ is 
labelled, and the letters indicate the degraded sample. 
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Figure G-2. DEPT-135 NMR data acquired for PZ and its degraded samples. PZ is 
labelled, and the letters indicate the degraded sample. 
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Figure G-3. DEPT-135 NMR data acquired for PZ and its degraded samples. PZ is 
labelled, and the letters indicate the degraded sample. 
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