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1 Introduction 

1.1 Executive Summary 

 The following report has been compiled to evaluate fire service equipment and tactics, 

specifically in high-rise environments.  This project will first discuss modern fire dynamics and 

their impact on firefighting operations.  This chapter largely reviews established and accepted 

scientific research.  Next, high-rise buildings will be discussed.  Fire protection systems 

including standpipe systems will be examined as well as building geometry, evacuation 

challenges, and ventilation and other special hazards.  The next portion of the report will discuss 

several case studies that have occurred in the last forty years and their contributions to the fire 

protection and fire suppression fields.  The following chapter will cover fire suppression hose 

and nozzle selection by the United States fire service.  Consideration will be given to friction 

loss, maneuverability, water pressure, and water flow.  This will be followed with findings from 

empirical testing conducted to compare the water flow, required pressure, and mobility of 

different hose sizes.  Finally, the project will end with conclusions from the testing and other 

information presented in the proceeding sections. 

1.2 Scope and Methods 

 This project sought to evaluate fire service tactics and equipment popular in the United 

States fire service.  With faster developing and more intense fires, firefighters need to be 

prepared to more efficiently extinguish fires to ensure firefighter safety.  High-rise buildings 

provide a deadly hazard for both firefighters and occupants.  These high-rise buildings are 

growing more prevalent in America, challenging a greater number of firefighters every day. 

 Large amounts of scientific research have been conducted in recent years to assist the fire 

service, but many of these experiments have been conducted in single family homes. For 
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example, one of the most commonly referenced studies is Kerber’s Study on Fire Service 

Operational timelines in which he discusses the implications of modern fuels and modern 

building construction on firefighting efforts.  A vast majority of firefighters often are called to 

fires in structures other than high-rise buildings, but firefighters need to be more prepared for 

fires in these more challenging environments.  

 This project initially sought to determine why fire departments were using smaller 

diameter hose lines for fighting fires in high-rise applications.  During this process, several fire 

departments and firefighters stated that they chose to use smaller hose lines because they were 

more maneuverable than larger hose lines.  Fire departments also claimed that they were 

considering much of the modern fire service research by attempting to get water to the seat of the 

fire as soon as possible.  In order to validate this argument, empirical testing was conducted.  

Specific details and the data from these tests will be presented in a later section of this report. 

 With the suggestions of numerous fire service experts, scientific data from numerous 

experiments, and the aforementioned empirical testing, final conclusions were drawn.  These will 

be discussed in the final section of this report. 

2 Fire Behavior Basics 

2.1 Overview 

 In order to discuss considerations for fire service tactics in the modern fire environment, 

the basics of fire science must be understood.  The following sections present the basics of 

combustion as well as a fire dynamics analysis of the modern fire environment, focusing on 

high-rise structures. 
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2.2 The Fire Triangle 

In order for the combustion process to occur, fire requires heat, fuel, oxygen, and a 

sustained chemical reaction.  In the urban environment, water is applied to fires in order to 

remove heat, causing the combustion process to cease.  Common tactics to achieve this goal 

include applying water to the combustion by-product gasses in the upper layer of the 

compartment, or to the burning surfaces in order to cool the environment and extinguish the fire.  

The United States fire service often opts for the latter option with a more aggressive frontal 

attack.  This approach seeks to extinguish the burning fuel.  Water as an extinguishing agent will 

be examined shortly. 

2.3 Fire Dynamics 

2.3.1 Introduction 

 Fire dynamics is defined as, “the field of study that encompasses how fires start, spread, 

develop, and extinguish.” (Madrzykowski, 27).  While these considerations are generally not 

given by firefighters operating on the fireground, fire dynamics must be a large part of both fire 

attack and fire prevention.  The ways in which fires burn, or the physics of combustion are 

always the same despite significantly varied environments.  Therefore, fire dynamics provide one 

of the best ways to prepare to fight a fire.  Considerations must also be made for modern fire 

dynamics. 

2.3.2 Modern Fuels vs. Legacy Fuels 

Modern fuels are one of the defining characteristics of the modern fire environment.  

Many furnishings in modern structures are made of synthetic materials.  According to Steven 

Kerber, the director of the Underwriters Laboratory Firefighter Safety Research Institute, “Today 

more than 95 million kilograms of flexible polyurethane foam are produced in the US, enough to 
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make 140 million sofas.” (Kerber 869).  This is quite significant for firefighters due to the 

chemical makeup of the material.  While these materials have approximately the same amount of 

combustible material, the new materials typically weigh significantly less than the older 

materials and they are also typically much cheaper than legacy materials which makes them 

more prevalent in modern high-rise construction, all of which are illustrated in Kerber’s study. 

These materials also have a much higher heat release rate, which is defined as “the rate at 

which heat energy is generated by burning.” (Gorbett, Pharr, Rockwell 299).  Heat Release Rate 

is also key to determining many other important variables in fire dynamics, including quantities 

such as flame height and upper layer temperatures.  Both of these quantities are important in fire 

growth and development, and it will be discussed in greater detail in later chapters of this report. 

To provide some context of the increased heat release rate between these different 

materials, several studies and tests were conducted.  Kerber summarizes an experiment from 

Babrauskas to discuss these differences.  He states, “The cotton padded chair covered in cotton 

fabric produced a peak heat release rate of 370 kW at 910 s after ignition.  The foam padded 

chair covered in polyolefin fabric produced a peak heat release of 1,990 kW at 260s after 

ignition.  Both chairs had a very similar total heat released 425 MJ for the natural chair and 419 

MJ for the synthetic chair.”  (Kerber 869).  With these higher heat release rates, synthetic 

materials lead to fires that develop much faster and are much more severe, despite releasing 

nearly the same amount of energy as legacy fuels.   

Fire departments and fire service training professionals are realizing this trend and tactics 

are changing in order to combat this new and more severe threat.  Some of the specific tactics 

and considerations will be discussed in the following section.  
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2.3.3 New Fire Service Tactics: Ventilation vs. Water on the Fire 

 In order to combat the increased heat release rates from these new fuels, special 

considerations must be made by the fire service both during firefighting operations as well as 

creating standard operating procedures.  Much of the modern firefighting research has attempted 

to address this matter.  However, much of this research has been conducted in residential single-

family homes.  While considerations must be made for high-rise firefighting, much of this 

research is extremely applicable for developing these new tactics. 

 A large body of this research shows that the fire service needs to alter their operations 

and the sequences with which they are conducted on the fireground.  With respect to the 

aforementioned modern fuels, In the same article quoted earlier in this chapter, Kerber argues 

that the fire service has significantly less time to operate before the fire reaches flashover.  

Flashover is defined as: 

A transition phase in the development of a compartment fire in which surfaces exposed to thermal radiation 

reach ignition temperature more or less simultaneously and fire spreads rapidly throughout the space, 

resulting in full-room involvement or total involvement of the compartment or enclosed space. (Gorbett, 

Pharr, Rockwell 298). 

This shorter time frame is significant because there are several tasks that must be completed 

in short order in the first few minutes of any fire attack.  Depending on the building and the 

incident, firefighters must complete tasks such as: 

• Evaluating the structural integrity and the extent of the fire 

• Setting up a command post 

• Securing a water supply 

• Stretching hose lines 

• Forcing entry, searching for the seat of the fire and possibly trapped victims 
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• Rescuing any possible victims 

• Advancing the hose line to the seat of the fire 

• Applying water to the fire 

• Throwing ladders to upper floors 

• Ventilating windows and the roof 

• Protecting any other structures possibly exposed to the fire 

• Securing electric and gas utilities 

• Setting up crews to rescue other firefighters should they be trapped or injured 

• Setting up rehabilitation and medical treatment for fire victims and other firefighters  

While some of these tasks are less important than others, they must all be completed quickly and 

efficiently.  Therefore, the fire service must prioritize these tasks so that the most vital ones will 

be completed as quickly as possible. 

 Much of the fire service research has also discussed the key tactic of ventilation.   

Ventilation is done in a variety of ways such as opening windows and doors, cutting holes in the 

roof, using a fan to push fresh air into the structure, or using a fan to pull air out of the structure.  

This tactic was first done in order to increase the visibility for occupants, either firefighters or 

trapped victims, as well as to allow some of the heat and other toxic gasses to escape from the 

structure.  The scientific phenomena that drove the development of this tactic will be discussed 

in a later section.  These goals were achieved, and ventilating structures entered the fire service 

toolbox.  While ventilation still plays an extremely significant role in fire attack, research has 

shown there are many considerations that must be given to this tactic.  Just to name a few of 

these studies, Underwriters Laboratories Firefighter Safety Research Institute’s (UL FSRI) 

“Analysis of One and Two-Story Single Family Home Fire Dynamics and the impact of 
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Firefighter Horizontal Ventilation,” and “Impact of Ventilation on Fire Behavior in Legacy and 

Contemporary Residential Construction,” are some of a few of these studies.  Certainly, changes 

to the fire dynamics of a compartment can have both positive and negative consequences.  As 

previously mentioned, the positives that can come from this are increasing the visibility in the 

affected areas, decreasing the temperature in the compartment, and reducing the toxic gases that 

are present in the compartment.  However, depending on the method of ventilation, the neutral 

plane will be affected.  The neutral plane is defined as, “the height above which smoke will or 

can flow out of a compartment.  The height of zero pressure difference across a partition.” 

(Gorbett, Pharr, Rockwell 299).  This means that when there is a larger area ventilating to the 

exterior, there is a decrease in pressure inside of the compartment.  Therefore, more oxygen can 

flow into the compartment, which can dramatically increase the fire intensity.  A rising neutral 

plane is normally seen when vertical ventilation is employed, or when holes are cut in the roof of 

the compartment.  When firefighters open windows and doors for ventilation, a “flow path” is 

created.  This phenomena basically intensifies the path that fires travel by increasing the ways in 

which air travels throughout the structure.  Many firefighters have been killed when working in a 

flow path.  The first large Line of Duty Death (LODD) from a flow path related incident was 

experienced by the New York City Fire Department in a mid-rise senior citizen housing facility.  

This fire occurred on Vandalia Road in New York City and will be discussed in greater detail in 

a later chapter.  Ventilation is something that is difficult to conduct in a high-rise building for 

several reasons, which will be discussed later. 

However, ventilation tactics were first employed in the traditional furnishing era.  While 

flexible polyurethane foam was being incorporated into furniture on a large scale as early as 

1954, it did not become the universal component that it is today until the mid-to late 1960s.  



Brondum   15 

With modern home furnishings, less compartmentation due to open floorplans, and lightweight 

construction, ventilation conducted incorrectly can severely impact firefighting operations.  

Traditionally, fires were limited by the amount of fuel rather than the ventilation, but with the 

advent of modern furnishings, fires are now mainly ventilation limited.  Therefore, when 

ventilation is done and more air is allowed to enter the structure, the fire will only intensify.  It 

has now been determined that ventilation must be coordinated with fire attack, meaning that 

applying water on the fire must be coordinated with ventilation efforts.  Currently, research is 

being conducted in a variety of structures to determine when to ventilate compared to water 

application. The results of this research are still pending, but it is incorporating various other 

projects.  More information on this project can be found at ULfirefightersafety.org.  A direct link 

will be included in the bibliography. 

 While incomplete, this research hypothesizes that the belief that applying water to fire is 

the best way to cool the fire environment and will slow the growth of the fire and increase the 

survivability of the environment for trapped occupants will be proven.  Much of the research has 

focused on water application from outside of the fire compartment.  While the fire service 

previously held the belief that applying water from the exterior of the structure would “push” the 

fire into the unburned and undamaged portions of the compartment, this has largely proved not to 

be the case.  Numerous experiments were conducted to evaluate this belief, and they illustrated 

that certain water application patterns and certain nozzles entrained more air than others.  This 

air entrainment is what could in fact “push” fire when water is applied in specific ways.  In a 

later section, water application will be discussed through the uses of various types of nozzles.  

Regardless of the “pushing fire” debate, water application is still extremely significant in fighting 

fire in the modern fire environment, especially in high-rise buildings. 
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2.4 Water as an Extinguishing Agent 

 As this report stated previously, water is the main extinguishing agent used in urban 

firefighting for a variety of reasons.  Water in its liquid form is quite practical as an 

extinguishing agent as its liquid state allows it to be stored and transported easily, water is 

generally cheap and accessible in urban areas, and water is not a hazardous material.  For 

firefighting applications, water is also an excellent fire suppression agent as it has a high specific 

heat.  This quantity is defined by Gorbett, Rockwell, and Pharr as, “the amount of heat needed to 

raise one mass of a substance one degree.” (Gorbett, Pharr, Rockwell 300).  This means that the 

higher the specific heat, the more energy that a substance can absorb before its temperature 

increases one degree in temperature.  Water has a specific heat of approximately 4.181 kilojoules 

per kilogram degrees kelvin while many other materials such as polyurethane elastomer has a 

specific heat of 1.800 kilojoules per kilogram degrees kelvin.  While this material would not be 

used to fight fires, it is often seen as a fuel in the modern fire environment, as illustrated above.  

Both of these values can be found on engineeringtoolbox.com’s “Specific Heat of common 

Substances” page. 

After determining this information, the amount of water and the rate at which it is applied 

can be considered in order to extinguish a fire.  In order to calculate the required flow rate, 

calculations were completed.  These can be found in Appendix A and are summarized here. 

Assuming that water is found at room temperature, or approximately 20ºC, and water boils at 

100ºC, providing a range of 80ºC for water to be increased before it is converted to steam. 

Therefore, in order to determine how much energy that one kilogram of water can absorb before 

it is converted to steam, its specific heat can be multiplied by 80.  This value equates to 

approximately 334.48 kilojoules of energy.   
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Assuming that the fire has reached full room involvement, basically meaning that all 

combustible materials in the compartment are burning, the heat release rate can be conservatively 

estimated for both residential and commercial buildings such as offices through previously 

conducted testing.  A residential room such as a bedroom would have a heat release rate of 

approximately 2 Megawatts (MW).  This value is determined from the average peak heat release 

rate from eight tests catalogued through the University of Maryland’s (UMD) Burning Item 

Database.  On the contrary, commercial spaces such as workstations could potentially have a 

heat release rate of 2.7 MW.  This heat release rate is calculated from an average of the four 

workstation tests that were averaged from the UMD Burning Item Database.  However, 

especially for commercial spaces, this value can be altered by the orientation of the fuel.  

Therefore, the value for a standard cubicle will be used.  This value, as determined by a test 

conducted by NIST is 6719.7 KW, or 6.72 MW.  This value is also the highest one presented for 

workspaces.  

With this information in hand, the rate of water application to extinguish a fire of the 

presented size can be calculated.  These calculations are seen below in Appendix A and they will 

be summarized here.  For the residential scenario, approximately 6 kilograms of water per 

second would be able to absorb the 2 MW from the smaller residential fire.  To place this value 

into context, a one-and-a-half-inch hose with a 7/8-inch tip nozzle will provide just below double 

this flow rate, providing approximately 10 kilograms of water per second.  However, in a 

commercial building, a two-and-a-half-inch hose with a one-and-one-quarter-inch smoothbore 

nozzle will be needed to extinguish this fire.  This nozzle will provide 328 GPM at 48 PSI, or 

approximately 20.312 kg/s.  This flow chart is presented in Appendix B.   
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2.5 Heat Transfer and High-Rise Buildings 

In a process known as pyrolysis, heat converts the solid fuels to a fuel vapor, which can 

then burn.  This makes fires in high-rise buildings much more intense, due to heat transfer. 

There are three different methods of heat transfer, and all of them are significant in fires.  

Conduction is the first method of heat transfer that is defined as, “The transfer of energy in the 

form of heat by direct contact through the excitation of molecules and/or particles driven by a 

temperature difference.” (Gorbett, Pharr, Rockwell 297).  This method of heat transfer can be 

seen when feeling a hot pan or pot.  The metal has absorbed heat from the stove and when 

touching the exposed portion of the metal, the heat will be transferred to the cooler substance, in 

this case, skin.  This method of heat transfer required some sort of a sold medium.  Conduction is 

a method of heat transfer that does not have a substantial impact on fire intensity or fire growth, 

other than allowing heat to escape the burning compartment through walls. 

Convection is another method of heat transfer, and this method is quite significant in fire 

development.  Convective heat transfer is defined as, “Heat transfer by circulation within a 

medium such as a gas or a liquid.” (Gorbett, Pharr, Rockwell 297).  This method of heat transfer 

is far more significant than conduction, as it involves fluids such as air.  In a fire, a majority of 

the heat that is released from the fire will rise due to the buoyancy of air.  According to Gorbett, 

Pharr, and Rockwell, “Approximately 70% of the energy liberated from a burning combustible is 

in the form of convection.” (Gorbett, Pharr, Rockwell 162).  This is quite significant in a high-

rise building, due to the building geometry, which will be discussed in upcoming sections of this 

report.  As the temperature of the air increases, it becomes less dense, rising to the upper layers 

of the compartment.  The room will then fill with combustion byproducts such as soot and other 

gasses including toxic gasses.  As the upper layer of the room fills with these products, the 
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bottom of the upper layer will descend toward the fire.  These materials are then able to escape 

through windows and doors.  As mentioned earlier, this is where the tactic of ventilating a 

structure originated.    

3 High-Rise Building Basics 

3.1 Overview 

 High-Rise firefighting provides numerous challenges to firefighters operating in these 

environments, and these challenges will be discussed below.  The fire protection systems 

prevalent in these building will be discussed, as will the basic building geometry and other 

special hazards. 

3.2 Fire Protection Systems 

3.2.1 Introduction 

 Fire protection systems are extremely important in high-rise buildings.  When these 

systems fail, or are not property installed, firefighting efforts will be severely hampered, a 

phenomenon that has been seen in several major high-rise fires. 

3.2.2 Sprinkler Systems 

 Sprinkler systems are required in all new high-rise structures as a result of many 

historical fires, but there are many high-rise buildings found without sprinkler systems as they 

were constructed before sprinkler systems were required.  Sprinkler systems are usually able to 

contain fires before the fire department arrives, preventing a major fire that would take several 

hours to extinguish.  Due to the building size, these systems are generally very complicated and 

are designed during the planning stages and installed during construction.  When the system is 

installed incorrectly, significant damage can be done to the system, causing potential failures.  
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These systems are to be tested at regular intervals, as prescribed by several standards, including 

the National Fire Protection Association (NFPA) 25, the Standard for the Testing and 

Maintenance of Water Based Fire Protection Systems.  Sprinkler systems play a major role in the 

fire protection of large buildings, but they are not the focus of this report. 

 While not in all buildings, some large buildings rely on fire pumps to supply water and 

pressure.  These systems are supplied from the city water main and then pressurized before being 

sent up the standpipe riser.  A pump can be used for two reasons, to increase the pressure 

required to overcome the height of the building, or to supply water to the sprinkler system.  

Sprinkler systems require a certain amount of water and pressure to supply and operate the 

system, and this must be automatic, meaning that pumps or tanks must be present to supply 

water.  Sprinkler systems cannot be supplied solely by the fire department upon their arrival. 

 Sprinkler systems are often the main fire protection system found in high-rise buildings, 

but they are not the most significant for manual firefighting.  Sprinkler systems are designed to 

contain most fires, not extinguish them.  In order to provide for manual fire suppression, many 

large buildings are required to have standpipe systems installed.  In many modern buildings, 

these systems share a riser with the sprinkler system.  The systems are therefore much more cost 

effective, but they become much more complicated.   Some of the components of the system will 

now be discussed below. 

3.2.3 Standpipe Systems 

 As mentioned earlier, standpipe systems are designed to transport water to the upper 

floors of buildings to facilitate firefighting efforts.  These systems are basically piping with fire 

department hose connections that run from the street level to the lowest and highest points of 

buildings, typically basements and the roof.  In most operations, firefighters use already 
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connected hose lines called “preconnects,” “crosslays,” or “speedlays.”  These hose lines allow 

firefighters to pull a hose line from an engine, stretch and flake the line, and begin fighting fire 

once the line has been charged with water.  In a high-rise fire, firefighters would have to stretch 

hose lines from an engine to the affected fire area, which can take a very long time and it can 

also be very exhausting for firefighters.  Therefore, these systems are installed to allow 

firefighters to complete their tasks more efficiently.   

Generally, the systems are supplied from a fire department connection, also known as an 

FDC.  These devices can either have two two-and-a-half-inch inlets, or a single five-inch inlet.  

While it is easier for a single firefighter to establish a supply to the FDC with a single inlet, there 

is no room for redundancy.  While some newer buildings are opting for the single connection 

option, many older buildings are still equipped with a double inlet option.  This “Siamese” 

connection can allow for two engines to supply the system simultaneously, or it can allow for a 

troubleshooting option should the first hose become severed by falling glass.  Falling glass is 

something that is a large hazard at high-rise fires, and it will be discussed a later chapter of this 

report.   

These systems are designed for seamless firefighter operation.  Firefighters will arrive 

and then begin to climb the stairs carrying all of the equipment that they will need to fight the 

fire.  Another firefighter, typically the driver of one of the first arriving engine companies, will 

secure a water supply from a fire hydrant and then supply the FDC from the engine.  This allows 

for a constant flow of pressurized water to flow into the standpipe system and to the firefighters 

at the tip of the nozzle.   

 It is important to note that standpipe systems are designed to provide the highest possible 

volume of water at the lowest pressure.  This design is a cost reducing value, as the lower the 
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pressure, than the need for a fire pump may be minimized, if not eliminated.  The most important 

thing for fighting fire is water application, as previously mentioned.  However, the fire service 

places a large emphasis on pressure as opposed to volume of water.  While pressure is certainly 

important, especially to provide the reach and penetration needed for a nozzle crew to be located 

out of danger, it is not what ultimately extinguishes fires. 

However, in the case that the riser is split between the sprinkler system and the standpipe 

system, a fire pump may supply the system.  In the case that the highest standpipe outlet is taller 

than one hundred and seventy-five feet above ground level, the building must be equipped with 

pressure reducing devices.  This quantity is calculated from the 75 PSI remaining after nozzle 

operating pressure is considered per NFPA 14.  It takes approximately .433 PSI to raise water 

one foot in elevation.  Therefore, the 75 PSI divided by the .433 PSI/foot factor equates to 

approximately 175 feet.  These valves are used to limit the pressure coming from the standpipe.  

According to NFPA 14, the Standard for the Installation of Standpipe Systems, the outlet 

pressure of any standpipe outlet can only be 175 PSI maximum.  This is defined in NFPA 

14.7.2.3.2.  This requirement is to limit the nozzle reaction felt by the firefighter on the tip of the 

nozzle.   

Nozzle reaction or kickback can be defined as, “the force exerted on a firefighter or other 

anchor by a stationary spraying nozzle supplied by a flexible hose.  The reaction direction is 

opposite that of the jet.” (Sunderland, Chun, and Jomaas, 1).  This effect is proven by Newton’s 

Third Law of Motion.  This law of physics states, “Whenever one body exerts a force on a 

second body, the second body exerts an oppositely directed force of equal magnitude on the first 

body.”  (Cutnell and Johnson 94).  Therefore, in order for firefighters to maintain their position 

as well as that of the nozzle, they must exert an equal and opposite force against the nozzle.  The 
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higher the nozzle reaction, the quicker firefighters will be fatigued and the quicker that they will 

consume air from their air packs, exacerbating a logistical challenge that will be discussed in a 

following section.  In addition to fatiguing firefighters, a single firefighter simply cannot control 

many nozzles.  While the types of nozzles will be discussed in detail in a later chapter of this 

report, it is important to know that some nozzles have lower nozzle reactions than others due to 

lower operating pressures.  This reduced nozzle reaction is important because in addition to the 

multitude of tasks that were listed previously, many United States fire departments are being 

forced to reduce their staffing levels due to budgetary constraints.   

With this information on the origin nozzle reaction, it is important to identify 

approximately how much force can be absorbed by one, two, and three firefighters.  A study 

conducted by Paul Grimwood examining this quantity with the London Fire Brigade provides an 

answer.  He found that one firefighter could effectively manage only 266 Newtons, or 60 pounds 

of force.  He also found that a team of two firefighters could manage 333 Newtons or 75 pounds 

of force and a team of three firefighters could manage 422 Newtons or approximately 95 pounds 

of force.  It should be noted that many firefighters can cope with nozzle reactions above these 

limits, but these numbers are considerations that are used for firefighters with a median level of 

training and experience.  With these numbers, a flow rate can be determined to ensure that 

firefighters will not be overwhelmed while attempting to advance and utilize a hose and nozzle 

while inside of a burning building.  This consideration will be discussed in a later chapter on 

nozzle selection. 

Pressure reducing devices are perfect for this task, but they can also create numerous 

problems in attacking fires.  Depending on the device type, the valve may be removable or fixed 

in position.  Some may be adjustable by firefighters in the field while others are set at a certain 
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pressure during the production process.  Still other valves are designed to only reduce pressure a 

certain amount while others are designed to only allow a certain pressure.  Understanding these 

devices is something that is key to high-rise firefighting, but too often it is misunderstood by 

firefighters.  In their haste to perform their duties, firefighters may not notice that a pressure 

reducing valve (PRV) is present, or they may not adjust the valve to the pressure that is needed.  

Without noticing this, they may commit to an aggressive fire attack, which can be very 

dangerous without the proper volume of water to combat the fire or without the pressure to 

achieve the correct nozzle pattern.  Also, depending on the device, increasing the supplied 

pressure for the water at the supplying engines may not have a significant impact on the fire 

attack.  This has been seen in many different notable fires that will be discussed later. 

These systems are also susceptible to other failures.  One of the biggest problems that can 

occur in a standpipe operation is a debris filled system.  FDCs are generally equipped with 

locking caps that only firefighters and fire protection engineers are able to open.  However, these 

caps are often broken or removed.  Tampering with these caps is often done either to obtain the 

caps to sell them as scrap metal as many are made of brass, or even for mischievous purposes.  

Once these caps are removed, there is the possibility that debris can enter the system though 

these open connections.  Items as simple as leaves and pebbles to soda cans or tennis balls have 

been found in these systems.  The presence of such debris can have serious issues in a fire attack 

that may require the hose line to be shut down.  If a nozzle team has advanced to the seat of the 

fire and then they lose water supply, they will be in serious danger until water is restored.  

Firefighters also cannot shut the line down and then attempt to fix any issues in the fire area, so 

they must retreat to an area of refuge until they can repair the line and push back into the affected 
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area.  Such a delay can be deadly for any trapped occupants, or it can lead to a failed fire attack.  

Methods to overcome this problem will be discussed later in this report.   

The particular considerations for fire attack and for standpipe operations will be 

discussed later when hydraulics are examined.  Standpipe systems do solve the problem of time-

consuming hose deployment in very tall buildings, there are many other issues that are present in 

high-rise buildings. 

3.3 Building Construction 

3.3.1 Introduction 

 One of the largest hazards when fighting fires in high-rise buildings originates from the 

design of the building itself.  Below, this report will discuss how the large size of high-rise 

buildings can affect firefighting efforts, as well as the special circumstances that firefighters and 

building designers must consider. 

3.3.2 Building Size 

 High-rise buildings are becoming more prevalent in the United States, due to several 

factors.  Both residential and commercial high-rise buildings are being built at an ever-increasing 

rate in order to accommodate the growth of cities.  The increasing number of people seeking 

housing in dense urban areas is driving the increase in residential high-rises.  Also, due to the 

expanding global economy, businesses are hiring vast numbers of employees in order to fulfill 

important new roles.  In addition, these businesses are generally located near similar businesses 

to facilitate interactions both intercompany and intracompany.  

 With this increasing demand, buildings are becoming larger and more complex than they 

ever have been in the past.  These larger buildings do greatly complicate firefighting efforts, as 

previously mentioned.  Also, there are numerous tasks that must be normally must be completed 
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in short order by the first arriving firefighters in addition to other tasks that must completed in 

these environments.  The time that it takes firefighters to get into a position where they can 

complete their tasks will be discussed in the following section of this chapter. 

 Depending on the size of the building, many high-rise buildings are similar in size to a 

warehouse.  However, unlike a warehouse, these buildings are generally condensed into a single 

city block.  As previously mentioned, the height of these buildings complicates a simple 

firefighting operation such as water supply operations.  This complication will be discussed in 

much greater detail in later sections of this report. 

3.3.3 Building Construction 

 Due to the orientation of the building, command issues can arise.  In a warehouse setting, 

chiefs and other officers in command of the scene are generally able to have much more 

situational awareness than they would in a high-rise building.  Chiefs would generally be able to 

perform a 360º survey of the building to determine important information such as the location of 

entrances and exits, fire progression, and determining other information about the building.  In a 

high-rise building, this important information may be hidden or difficult to determine from the 

ground.  In fact, in some high-rise incidents, there are groups of firefighters who may be 

assigned to a reconnaissance role in order to supply information for the incident commander to 

allow him or her to determine the most appropriate course of action.  

 Due to the size and complexity of the building, many departments assign one crew to 

perform the task of “lobby control.”  This task generally consists of controlling which 

firefighters ascend the building, occupant evacuation, managing the sprinkler system, managing 

the fire alarm system, and alerting building occupants through a building loudspeaker.  Because a 
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warehouse or a similar large structure will generally not have these systems, firefighters will 

likely be able to have a direct role in fire suppression operations.  

 From a scientific perspective, the design of a high-rise building greatly facilitates fire 

spread.  As mentioned in a prior chapter, much of the heat released by the combustion process 

rises through convective heat transfer.  Therefore, the fuel above the fire will be heated and begin 

the pyrolysis process, increasing the rate of fire spread.  There have been numerous recent fires 

that saw very large fire spread in this manner, including the recent Grenfell Tower Fire in 

London in 2017.  While London firefighters were able to extinguish the fire on the interior of the 

building, the fire extended to the building’s exterior where, out of the reach of firefighters, it 

spread to consume most of the building.  This fire growth was due to the presence of combustible 

cladding on the exterior of the building.  Cladding is a material used on the outside of tall 

buildings to contain the building’s interior temperature, making buildings more energy efficient.  

While new buildings are required to have noncombustible cladding, there are still many older 

buildings that were constructed before this requirement was implemented, in the same manner as 

buildings without sprinkler systems. 

 As well as the large size, the chemicals found in high-rise buildings can be just as volatile 

as some that are stored in warehouses.  Most people may be used to having the aforementioned 

synthetic fuels in their homes in the form of chairs and other furniture, but they can release 

extremely hazardous materials when burned.  One of the products of incomplete combustion is 

Carbon Monoxide.   Gorbett, Pharr, and Rockwell state, “CO [Carbon Dioxide] is produced 

when a fire is undergoing incomplete combustion…. When CO is inhaled, it passes into the 

bloodstream where it combines with the hemoglobin molecule.”  (Gorbett, Pharr, and Rockwell, 

68).  Another colorless and odorless gas that is released when these materials are burned include 
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Hydrogen Cyanide.  While carbon monoxide is mentioned far more often, hydrogen cyanide is 

much more lethal.  With the advent of these plastic based materials, this hazardous material is 

much more common.  The newfound presence of these gases is due to the chemical reactions that 

take place during the combustion process.  As a quick summary, a hydrocarbon reacts with 

oxygen when energy is added, and carbon dioxide and water are produced.  However, these 

products would only be created in an ideal, laboratory atmosphere.  In earth’s atmosphere, large 

quantities of Nitrogen are found, allowing for the formation of new components such as 

Hydrogen Cyanide, a compound of one Hydrogen molecule, one Carbon molecule, and one 

Nitrogen molecule, can be created.  Carbon Monoxide molecules are also found in these 

situations due to the incorrect ratio of combustion.  These materials are extremely hazardous, 

requiring the use of respiratory protection for firefighters.  Some of the logistical challenges of 

providing this protection as well as other challenges associated with high-rise firefighting will be 

discussed in the following section. 

3.3.4 Stairs and Other High-Rise Firefighting Logistical Challenges 

3.3.4.1 Introduction 

 As mentioned in the previous section, the sheer size of high-rise buildings makes 

firefighting in these buildings very difficult.  One of the largest reasons for this challenge is due 

to the heights of the buildings.  While already discussed with water supply, in order to arrive at a 

position where firefighters can perform vital tasks, firefighters may need to exert a high amount 

of energy and a large amount of time simply climbing the stairs.  Firefighters must bring all of 

their personal protective equipment and all of the supplies that they might need to fight fire with 

them.  Simply carrying protective equipment can weigh upward of eighty pounds, not including 

hose, nozzles, or hand tools that may be needed to perform lifesaving operations.  When all of 
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this equipment is added, firefighters may be carrying well over one hundred and fifty pounds 

with them. 

3.3.4.2 Elevators 

 Complicating these tasks, firefighters will often not be able to use elevators.  While 

modern elevators have two stages of firefighter operations, firefighters still cannot use these 

elevators in many situations.  Assistant Chief Dave McGrail of the Denver, Colorado, Fire 

Department lists many of these situations in his book Fire Department Operations in High-Rise 

and Standpipe Equipped Buildings.  Chief McGrail lists several of these situations including, 

water seen in the elevator shaft, fires in the elevator machine rooms, and other hazardous 

situations.  Chief McGrail also lists several considerations that must be made when attempting to 

use elevators in these buildings.  He states that firefighters need to have a firefighter skilled in 

elevator operation assigned only to operate elevators and they must be equipped with a full 

complement of forcible entry equipment and fire extinguishers to allow them to escape from an 

elevator, should they become trapped.  Chief McGrail also states that no more than a single crew 

ride in an elevator.  This consideration due to both the size of most elevators, as well as weight 

requirements. 

3.3.4.3 Firefighter Response Using Stairs 

 Even with all of these safety considerations, firefighters still need to stop the elevator and 

climb at least one floor before arriving at the fire location, known as the “fire floor.”  This 

recommendation is due in part to both firefighter safety while traveling in an elevator, as well as 

to allow the officers in charge of fire attack and search and rescue operations to familiarize 

themselves with the layout of the floor below, as this is generally the same layout as the floor 

above, especially in commercial buildings.  Firefighters can also make their connections to the 
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standpipe system on the landing below the fire and then stretch the line upward to the fire floor, 

allowing for the hose line to lead firefighters to a safe area of refuge.  In addition to having more 

space for firefighters to prepare the attack line for deployment, when the charged hose line is 

advanced onto the fire floor, the stairwells will likely fill with smoke and other products of 

combustion due to the density of these materials, as mentioned previously.  The standpipe below 

will allow firefighters to be guided to an area below this smoke layer, allowing them a safe area 

should something go wrong during firefighting operations.   

Also, the stairwell design can complicate these decisions.  If firefighters are faced with a 

design known as “scissor” stairs, they will have to arrive at two floors below the fire.  This type 

of stair is explained by Chief McGrail with, “Unlike the return-type stair, scissor stairs do not 

return to the same vertical geographic location at each floor landing.  In most scissor stair 

designs, the stairs exit on the opposite side of the building at each landing.” (McGrail 108).  

Therefore, in order for firefighters to reach the correct location on the fire floor from that 

particular stairwell, they must ascend the stairs from two floors below the fire. 

With all of this stair climbing, it will take significant longer for firefighters to reach the 

fire.  As stated previously, firefighters are unable to get water on the fire quickly through the use 

of preconnected hose lines, which will necessitate standpipes.  One of the reasons that 

preconnected hose lines are used as one of the main fire attack packages is due to the speed with 

which they can be deployed.  Firefighters can arrive on the scene, pull a hose from the engine, 

flake it out, call for water, and begin to flow water.  In a high-rise application, firefighters must 

first climb the stairs and make a hose connection before they can follow the same process.  With 

all of the equipment that firefighters have to carry with them, this can take up to a minute for a 

firefighter to climb each flight of stairs.  This can lead to a substantial amount of time for 
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firefighters to arrive at the scene of the fire.  The equipment carried by the firefighters in these 

applications as well as the potential size of the fire by the time that they arrive at the fire floor 

will be discussed in the following section. 

3.3.4.4 Carrying Equipment 

Firefighters must also carry not only the equipment that they would normally use for 

single family home operations, but they must also carry additional equipment.  Again, due to the 

size of the building, firefighters will have to carry more equipment than normal to support their 

extended operations.  Replacement hose and nozzles, medical equipment, communication 

equipment, batteries for radios and flashlights, additional tools, longer search ropes, and 

especially more air cylinders must be carried.  While all of this extra equipment is substantial, 

the most important of these is additional air cylinders.  Commonly called air bottles, these are a 

firefighters’ lifeline.  These air bottles provide firefighters the ability to survive in otherwise 

untenable areas due to the toxic gasses.  However, these air cylinders only typically hold 3000 

psi or 4500 psi of Oxygen.  While these are designed to last 30 minutes or 45 minutes, 

respectively, firefighters often expend air in much less time.  This difference is due to the 

physical toll placed on firefighters, especially operating in these hazardous environments.  

Firefighters must carry the weight of their equipment, any necessary hand tools, and the weight 

of a hose line.  While the weight of various hose line sizes will be discussed later in this report, it 

must also be remembered that these tasks are conducted in hot and smoky environments with 

little to no visibility.  In addition to all of these normal circumstances that cause firefighters to 

expend air faster than normal, in high-rise buildings firefighters often will expend air at a faster 

rate due to the physical toll taken by climbing the stairs.  Such an environment and such a 

physical toll requires firefighters to carry additional air cylinders with them.  When these 
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cylinders are expended, firefighters must return to street level to refill them except for in a few 

specially equipped buildings.  Should all of these cylinders be expended, then the fire attack 

would surely suffer. 

Because of the burden placed on firefighters by carrying all of this equipment, there are 

often crews that are responsible solely for shuttling equipment.  Depending on the size of the 

building, these firefighters may be responsible for carrying equipment at different heights, or 

more crews may be assigned.  Such a consideration means that these fires are much more 

manpower intensive, something that many fire departments are lacking.  In fact, a report was 

published in conjunction with the International Association of Firefighters (IAFF) and NIST on 

high-rise firefighting.  This report had firefighters conduct a series of benchmarks to determine 

how larger crew sizes decreased the time that it would take firefighters to complete a series of 

tasks.  This report held that smaller crews proved detrimental to firefighting efforts, even if the 

same number of firefighters responded. 

While the crew size portion of the study was the focus of the fire departments and the 

IAFF, NIST focused on fire modeling and fire growth.  Because a live-fire evolution was not 

allowed in order to keep continuity between test replicates, fire modeling had to be conducted to 

determine fire spread.  NIST conducted these tests to evaluate how the longer time that it took 

for crews to accomplish essential tasks such as getting water on the fire increased the size and 

intensity of the theoretical fire.  This modeling showed fire roughly doubled in size when 

allowed to burn unchecked, something that is well understood in the fire service.  This report 

shows that it is essential to get water on the fire as quickly as possible.  Therefore, when it takes 

longer for crews to arrive at the fire, the fire will clearly be larger.  Of course, the amount of heat 
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released by the fire depends on the growth rate.  The report states that depending on the crew 

sizes, firefighters may arrive when the fire has reached six cubicles rather than two.    

As previously mentioned, firefighters must be prepared to encounter large, fast-moving, 

intense, developed fires in high-rise buildings.  The tactics employed must be able to effectively 

combat the fire as quickly as possible and the equipment must be robust enough to handle the 

punishment of fireground use while also being light enough to be transported to the emergency 

by stair-climbing firefighters.  In a later chapter, this will be discussed with hose and nozzle 

selection.   

3.3.4.5 Occupant Response Using Stairs 

 Just as firefighters must climb stairs to ascend to the fire area, occupants must descend 

these stairs in order to escape from the building.  However, in large buildings, it may be 

impossible to evacuate all trapped occupants.  Both occupants and firefighters must work for 

occupant safety.  Rather than evacuating, some occupants may be safer by shelter in place from 

the fire.  Sheltering in place has proved to be one of the best ways to provide for occupant safety 

during a fire in many cases, especially when a large number of occupants are located a great 

distance from the fire.  However, in other cases, occupants have been killed in very remote 

locations due to combustion byproducts traveling throughout the building, especially in the 

MGM Grand Fire in Las Vegas, Nevada.  After this fire, many fire departments chose to seek to 

evacuate all occupants in the case of a high-rise fire.  While this may not be advisable, it is 

sometimes possible for occupants to evacuate the building with the help of the fire department. 

 The biggest consideration that firefighters need to make when attempting to evacuate 

trapped occupants from these buildings is getting occupants in stairwells remote from fire attack 

stairwells.  When firefighters make entry onto a fire floor, they will often prop the entry door 
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open to facilitate the hose stretch.  This task is required, as it prevents the door from closing on 

top of the hose line and restricting water from reaching the nozzle, but it does allow combustion 

byproducts to enter the stairwell and rise throughout the building.  In several fires, including the 

Cook County Administration Building fire, occupants have been killed by the smoke rising 

through the stairwell.  It is also important for firefighters to be aware of the stairwell construction 

so that they will be able to select which stairs they desire occupants to use for evacuation and 

which stairwell that they seek to use for fire attacks.  The important construction factors for 

stairwell selection will be discussed in the following section. 

 In addition to ensure that there are no trapped occupants in the stairwells, firefighters 

must also ensure that they understand the building’s heating, ventilation, and air conditioning 

system (HVAC).  Firefighters have often been taught to turn off the building’s entire HVAC 

system to prevent smoke from traveling through the building.  However, stopping the HVAC 

system can allow smoke and other combustion byproducts to freely travel the building.  This 

result is due to the unpressurized chambers that will allow for these products to travel just as they 

would naturally.  Once firefighters have allowed for this to happen, then it would be very 

difficult to prevent smoke from traveling to other areas of the building, especially depending on 

the system design. 

 It should also be important for firefighters to address the building occupants through 

loudspeakers.  As previously mentioned, one of the “lobby control” tasks to which firefighters 

may be assigned upon their arrival is this notification role.  Firefighters must be able to advise 

occupants on the events that are happening in the building.  If occupants know what is happening 

in the building, they will likely be more receptive to firefighters’ instructions.  Occupants must 

also be well-versed in both evacuation and sheltering-in-place protocols.  Many jurisdictions 
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have these fire drills to ensure that occupants know how to evacuate from buildings, but it seems 

that many occupants are not trained on sheltering-in-place.  Building management also seek to 

have these fire drills in times that will not disturb the tenants of these buildings, especially in 

business applications.  Rather than attempting to minimize their impact on businesses, these 

drills must maximize their safety benefits. 

3.3.4.6 Stair Construction 

 As mentioned in the prior section, firefighters must be able to select the stairwell that 

they seek to use for fire attack early in the incident as well as any occupant evacuation stairwell.  

One of the main considerations for selecting a fire attack stairwell obviously is choosing a 

stairwell that contains a standpipe system.   If the building only contains one stairwell with one 

standpipe system, then the fire attack stairwell has essentially been chosen for firefighters.  

However, if the building has two standpipe systems, the decision is made more difficult.  

Firefighters must be able to choose the stairwell that will be located closest to the fire.  This 

information can be obtained from the fire alarm panel, generally located on the ground floor, or 

from evacuating occupants.  It can be verified by a visual check by truck companies before 

engine companies begin the fire attack operation.  The job roles of each of these types of 

responding companies will be discussed in final chapter of this report. 

 Another consideration that must be made is to account for the stairwell(s) that is (are) 

commonly used by occupants.  If occupants are accustomed to use one particular stairwell to 

evacuate, then that stairwell should not be used for fire attack if at all possible.  Firefighters can 

easily adapt to choose a stairwell upon their arrival.  However, occupants who are currently 

evacuating will be less able to change to another stairwell.  Evacuation drills must be conducted 

with variations in them so that occupants are prepared to evacuate under adverse conditions.   
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3.3.5 Ventilation and Special Hazards in High-Rise Buildings 

3.3.5.1 Introduction 

 As mentioned previously, one of the main tactics to combat fire is through controlling the 

ventilation in and out of the compartment.  However, in high-rise buildings, this is much more 

difficult.  While HVAC systems were already mentioned in the previous section, this section will 

focus on more traditional fire service ventilation methods.  In addition to the following 

challenges, it must also be considered that fans used by firefighters to ventilate normal single-

family homes will generally be unavailable for fires in high-rise buildings.  These fans are not 

only heavy, making it difficult for firefighters to bring these fans to their needed positions in a 

high-rise fire, but most of these fans are gas powered or electric powered.  Firefighters would 

either have to fill the building with more dangerous carbon monoxide gas for these gas-powered 

fans, or they would have to rely on the building’s electrical system to supply electric power.  In 

the case of gasoline-powered fans, firefighters would also need to carry large amounts of fuel 

with them to power these fans. 

3.3.5.2 Lack of Ventilation 

 It is important to remember that the fire service has two main ventilation methods: 

vertical and horizontal ventilation.  Again, vertical ventilation involves cutting holes in the roof 

or creating openings above the fire and horizontal ventilation involves creating openings on the 

same level as the fire.  While these are used extensively when fighting fires in single family 

homes, it is much more difficult in commercial and high-rise buildings.  Again, this limitation is 

due to the building construction features.   

It is difficult for firefighters to vertically ventilate a high-rise structure, as the fire is 

rarely on the top floor of the building.  While a significant portion of the fires located on the top 
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floor of these buildings are located in mechanical rooms, these fires are generally extinguished 

easily and do not require additional fire service created ventilation.  Fires that are located at 

lower levels are generally larger, which can require the additional ventilation.  The main method 

of vertical ventilation in high-rise structures involves opening the roof access in stairwells to 

allow the combustion byproducts to escape through these doors.  While this process can be 

completed with much less destruction than cutting holes in the roof of a structure, it does greatly 

endanger the occupants sheltering above the fire.  This method will also limit fire service access 

above the floor affected by fire, as firefighters must be breathing supplied air to protect 

themselves from the environment.  In addition to creating a larger logistical challenge, it will 

also limit how far firefighters can travel above the fire.  These challenges have also been seen 

several times in other historical fires including the One Meridian Plaza Fire and the First 

Interstate Bank Building fire, both of which will be discussed in the following chapter. 

Horizontal ventilation may seem to be a more direct method to ventilate a fire, but it can 

be just as hazardous for firefighters operating near the fire as well as individuals at the street 

level.  High-rise buildings generally have windows that cannot be opened for building occupant 

safety.  Many of the windows that are present in high-rise buildings are floor to ceiling windows 

that would completely cover the building’s façade.  Therefore, the windows would have to be 

broken by firefighters to employ horizontal ventilation.  At the street level, individuals could be 

severely injured by falling glass if firefighters would seek to horizontally ventilate mechanically.  

The area directly below the building would have to be cleared of all people for their own safety.  

Firefighters would also need to clear a few blocks apart away from the building to protect these 

individuals in the case of wind carrying glass shards.  These reasons alone generally prevent 

firefighters from using mechanical horizontal ventilation, but there are other natural reasons that 
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this is a difficult tactic, mainly hazards created from the Stack Effect as well as the possibility of 

wind driven fires. 

3.3.5.3 Stack Effect 

 The stack effect is also another physical effect that must be considered when discussing 

ventilation in high-rise operations.  Chief McGrail defines this phenomenon as, “’the vertical, 

natural air movement throughout a high-rise building caused by the difference in temperatures 

between the inside air and the outside air.’” (McGrail 246).  He goes on to state that the positive 

stack effect is a draft from the ground level to the roof and the negative stack effect is a natural 

air current from the roof to the ground.  In warmer climates, the negative stack is induced, 

meaning that smoke will actually travel downward through the building and vice versa in colder 

environments.  This is due to the temperature gradient between the inside and air outside of the 

building. 

 The stack effect impacts ventilation patterns even when the windows are closed.  

However, when the windows are opened, this pattern becomes much more influential.  

Furthermore, firefighters sometimes use fans to aid in stairwell pressurization.  Many modern 

stairwells are pressurized by built in fans when the fire alarms are activated, but when doors are 

opened by fleeing occupants or by firefighters, these built in fans can become overwhelmed.  In 

order to supplement these fans, firefighters can sometimes use fans that they would use for single 

family homes.  However, the stack effect can either assist or reverse this process and cause 

significant issues for firefighters.  If smoke and other combustion byproducts move throughout 

the building and affect other occupants, firefighters will become overburdened extremely 

quickly.  Rather than evacuating a few floors of the building, firefighters will not be responsible 

for evacuating the entire building.  This task would require far more personnel than simply 
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attacking the fire and evacuating a few floors surrounding the fire.  Many fire departments are 

unable to handle these challenges, which could lead to several injuries and deaths.  Overall, the 

stack effect is something that will limit the fire department’s ability to ventilate a high-rise 

structure.  It must be considered before ventilation orders are given as well as in the case of a 

window failure due to heat or flame impingement. 

3.3.5.4 Wind Driven Fires 

 Wind Impacted Fires are a key safety issue for firefighters not only in high-rise buildings, 

but in all types of structures.  However, as was mentioned in the previous section on the stack 

effect, the impact of wind is much more severe in high-rise buildings.  There have been several 

documented cases in which firefighters have been severely injured or killed in these events.   

One of the most notable of these events was the fire at Vandalia Road in Brooklyn, New 

York, as previously mentioned. Three firefighters were killed in a fire that occurred in a ten-story 

apartment complex housing elderly occupants.  Firefighters attempted to crawl down the hallway 

to secure the door of the burning apartment to allow other firefighters to stretch attack lines to 

the door of the apartment easier.  However, these firefighters were caught in a “flow path.”  This 

term implies that firefighters and the fire were trapped between two openings, in these cases 

windows.  An open window behind the fire provided oxygen to the fire, which was spreading out 

of the open apartment door.  When firefighters were moving down the hallway, the door to an 

apartment behind them opened as a victim attempted to escape.  While he was doing this, he left 

his window open, creating a path for the fire to travel.  The three firefighters did not stand a 

chance of survival and were killed instantly.  The causes of their deaths were determined to be 

smoke inhalation and burns.  It was determined that the window located behind the fire allowed 

the wind to enter the compartment and fan the flames.  The wind then pushed the fire down the 
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hallway to the newly opened apartment.  The opened window in this apartment provided an 

exhaust point for the fire, allowing the byproducts of combustion to escape the compartment.  

This tragic event led to some of the first studies concerning flowpath and wind driven 

fires.  A few years later, studies were done in combination with NIST, UL, and the Fire 

Department of New York City to study this phenomena and to determine ways to prevent future 

LODDs.  In conjunction with researching wind-driven fires, the research groups also examined 

different ways to fight high-rise fires, including various wind control devices and different types 

of nozzles designed to deliver water to the fire from the floor below the fire.  These devices have 

now entered the fire service in serval large cities across the United States.  Captain John Ceriello 

discussed their implementation at the Fire Department Instructor’s Conference 2018 in his 

presentation, “Fighting High-Rise Fires: A Big City Prospective.”  

3.3.5.5 Lack of Egress Possibilities 

One of the most common and most shocking images produced by high-rise fires are from 

individuals jumping to almost certain death from these buildings.  While this study will not 

examine the psychological justifications for jumping from a burning building in great detail, it is 

important to note that these individuals are trapped with a limited possibility of escape. 

As previously mentioned, the stairwells and elevators are some of the only ways to 

escape a fire in one of these buildings.  However, both building occupants and firefighters are 

instructed to refrain from the use of elevators in fire situations.  This instruction is the result of 

both firefighter deaths as well as from understanding how elevator sensors work.  The sensors 

that control elevator doors are infrared sensors, meaning that when there is an area of heat in 

front of the sensor, then the door will remain open.  This system has resulted in several deaths of 

both firefighters and civilians.  On the civilian side, the only death that resulted from the First 
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Interstate Bank Building fire in Los Angeles, California, was a result of this system.  While this 

fire will be discussed in greater detail in following portions of this report, a member of building 

security used the elevator to evaluate the conditions on one floor of the building after the 

activation of the fire alarm system.  When the elevator door opened, the occupant was met with 

the smoke and flame accompanying a large fire and he was unable to close the doors.  After 

frantically calling for help from his fellow employees, he succumbed to the fire. 

Firefighters more often face these challenges, even on building fire alarm activations.  

Firefighters are able to place elevators in what is known as a “firefighter’s service” condition 

which equates to recalling the elevators and placing them under the control of the firefighters.  

One of the ways that this elevator mode changes the controls of the elevator is that it requires 

firefighters to hold the “Door Open” button until the doors reach their full width, and the sensors 

that allow for an elevator to be “held” are deactivated.  Some of these are due to tragic fires that 

have occurred in the past.  For example, in Memphis, Tennessee, in 1994 six firefighters 

overcrowded and overloaded an elevator while investigating the source of one of these incidents.  

The firefighters used the elevator to ascend to the floor involved in fire where they were met 

with similar conditions to the First Interstate Bank Building fire.  One of the firefighters was able 

to close the doors and escape the fire, but some of his fellow firefighters were not so lucky.  This 

incident is discussed in a NIOSH report on the deceased firefighters.  This underscores why 

elevators are such a hazard in high-rise fires. 

While occupant elevators are being developed and other systems such as parachutes are 

designed to help building occupants to evacuate a high-rise fire, these are not commonly 

employed.  Firefighters and occupants both must use the stairs for building egress.  This can be a 

challenge as there are often only a few stairways in a building due to the lack of everyday use.  
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However, this is often specified by code, meaning that a building must be able to evacuate a 

certain amount of people in a certain amount of time.  This number is specified in human 

behavior in fire analyses to ensure that the fire protection systems in buildings can protect 

occupants long enough to ensure that they will be able to exit the building safely.  Such analyses 

can also determine if occupants should be instructed to evacuate the building or if they should be 

instructed to shelter in place for protection from the fire, which itself can lead to challenges. 

Often in these buildings, occupants on floors remote from the fire may be instructed to 

shelter in place, but as previously mentioned, these floors can quickly become involved in the 

incident.  The highest fire protection rating in these buildings is generally two hours, meaning 

that the fire-resistant walls and doors are only rated to prevent fire impingement for two hours.  

With the immense number of occupants that may be trapped in the building, an immense number 

of firefighters are needed to facilitate such an evacuation.  While these evacuations have 

occurred in many high-rise fire incidents, the large amount of manpower required to evacuate 

trapped occupants can severely detract from the fire suppression operations. 

To evacuate the residents sheltering in place, firefighters must physically travel to the 

room to evacuate the occupants.  Especially on upper floors, firefighters are unable to use aerial 

ladders to rescue trapped occupants from the building’s exterior.  While in low-rise or residential 

homes, firefighters are able to use even ground ladders to rescue occupants, the height of high-

rise buildings negates this option.  Occupant evacuation in high-rise fires can truly be a 

manpower intensive and daunting task for even the largest fire departments. 
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4  Case Studies 

4.1 Overview 

In order to determine the ways in which fires are fought today, the fires of the past must 

be examined.  One of the main ways that firefighters and the fire protection community learn are 

through failures and through notable incidents.  Therefore, a comprehensive review of notable 

high-rise fires in the United States will be presented.  These events include the One Meridian 

Plaza fire, the First Interstate Bank Building fire, and the Clearwater, Florida, Condominium fire.  

There will also be a brief mention of positive case studies. 

4.2 One Meridian Plaza Fire 

4.2.1 Introduction 

Arguably, the most notable high-rise fire in United States history happened in 

Philadelphia, Pennsylvania in 1990.  This fire resulted in the deaths of three firefighters and the 

destruction of a major structure in the Philadelphia skyline.  This incident can be examined as the 

“Murphy’s Law” of high-rise firefighting in which nearly every system designed to prevent, 

contain, or suppress a fire was either working improperly or absent from the structure.   A 

technical report published by the United States Fire Administration (USFA) stated, “It was the 

largest highrise [sic] office building fire in modern American history – completely consuming 

eight floors of the building – and was controlled only when it reached a floor that was protected 

by automatic sprinklers.” (USFA-TR-049, 1).   

4.2.2 Incident Summary 

On February 23, 1991, the building located at One Meridian Plaza ignited and burned for 

over nineteen hours.  The fire was detected just after 8:20 PM but the fire department was not 

notified until just before 8:30 PM.  Firefighters arrived to find large amounts of fire on the 
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building’s 22nd floor.  Two minutes after arrival, crews called for a second alarm, and the first 

crews took elevators that served the low-rise portions of the building and climbed the stairs from 

the 11th floor. 

The first system failure that occurred was a total electrical power failure due to fire 

impingement on some of the conduit.  The emergency generator did not operate as it was 

designed and therefore the building was without electrical power for the duration of the incident.  

This prevented firefighters from using the elevator to transport any equipment. 

 The initial attack was conducted with one-and-three-quarter inch diameter handlines with 

automatic nozzles.  After several minutes, crews were able to force a door onto the 22nd floor but 

with insufficient water pressure, firefighters were unable to enter the floor. 

 Additional alarms were called as crews worked to supply additional pressure to the 

standpipe system.  The upper floors of the building were then exposed to “autoexposure,” 

meaning that the fire was attempting to spread through the exterior of the building.  The fire also 

spread through unprotected vertical shafts such as cable trays and the like. 

 Due to the water supply issues caused by the pressure PRVs, firefighters were limited to 

defensive operations while the fire spread to the 23rd and 24th floors.  A fifth alarm was 

summoned while firefighters from Engine 11 were assigned to ascend to the building’s roof to 

open bulkhead doors to allow the fire to vertically ventilate.  However, these firefighters radioed 

that they were disoriented on the 30th floor.  While they crew requested to breach a window for 

ventilation, the captain was reported to be injured.  Rescue operations, including using a 

helicopter to illuminate the floor, were initiated but with no success.  A search team was inserted 

at the roof, but members of this group became disoriented and the operation had to be suspended 
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due to thermal drafts and heavy smoke.  The firefighters were eventually located and brought to 

a medical triage area on the 20th floor, but resuscitation efforts were unsuccessful. 

 After the missing firefighters were located, firefighters again attempted to overcome the 

water supply issue by stretching a five-inch supply line up the stairwell to the fire floor.  

Eventually, three of these hose lines were stretched to supply all of the attack lines operating on 

the interior of the building.  These three supply lines were able to supply all of the handlines that 

were being used to combat the fire, but the fire had grown to an extent in which it could not be 

controlled by hose lines. 

 After approximately 11 hours of firefighting, operations were suspended, and firefighters 

were withdrawn from the building due to the concern of a possible structural collapse.  

Firefighters attempted to attack the fire from adjacent buildings using large master stream 

devices.  However, the fire was eventually stopped by sprinkler heads installed on the 30th floor 

that were supplied from the fire department pumpers that were initially supplying the standpipe 

system.  Only 10 sprinkler heads activated and stopped the spread of the fire. 

4.2.3 Lessons Learned 

One of the biggest takeaways from this incident, especially as it relates to this report, was 

the rejection of 100 PSI automatic nozzles and one-and-three-quarter inch handlines.  According 

to the technical report, “The pressure reducing valves in the standpipe outliers provided less than 

60 psi discharge pressure, which was insufficient to develop effective fire streams.” (USFA-TR-

049 9).  Firefighters made several efforts to boost the pressure in the system, but ultimately these 

were unsuccessful due to the PRVs.  The only way that firefighters were able to overcome this 

challenge was to deploy a large diameter supply hose, a process that took over an hour to 

complete.   
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In the technical report, one of the largest considerations on the standpipe system stated, 

“Code assumptions about fire department standpipe tactics proved invalid.” (USFA-TR-049 17).  

The report mentions that this standpipe pressure was only required to be approximately 65 PSI 

rather than the 100 PSI required by the Philadelphia hose and nozzle combination.  The report 

states, “Most fire departments today use 1-3/4 inch and 2-inch hose with fog nozzles for interior 

attack.  These appliances require substantially greater working pressures to achieve effective 

hose streams.” (USFA-TR-049 17-18).  The report goes on to state that PRVs were installed in 

the building, due to the desire to protect firefighters from excessive nozzle reaction, a force 

discussed earlier.  It discusses that a complete revision of NFPA 14 was suggested in the 

aftermath of this incident to remedy this potential challenge.   

Another major critique resulting from the events at One Meridian Plaza was to ensure 

that all high-rise buildings were equipped with automatic fire sprinkler systems. 

4.3 First Interstate Bank Building 

4.3.1 Introduction 

The First Interstate Bank Building fire in Los Angeles, California, in 1988 is a cautionary 

tale about installing and maintaining fire protection systems.  This fire grew to such a severe 

level due to the sprinkler system maintenance that placed the system out of service at the time of 

the fire.  The fire resulted in only one death, nearly fifty injuries, and approximately $50 millions 

in damage due to the heroic efforts of the Los Angeles City Fire Department members.  Nearly 

half of the department responded to the incident and mounted an offensive attack from four 

stairwells. 
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4.3.2 Incident Summary 

The fire started on the 12th floor of the building and extended to upper floors of the 

through the exterior walls of the building.  The fire eventually spread to the 16th floor with 

flames extending nearly 30 feet on the exterior of the structure.  The fire burned intensely 

approximately 90 minutes per floor and took about 45 minutes to spread to the next floor.   

Approximately fifteen minutes after the standpipe was drained and the sprinkler system 

was deactivated, the fire was reported.  Within five minutes of department arrival, the officers 

had requested approximately 200 personnel.  Firefighters climbed the stairs to the fire floor per 

the department’s Standard Operating Policy.  The first companies to reach the fire area began fire 

attack from all four stairwells upon the notification of seeing smoke in the stairwell.  Firefighters 

had difficulties advancing these hose lines onto the floor as they were met with heat and smoke.   

This initial attack used primarily two-inch attack lines and they were supplied by fire department 

pumpers at street level in addition to the fire pumps that were started after the fire attack began.  

The fire pumps were restarted by sprinkler contractors who were first rescued and then returned 

to the building.  The engine companies that were supplying the standpipe system also had to be 

replaced multiple times as they were severed several times due to falling glass.  The Incident 

Commander of the fire also gave approval for firefighters to break any glass they deemed 

necessary for ventilation. 

Upon notice that the fire was expanding on the exterior of the building, crews attempted 

to push the fire to the perimeter of the floor.  Runners were also employed to communicate due 

to the overtaxed radio system.  Approximately 20 handlines were used during the fire attack with 

firefighters waiting for the fire to impinge on the 16th floor where they could prevent it from 

spreading.  This strategy eventually proved to be successful. 
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Several occupants remained trapped above the fire and therefore had to be rescued by 

firefighters and helicopters.  These crews were some of the only firefighters at the scene who 

used 60-minute air cylinders to ensure that the other firefighters did not overexert themselves. 

The standpipe system in this building was a single zone system, meaning that only one 

riser ran the course of the building.  It was also determined that the sprinkler system would be 

activated on higher floors from the 17th floor to the 19th floor so that the fire could be contained if 

firefighters would not be able to control it.  Both the sprinkler and the standpipe systems were 

fed from an 85,000-gallon reservoir.  The 2,000 GPM pumps had the volume of water down to 

only one-third of the capacity.   

The pressure reducing valves in this building regulated the pressure from approximately 

585 PSI at the basement down to a manageable level for the firefighters operating in the 

building.  However, there were some errors with these PRVs meaning that there were some 

valves that allowed for nearly 400 PSI to escape through the system. 

It was determined after the incident that firefighters were able to use the 4,000 GPM 

provided by the standpipe system to supply the one-and-three-quarter, two, and two-and-a-half-

inch hose lines that were used to attack the fire. 

4.3.3 Lessons Learned 

The technical report determined several key lessons from this building, mainly involving the 

sprinkler system of this building.  It reaffirmed that sprinklers were vital for high-rise buildings, 

but it also determined that non-sprinklered buildings create massive staffing requirements.  It 

also stated that fire departments need to create contingency plans for buildings in which fire 

protection systems fail. 
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4.4 Clearwater, Florida, Condominium Fire 

4.4.1 Introduction 

Clearwater, Florida, firefighters responded to a high-rise condominium fire on June 28, 

2002.  The fire originated in a kitchen on the fifth floor of an 11-story building.  One of the 

complicating factors in this fire was the delay in fire department notification.  Occupants 

attempted to fight the fire with fire extinguishers and occupant use standpipes before they alerted 

the fire department.  The standpipe riser was also shut down and a fire hydrant in the complex 

was out of service.  Firefighters eventually had to call for a three-alarm compliment to provide 

enough manpower to successfully extinguish the fire.  Despite deviation from established 

standard department policy, firefighters were able to extinguish the fire through interior and 

exterior fire attack.  

4.4.2 Incident Summary 

After residents attempted to use three fire extinguishers as well as the occupant use 

standpipe, the fire department was alerted of the fire.  Upon the arrival of the first engine 

company, the pump operator attempted to supply the freestanding FDC from the engine.  The 

driver also worked to secure a water supply from the hydrant located directly adjacent to the 

FDC.  While these tasks were performed, firefighters from the first arriving engine as well as the 

first arriving ambulance ascended to the fifth floor with a one-and-three-quarter inch hose line, 

various adapters and fittings, and forcible entry tools.  Rather than using the stairs, this crew 

chose to use the elevator to ascend directly to the fifth floor. 

When the crew arrived at the fire floor, they encountered a large amount of smoke, but 

they reported that visibility was still sufficient.  They informed other residents to return to their 

condos while they called for a second alarm assignment.  A firefighter than connected to the one-
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and-a-half-inch standpipe outlet while the rest of the crew continued to look for the seat of the 

fire.   

After the arrival of the first due truck company, the first arriving engine company 

attempted to stretch a supply line so that the ladder could be used for fire suppression, but the 

crew then determined that the fire hydrant was out of service, which was previously unknown to 

the fire department.  At this point in the operation, crews inside determined that they would 

rescue as many occupants as possible but that they would abandon interior firefighting 

operations.  It is believed that the room of origin reached flashover and there was also possibly a 

rollover in the hallway.  These extreme fire events led to the injuries of three firefighters and the 

death of one of the residents. 

Upon the arrival of the next engine company, the first ladder company was supplied with 

water from a different hydrant.  The first squad company also stretched a one-and-three-quarter-

inch hose line to assist with fire suppression.  The first truck company was used for standpipe 

operations by providing its ladder pipe as an additional standpipe rise.   

At the command level, two additional truck companies were requested as well as a third 

alarm.  The additional alarm was dispatched, but the additional truck companies were not. 

4.4.3 Lessons Learned 

Many of the recommendations in the wake of this incident discussed communication and 

command considerations rather than the fire protection systems or fire service tactics.  However, 

in addition to suggesting that firefighters must follow established guidelines set forth by the 

department, the report does raise some important considerations.  One of the main 

recommendations focuses on using the standpipes located in the stairwells as well as not using 

elevators to transport firefighters directly to the fire floor. 
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Another lesson that this report conveys is that an aggressive interior attack should be 

mounted in order to contain and extinguish fires quickly when staffing is an issue.  The report 

first states that firefighters should mount an aggressive interior extinguish effort.  Of this fire in 

particular the report states, “In this instance, water was not put on the fire for approximately 

twenty-eight minutes, well after conditions lead to a flashover, which ultimately resulted in two 

fatalities and ten injuries.” (USFA-TR-148 13).  While this report does not critique the fire 

department’s chose of hose or nozzle, it does state that firefighters should seek to apply water to 

the fire as soon as possible for firefighter as well as occupant safety. 

4.5 Positive Case Studies 

4.5.1 Introduction 

While case studies detailing the failures of either firefighters or fire protection systems 

are prevalent, it is much more difficult to locate positive case studies, which could be due to 

several reasons.  The most practical reason is that a large-scale investigation is generally not 

begun for incidents that have a positive outcome.  These federal or state investigations are 

typically launched where there has been severe injuries or deaths in order to determine where 

fault lies.  However, in positive studies this is not the case.  Another reason that these incidents 

are more difficult to find is that they do not make good news stories.  While the media is the 

predominate source of current event information, it is an entrepreneurial enterprise.  Therefore, 

the media is seeking to increase its viewership so that it may increase its profits.  While a high-

rise building in the downtown area of any city will draw viewers for the news outlet, a massive 

fire that firefighters cannot control and that has people hanging out of windows will certainly be 

more dramatic.  A fire that firefighters are easily able to put out in a short time frame with only a 

limited amount of resources will be substantially less successful. 
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While there may be few lessons learned from these fires, this report will attempt to 

illustrate the tactics that were employed in these fires that made the operations successful.  

5 Hose and Nozzle Selection 

5.1 Overview 

Now that tactics have been discussed on a rather broad scale, this chapter will examine 

the hose and nozzle selection that is key to fire extinguishment.  This chapter is applicable to all 

fire departments, as the information is not unique to high-rise buildings, but the delivery of this 

information is tailored to standpipe operations.  In this chapter, the hydraulic principles of both 

hose and nozzle characteristics with respect to water flow and pressure will be discussed.  This 

chapter will also focus on the maneuverability of hose lines.  Finally, in the nozzle portion of this 

chapter, the benefits of using a smoothbore nozzle in high-rise buildings will be examined. 

5.2 Hose 

5.2.1 Introduction 

The principle weapon in the any fire department arsenal is hose.  In high-rise buildings, 

attack hose lines are extremely important considerations while supply lines play an equally 

important but less visible role.  This section will relay information on this vital weapon. 

5.2.2 Couplings and Hose Diameters 

The biggest differentiation between hose is its diameter.  Hose lines with a diameter of 

two-and-a-half inches and smaller are known as attack lines as they are used to directly deliver 

water to the seat of the fire and hose lines with a diameter of two-and-a-half inches and above are 

supply lines that are designed to move large volumes of water.  This report will mainly focus on 

attack lines as these are the hose lines that are attached to a standpipe system. 
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Hose lines that are commonly used for fire attack in high-rise environments include one-

and-three-quarter inch hose, two-inch hose, and two-and-a-half-inch hose.  While many fire 

departments also use smaller one-and-half-inch hose, this is typically used for residential and 

smaller fires rather than fires in commercial buildings and high-rise structures.  One-and-a-half-

inch hose and one-and-three-quarter inch hose share one-and-a-half inch couplings while two-

and-a-half-inch hose has its own couplings.  These large couplings contribute to lower pressure 

loss due to friction loss. 

Friction loss is the pressure that is lost due to water traveling.  The higher the velocity 

pressure of the water, also known as the pitot pressure, a quantity that will be discussed later, the 

higher the friction loss.  Smaller diameter hoses also have a large friction loss because more 

water is in contact with the walls of the hose.   

Determining the size of the hose line in a low-rise structure is sometimes the 

responsibility of the company officer in charge of the company and sometimes the responsibility 

of the firefighter assigned to the nozzle position.  This determination is different from 

department to department and even from company to company with each department.  While it is 

not important to know who makes this determination, it is important to know that a size 

determination is made depending on the individual fire.  In a large building or in a building 

showing a large volume of fire upon arrival, firefighters will typically use a large diameter hose 

line so that they will be able to flow a large volume of water on the fire. 

However, in a high-rise building, most fire departments only have one hose size for their 

high-rise hose packs.  Some departments chose to use larger diameter attack hose so that they 

can provide the large volume of water on a fire, should it be needed, and others choose a smaller 

hose line so that they will be able to apply water to the fire faster.  Both of these are somewhat 



Brondum   54 

valid options depending on the area served by the particular department and the particular 

company’s district, as will be discussed in the following chapter. 

5.3 Nozzle Selection 

5.3.1 Introduction 

While choosing a hose size may be somewhat subjective, nozzle selection is far more 

objective.  The following sections will discuss the different in nozzle types and the advantages to 

different types of nozzles in a high-rise environment. 

5.3.2 Nozzle Types 

There are four main types of nozzles that are used by United States fire departments.  

These include, from least to most complex: smoothbore nozzles, fixed gallonage nozzles, and 

select-a-gallonage nozzles, and automatic pressure nozzles.  All nozzles other than a smoothbore 

nozzle are combination fog nozzles, meaning that they can flow a straight stream or a fog pattern 

for better vapor conversion.   

Smoothbore nozzles on the other hand simply only operate in what is referred to a “solid 

stream.”  These nozzles are simply a narrowed tube that allow for water to pass through an 

opening narrower than the hose diameter.  This will create a pressure that will allow the hose 

stream to reach a distance away from the firefighters as well as providing the ability to penetrate 

walls and other materials.  In order to extinguish fires, water from these nozzles is either applied 

to the burning surfaces, or the nozzle is moved rapidly to facilitate steam conversion.  While 

these nozzles are very simplistic, the design has been proven for several decades of operation.  

The next type of nozzle in terms of simplicity is the fixed or constant gallonage nozzle.  

This nozzle incorporates many of the design aspects of the smoothbore nozzle, but it includes a 

stem.  This stem creates “chatter” in the stream, creates a turbulent flow of water rather than a 
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laminar flow as seen in a smoothbore nozzle.  With the addition of this stem, the pattern can be 

altered so that the water will be delivered in a cone shape rather than a solid stream.  These 

nozzles will provide a certain amount of water at a certain pressure, depending on the stem that is 

in the nozzle.  Some of these stems are designed to provide 150 gallons per minute when 

provided 50 PSI, but the nozzles range all the way to 200 gallons per minute at 100 PSI, 

depending on department and company preference.  These nozzles, as with all fog nozzles, are 

far more effective than smoothbore nozzles when applying foam.  These are the simplest fog 

nozzles used in the fire service. 

The next most complex nozzle is a variable flow nozzle.  These nozzles are very similar 

to the fixed gallonage nozzle, except that the stem inside of the nozzle is adjustable.  Therefore, 

the nozzle can provide higher or lower flow rates when provided different pressures.  These 

nozzles typically range from 100 gallons per minute to 200 gallons per minute.  While these 

nozzles may be more versatile than the fixed gallonage nozzle, the nozzle firefighter must relay 

when the flow is desired to be increased or decreased to the firefighter operating the pump.  It is 

also important to note that when these nozzles are not maintained properly, it is very possible 

that the gallonage can be changed accidently rather than changing the fog pattern.  While these 

nozzles are more versatile than constant gallonage, there are some additional considerations that 

must be made. 

The most complex nozzles currently used in the fire service are automatic or constant 

pressure nozzles.  These nozzles operate in the same manner as the other fog nozzles, except that 

the nozzle contains a spring that allows for the stream to retain its reach and stream, regardless of 

the flow.  While this nozzle maintains a steady pressure, it does not maintain a steady flow.  

Because of the stream appearance and the similar nozzle reaction, firefighters may be tricked 
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into believing that they have a sufficient stream when they are only flowing a small amount of 

water.  The fire service is largely moving away from these nozzles due to this critical problem.   

While all of these nozzles have a place in the fire service, there are advantages and 

disadvantages to using each of these types of nozzles.  The following section will discuss the 

justifications for using a smoothbore nozzle in high-rise firefighting operations.  

5.3.3 Advantages of a Smoothbore Nozzle in High-Rise Environments 

While this project is applicable for all types of firefighting operations, it examines the 

special considerations that must be made for high-rise firefighting operations.   

While fog nozzles provide the utility of having different stream patterns, smoothbore nozzles 

are far more beneficial for high-rise operations for numerous reasons.  These include: the lower 

nozzle operating pressure, far superior debris clearance, lighter weight, fewer internal 

components leading to easier maintenance, more durable, and cheaper purchase cost. 

One of the primary reasons to use a smoothbore nozzle with a standpipe system is the 

lower operating pressure that is necessary because of the lower pressure provided by standpipe 

systems, especially those equipped with pressure reducing devices.  While most combination fog 

nozzles required 100 PSI for optimal nozzle operation, many smoothbore nozzles can operate 

well with as low as 50 PSI.  This pressure differential is due to the nozzle construction.  

Smoothbore nozzles have a smaller orifice size, creating a higher velocity due to the acceleration 

created from the smaller cross-sectional area of the orifice.  Fog nozzles on the other hand are 

designed to create chatter in the stream, which requires turbulence to be created in the stream.  

This is accomplished through obstructions in the waterway, such as groves in the nozzle shutoff, 

or various stems and springs.  In order to create more turbulence, the water must be moving 

faster through the nozzle, which requires a higher pressure.  Furthermore, there is a lesser degree 
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of water acceleration due to the size of the orifice being a similar size to the coupling at the end 

of the nozzle.   

Another shortfall for combination fog nozzles is the lack of debris clearance within these 

nozzles.  Due to the various appliances and obstructions in the waterway, small objects that 

would normally be able to pass through a smoothbore nozzle will likely be retained in the fog 

nozzle.  While many fog nozzles have a “flush” function in order to clear debris, it will not be 

successful in clearing all types of debris that may be found in a standpipe system.  For example, 

open FDCs facilitate various materials to enter the standpipe, especially those in large urban 

areas.  Some common examples of this debris can include: soda cans, tennis balls, cigarettes, 

rocks, and other rubbish.  While a smoothbore nozzle will be unable to clear the larger debris, it 

is possible that items such as rocks and other smaller materials will be expelled without 

interruption.  In order to clear debris from a fog nozzle, the stream must at least be changed to 

operate the flush pattern.  If this effort is unsuccessful, the fog tip may be removed, depending on 

the nozzle type.  However, if the shutoff and the fog tip are a singular device, then the standpipe 

valve must be closed so that the nozzle can be removed from the hose line.  If a smoothbore 

nozzle is unable to pass debris normally, then the nozzle can be closed, and the smoothbore tip 

removed from the shutoff valve where more debris can be removed.  As with fog nozzles, if this 

is unsuccessful, then the fire attack team must retreat and remove the nozzle from the hose line.   

It should be stressed that shutting down a hose line is a dangerous situation for 

firefighters.  To provide safety, firefighters must remove the hose line to an area of refuge, likely 

the stairwell in a high-rise building.  This action will allow firefighters to work in a safe location, 

but it will also take them significantly longer for them to place the hose line back in a useable 

position.  Firefighters should seek to avoid this situation at all costs, which is one of the reasons 
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that using a smoothbore nozzle is a vital consideration when operating in standpipe equipped 

buildings. 

Another more obvious benefit of using a smoothbore nozzle is that these nozzles are 

generally much lighter than fog nozzles.  Due to the lack of internal components, smoothbore 

nozzles will typically weigh much less than fog nozzles.  This differential may only be a few 

pounds, but when firefighters must climb dozens of flights of stairs, this is critical to ensuring the 

rapid ascent of firefighters as well as allowing them to be more rested upon arrival at the fire 

floor.  This lighter weight also allows for firefighters to carry a second nozzle with them.  

Firefighters typically have a high-rise bag to carry with them consisting of various fittings and 

other appliances that are necessary when making standpipe connections.  If the nozzles are light 

enough, then firefighters can carry a second nozzle with them that can be used in the case of a 

serious nozzle malfunction. 

As mentioned previously, the lack of internal components makes these nozzles easier to 

maintain.  One of the most significant maintenance tasks for smoothbore nozzles is simply to 

exercise the shutoff valve.  Simply opening and closing the bail of the nozzle will ensure that the 

nozzle can open and close quickly to deliver water quickly and allow for firefighters to 

reposition the hose line, should it be needed.  Fog nozzles on the other hand will need this same 

maintenance as well as ensuring that the fog tip is also lubricated, the stems are not damaged, 

and more.  High-rise hose and nozzles are typically not used on an everyday basis, so it is 

imperative that they be both simple to maintain as well as rugged, which smoothbore nozzles are.    

While fog nozzles are rather temperamental, smoothbore nozzles are very durable.  While 

a fog nozzle can suffer a broken stem or other serious damage from something as simple as being 

dropped, smoothbore nozzles can be chipped and dropped from high distances and still function.  
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Again, this is due to the lack of internal components.  Fog nozzles can be damaged when their 

springs or stems are damaged inside of the nozzle, where a smoothbore nozzle is generally only 

damaged when the shutoff valve is damaged.  Smoothbore nozzles also typically have a rubber 

bumper on them to protect the removable smoothbore tip, whereas a fog nozzle does not.  

Overall, smoothbore nozzles are far more durable, which is a key consideration in high-rise 

firefighting operations. 

The final advantage of using smoothbore nozzles that will be discussed is their cheaper 

purchase cost.  As was previously mentioned, smoothbore nozzles are cheaper to maintain as 

well due to the fewer maintenance procedures that need to be conducted.  Again, due to the lack 

of internal components, the smoothbore nozzle is easier to construct for nozzle manufacturers as 

well as cheaper.  This means that fire departments can afford to equip their firefighters with more 

nozzles, so that firefighters can be better prepared by bringing a second nozzle when they fight a 

high-rise fire.   

All of these advantages are well documented and well understood in the fire service.  

However, many fire departments are still using fog nozzles in high-rise environment for some 

key reasons that will be discussed in a following section. 

5.3.4 Nozzle Comparison through Nozzle Reaction 

Returning to the topic of nozzle reaction, it is important to note that the lower operating 

pressures of a smoothbore nozzle are an important way to reduce nozzle reaction.  Brian Brush 

explains in an article, “The only way to alter nozzle reaction is to alter the volume [gallons per 

minute (gpm)] or the pressure (psi).” (Brush 1).  He goes on to state later in the article that when 

comparing smoothbore nozzles and automatic fog nozzles, “Flowing the same gpm, there is a 

nozzle reaction difference of 21 pounds at 100 psi; at 150 gpm, the nozzle reaction of 76 pounds 
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is at the working limit of two firefighters.” (Brush 2).  Again, in an era of lower fire department 

staffing, this is an important consideration that fire departments must make.  This issue is also 

exacerbated in high-rise structures where it may take longer for firefighters to arrive at the fire 

floor. 

5.3.5 Fire Departments Using Fog Nozzles in High-Rise Buildings 

Many fire departments still choose to use fog nozzles in these buildings for several 

reasons.  Some of these reasons include: the additional nozzle pattern options provided by fog 

nozzles, ability to perform hydraulic ventilation, having a surplus of fog nozzles, believing that 

smoothbore nozzles are inferior technology, traditional use, or not understanding the standpipe 

environment.  This section will address some of these beliefs. 

Fog nozzles do provide nozzle pattern options unlike smoothbores.  However, solid 

streams from smoothbore nozzles can be broken by the movement of the nozzle to facilitate 

steam conversion.  Fog nozzles can also perform hydraulic ventilation more efficiently as they 

can move a larger amount of air.  However, opening the bail of smoothbore nozzles halfway will 

create a cone that can also move large amounts of air and combustion by products.  The 

traditional method of hydraulic ventilation in the fire service also consists of covering the width 

of the window with a cone of water.  However, this method was disproved recently in a UL FSRI 

study on air entrainment.  This study held that it was more effective to move the stream as more 

air would be entrained.  While hydraulic ventilation is something that should be considered when 

selecting a nozzle, it can be accomplished by using the correct technique or even through certain 

appliances such as a stream shaper that are specifically designed for this task. 

Some fire departments also choose to use fog nozzles because it is the nozzle of choice 

for all operations.  When fire departments purchase nozzles, they may simply purchase one type 
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of nozzle to fulfill all of their needs.  This “one size fits all” solution is certainly not the best and 

should be evaluated, especially when considering that the one-and-three-quarter-inch and 

automatic nozzle is a fire attack packaged that is better suited for trash or vehicle fires than 

structure fires.  However, the lack of purchasing specialized nozzles for various tasks is also 

influenced by the final point discussed in this section. 

The belief that smoothbore nozzles are also antiquated technology is also one that is 

prevalent in the fire service.  There are some firefighters that believe that because the nozzle is 

not capable of other nozzle patterns, smoothbore nozzles should no longer be used in the fire 

service.  However, the simplicity of this design is one of the reasons that the smoothbore has 

enjoyed such a long tenure in the fire service.  These nozzles apply basic hydraulic principles 

rather than complex hardware that is found in combination fog nozzles.  These nozzles have been 

dethroned as the most common nozzle in the fire service, but a large amount of fire departments 

are returning to smoothbore nozzles for these reasons. 

As mentioned previously, the fire service embraces numerous traditions.  While 

smoothbore nozzles were the traditional nozzle of choice in the fire service, many fire officers 

now choose fog nozzles.  Many of these fire officers began their career during the 1980s, when 

fog nozzles were making their entry into the fire service.  In fact, this period was known as the 

“fog frenzy.”  Furthermore, many training drills that firefighting recruits endure involves them 

advancing two attack lines equipped with fog nozzles toward devices resembling Christmas trees 

that release propane gas.  The objective of this drill is to use the stream of the fog nozzles to cool 

the ambient air so that the crews can advance toward the device to close the propane valve.  

While this objective is to demonstrate the protective ability of fog nozzles, the instances of 

propane tree fires are quite rare, meaning that this drill is stressed far more than it should be. 
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The final reason for using fog nozzles in a standpipe fire attack is that fire department 

policy writers may not understand the standpipe environment.  While the criteria for standpipe 

systems, and even the suggested equipment is readily available in NFPA documents, these 

documents are rarely referenced by many fire departments.  Some departments even hold the 

belief that NFPA stands for “Not for Practical Application,” rather than examining the standards 

that are presented by NFPA committees.  Other firefighters also feel that they may have a better 

grasp on the information than the technical expert committees that formulate these documents.  

While this may be true in a few cases, it is generally false. 

These are some of the reasons that the fire service choses to use fog nozzles even in high-

rise buildings.  While all of these different types of nozzles have very important applications in 

the fire service, the place for fog nozzles is not in high-rise buildings.  While they provide more 

capabilities on many fires, there are many disadvantages to using these in high-rise buildings.  

Smoothbore nozzles should be used in high-rise buildings as often as possible for the reasons 

listed above.   

6 Empirical Testing Data 

6.1 Overview 

In order to validate some of the information that was presented previously, empirical 

testing was conducted.  This testing was conducted both to evaluate the flows comparing one-

and-three-quarter-inch hose with two-and-a-half-inch hose.  These tests were formatted with the 

goal of comparing the deployment times with the flows as well.  The instrumentation that was 

used to evaluate this criteria, the parameters for the testing, and the data for the tests are all 

described below. 
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6.2 Testing Instrumentation 

Various types of instrumentation were used to evaluate the deployment times and 

maneuverability of these hose lines.  To measure the flow rate, an in-line pitot gage was coupled 

to the discharge of the engine.  This gage read in PSI and was then included into a computer 

spreadsheet to calculate the gallons per minute flowed by the hose lines.  Additionally, a 

stopwatch was used to measure the time that it took to flow a predetermined amount of water.  A 

measuring wheel was also used to mark critical benchmarks which were noted with tape for the 

firefighting crew.  Video and numerical data were taken from these tests.  This data is presented 

below in the appendices. 

6.3 Test Parameters 

Several considerations were made to standardize these tests.  First, the two firefighters 

that were involved in the hose line advance maintained the same positions on the hose line.  

Therefore, the firefighter operating the nozzle remained at the nozzle for each evolution and the 

firefighter assigned to the backup position remained in that position.  The same operator 

remained at the pump panel for all evolutions to ensure that the crews were receiving the same 

pressure at all points throughout the experiments.  The videographer and the data recorder also 

remained in their respective positions for all portions of the tests. 

Three replicates of each test were run in order to establish a baseline while also 

examining any outliers.  The two-and-a-half inch replicates were completed first, for several 

reasons.  Two-and-a-half-inch hose is strongly supported in fire service publications, so it was 

deemed important to examine the benefits of this larger hose line.  It was also determined that 

researchers could determine the flow that this hose size would provide so that the one-and-three-
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quarter inch hose could be estimated. This hose size was also chosen so that firefighters would 

be better rested for these early replicates that would be more physically demanding. 

The one-and-three-quarter inch diameter hose was equipped with a 15/16-inch diameter 

smoothbore nozzle.  This nozzle was chosen for its common use on this diameter hose line.  This 

was also one of the few smoothbore nozzles that could be located at EKU.  The two-and-a-half-

inch diameter hose line was equipped with a 1 1/4-inch diameter nozzle for its superior flow and 

its use on this hose diameter. 

Each test used three fifty-foot-long sections of hose.  This hose was folded in a 

configuration known as the Denver hose load.  Images of this hose pack can be seen in the 

appendix.  This hose pack was chosen for its ease of deployment in the testing situation as well 

as its common use in the United States fire service.  The same three sections of each hose 

diameter were used for all tests, but their orders were randomly rotated, meaning that the nozzle 

section during the first replicate of a certain test may next become the middle section and the last 

section could become the nozzle section.  The following section will discuss the physical 

procedures done during each replicate. 

The following table shows the order in which these replicates were conducted. 

Testing Order Hose Diameter Replicate Number 

1. 2.5” Replicate #1 

2. 2.5” Replicate #2 

3. 2.5” Replicate #3 

4. 1.75” Replicate #1 

5. 1.75” Replicate #2 

6. 1.75” Replicate #3 
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6.4 Testing Procedure 

During each replicate of the tests, firefighters were wearing full turnout gear, with the 

exception of an air pack.  The third firefighter in the evolution who doubled as the data recorder 

remained at the engine and therefore only wore a turnout coat and gloves.  The two nozzle 

firefighters began the tests by coupling the nozzle, middle, and last sections together.  The 

backup firefighter was also responsible for connecting the last hose section to the discharge 

equipped with the in-line pitot gauge.  Once all of the hose packs were connected, the firefighters 

would advance away from the engine to a predetermined seventy-five feet.  The nozzle 

firefighter took the nozzle with him to this point while the backup man grabbed the middle 

section of the middle hose pack and brought it to the seventy-five-foot mark.  When the nozzle 

team approached the seventy-five-foot mark, the data recorder made sure to remove any folds 

that remained by the engine to ensure that there would be no kinks in the hose line.  At this point, 

the nozzle firefighter called for the pump operator to fill the hose line with water.  The pump 

operator was instructed to charge the hose line to a residual pressure of 60 PSI.  The nozzle 

firefighter then opened the nozzle to remove any residual air from the stream and ensure that the 

hose line was filled with water.  The firefighters then advanced the hose line twenty-five feet 

where they would drop to their knees to simulate advancing the hose line through a hot and 

smoky environment.  For the final twenty-five feet, the firefighters then advanced the hose line 

while flowing water.  The firefighters were instructed to advance the nozzle with the bail fully 

open to allow for the greatest amount of water to flow.  However, it was expected that they 

would be unable to advance the two-and-a-half hose line with the bail fully open, so they were 

instructed to advance the line with the bail only halfway open to reduce the nozzle reaction.  At 

the final mark of one hundred and fifty feet away from the pump, the firefighters were instructed 
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to remain stationary and flow until the order was given from the data recorder to conclude the 

test. 

Between replicates, the firefighters were instructed to relax and rest before the next 

replicate began.  The data recorder and the videographer first “walked” the hose lines to empty 

them of water and then rolled them to remove any more water and air from the hose line before 

they were refolded into their Denver load configuration.  The hose lines were then carried to the 

engine and placed so that the nozzle section was facing away from the engine and the female 

coupling of the last pack was placed closest to the engine to facilitate the hose stretch.  The 

firefighters were then asked if they were rested and ready to begin the test.  Once they were 

ready, all participants took their positions and prepared for the test to begin.  After ensuring that 

all participants were prepared to carry out their duties and ready for the test to begin, the data 

recorder counted down and initiated the test and started the stopwatch. 

6.5 1.75” Testing 

This section and the following sections will only broadly describe the findings of the 

tests.  They will not provide all relevant data, which can be found in the appendices.  Rather, this 

section will describe the findings that will be discussed in the upcoming chapter which will 

describe the conclusions drawn from the literature review and this testing. 

The three replicates utilizing one-and-three-quarter inch hose was actually conducted 

after the two-and-a-half-inch hose replicates, but they are discussed first due to their prevalence 

in the United States fire service. 

This test did prove that one-and-three-quarter inch hose can be deployed rather quickly.  

Firefighters were able to reach the final point of the evolution in approximately ninety seconds 

for all three replicates.  Despite being instructed not to run, during one replicate, a firefighter 
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took much longer on making all of the coupling connections, so he ran to the seventy-five-foot 

mark to try and correct this error.  Overall, the crews were consistently making their connections 

around thirty seconds after the test began and were able to advance the line and were flowing 

water between eighty and one hundred seconds. 

In approximately five hundred seconds in each of these tests, the one-and-three-quarter inch 

hose line was able to flow approximately 670 gallons.  This was an average value of all three 

replicates.  For more information and more specific data, see Appendix D. 

6.6 2.5” Testing 

The two-and-a-half-inch hose data is included below in Appendix E.  In summary, 

firefighters who were not nearly as familiar with this line were able to deploy it on an average of 

10 seconds later than the one-and-three-quarter inch hose.  The advantage of placing the one-

and-three-quarter inch hose was negated in approximately thirty seconds on average.  This hose 

line was able to flow approximately 1302 gallons of water in the same five hundred allotted 

seconds. 

6.7 Testing Limitations 

This testing was completed to evaluate deployment times for one-and-three-quarter-inch 

and two-and-a-half-inch hose.  It did not seek to evaluate the maneuverability of these hose lines 

or the manpower required to use these hose lines in a fire environment.  This testing also did not 

simulate crews advancing from a standpipe system. 

Due to time and budgetary constraints, only three replicates of this test were attempted.  

It was determined that the firefighters should remain in the same positions for each of the 

evolutions so that they could be compared with the other replicates and possible variables were 

eliminated.  If given more time for these experiments, it is desired that three to five replicates be 
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completed for a series of firefighters to ensure that the skills and abilities of firefighters of 

different backgrounds be evaluated. 

If conducted again, it is also important that these tests would be conducted to evaluate 

crew size as well as maneuvering around objects.  It would also be important to measure nozzle 

reaction faced by firefighters operating this hose line. 

Again, conducting these tests in an actual high-rise building would be extremely 

beneficial, but due to budgetary constraints, this is not a realistic goal.  However, it would allow 

for some of the maneuverability challenges, such as stairwells, to be evaluated in addition to 

some of the hydraulic challenges of overcoming building elevation. 

7 Conclusions 

7.1 Overview 

Now that it has been proven why these considerations are so important and the data has 

been presented, conclusions will be drawn from the established literature as well as from the 

physical testing that was conducted. 

7.2 Hose and Nozzle Use 

As stated earlier, the main focus of this report was to determine the correct hose and 

nozzle to be used for high-rise fire attack.  Through a literature review as well as the testing 

discussed in the previous chapter, the conclusions are drawn below. 

7.2.1 Hose Line Justification 

Despite the physical testing that was employed for this report, hose line selection remains 

somewhat subjective.  Fire departments should use the data presented in the appendices as well 

as the other discussion presented above to choose the fire attack package that best fits their 
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district as well as their firefighters.  If a fire department is expecting to encounter structures that 

are more difficult to navigate, it should consider a smaller hose for increased maneuverability. 

This report was able to disprove the belief that it takes too much time to deploy a two-

and-a-half-inch hose line, as the two firefighters were able to deploy the line in an average of 

only ten seconds longer than it took to deploy the smaller one-and-three-quarter-inch hose line.  

While this is only a small sample of data, it shows that this argument should be examined 

further. 

The empirical testing was unfortunately unable to examine any two-inch hose.  This 

diameter hose line is becoming increasingly common in the fire service, especially in high-rise 

applications.  The two-inch hose is becoming more common because it is able to provide a very 

similar maneuverability to one-and-three-quarter-inch hose while providing a flow similar to that 

of a two-and-a-half-inch hose.  Therefore, the two-inch hose may be an ideal choice for a high-

rise fire attack hose, but this project was unable to quantify two-inch deployment times or flow. 

7.2.2 Nozzle Justification 

Smoothbore nozzles should be used in high-rise fire attack for all of the reasons listed 

above.  Fog nozzles were not examined in this report due to the numerous benefits of using a 

smoothbore nozzle.  In addition to significantly reducing potential problems with water 

application, the operation of these nozzles is much easier.  Because these nozzles do not have as 

many functions as fog nozzles, it is also easier to calculate the flow provided by these nozzles.  

Being able to easily obtain this information is vital for firefighters in the challenging high-rise 

environments encountered by firefighters. 

While it may be smart for fire departments to include a fog nozzle in their high-rise 

appliance bags to be used for overhaul or hydraulic ventilation operations after a majority of the 
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fire has been extinguished, smoothbore nozzles are the only nozzles that should be used for fire 

attack from standpipe systems. 

7.3 Fire Service Tactics: Engine Companies vs. Truck Companies 

While various fire service traditions have been mentioned throughout the course of this 

paper, one of the most common is the distinction between different companies.  In most fire 

departments, the terms fire engine and fire truck are not interchangeable.  Fire apparatus that 

carry hoses, water, and other appliances are known as fire engines while trucks that carry tall 

aerial ladders and other equipment are known as fire trucks.  While there are other types of 

apparatus such as rescue squads, water tenders, and other specialized apparatus, engine and truck 

companies are the most common.  There are also apparatus that carry both large aerial devices as 

well as water, but these apparatus are generally used as truck companies, depending on the fire 

department’s policies. 

Because of the water and equipment carried by engine companies, they are responsible 

for applying water to the fire while truck companies are responsible for a myriad of other tasks 

including ventilation and search and rescue to name a few.  While all of these truck company 

tasks are important, these tasks are done to support engine companies.  Due to the difficulty of 

putting hose lines into position in a fire environment, tasks such as finding the fire for the engine 

companies are typically done by truck companies.   

In high-rise buildings, staffing becomes an important issue, as mentioned previously.  

Many fire service instructors have stated that it may take as many as eight firefighters to put a 

single hose line in service.  While most crews carry four or fewer personnel, this can equate to 

two companies needed to put one hose line in service.  Rather than waiting for a second engine 

company to arrive, the fire service should examine using truck companies to facilitate an initial 
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hose stretch.  While truck company tasks are important, the most efficient manner to protect life 

and property in high-rise fires is to extinguish the fire, as mentioned in prior chapters.  Many fire 

departments have gone to systems that involve pairing two engine companies and one truck 

company together to form a “fire attack group.”  This tactic should be considered by other fire 

departments.  Training exercises should be conducted before these tactics are utilized on an 

actual working incident, but they may prove to be extremely beneficial.   

While policy could easily be adapted by fire departments simply by altering the wording 

in some of their policies and procedures, it is in staunch opposition to tradition.  For example, 

many fire departments steeped in tradition greatly dissuade members on truck companies from 

touching hose lines.  This sentiment has led to significant problems on the fire scenes when truck 

crews have walked past a kinked hose line, resulting in significant problems for crews. 

Overall, truck companies need to recognize that their tasks, while important, are all to 

support engine company operations.  Therefore, if an engine company is experiencing 

difficulties, or is unable to conduct their basic tasks, truck crews should readily assist. 

7.4 A Final Note on Purpose 

It should be noted that this report should not be viewed as the final word on high-rise fire 

attack.  Rather, this is to provide firefighters another tool in their toolbox.  Firefighters need to be 

able to understand their environments and their equipment.  It is this lack of understanding of the 

fire environment and equipment that often leads to firefighter injuries and deaths.  

Especially in high-rise buildings, the difficulty of extinguishing these fires increases 

exponentially as does the importance of suppressing the fire.  Firefighters cannot operate in their 

normal roles during these fires, as the environment is radically different from single family 

dwellings. 
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This report remains valid for firefighters who do not have high-rise buildings in their 

response area, due to its use of basic hydraulic principles.  As mentioned previously, this study 

sought to examine high-rise buildings due to the considerations that must be made when fighting 

fires from standpipe systems.  These systems can be a perfect resource for firefighters, but it can 

also greatly complicate the intricate high-rise fire environment. 

It is the hope of this report that firefighters, fire protection engineers, and fire protection 

system designers and installers will be able to understand the vital roles that many of these fire 

protection systems have in the environment.  When this knowledge is coupled with building-

specific information, firefighters will be able to save more lives and property while remaining 

safer themselves.   

7.5 Potential Future Studies 

As stated in a previous section of this chapter, two-inch hose should be examined.  This 

hose may prove to be the perfect choice for high-rise environments due to its maneuverability, 

but it also suffers from a lower flow than the two-and-a-half-inch hose. 

Future tests could also examine how easily these hoses are deployed when there are 

objects in the way.  For lower staffing levels, crews will need to be more efficient when they 

advance hose lines.  Due to the increased difficulty of this evolution, it would likely take crews 

longer to stretch the larger diameter hose lines due to the weight of the hose lines.  This delay 

could increase the usefulness of smaller diameter hose lines.   

Many fire departments will continue to use fog nozzles, despite results drawn in in this 

paper or established best practices.  Therefore, these tests could be repeated again to evaluate the 

use of fog nozzles in these types of structures and with these fire protection systems.  
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Finally, it would be quite valuable to repeat these tests in more realistic environments.  

The testing ground could change to include burn buildings, mid-rise, or high-rise buildings.   

These tests could also be run in a live fire environment.  While this test would include 

substantially more instrumentation so that the volume of fire extinguished by these attack lines 

would be measured, it would provide a plethora of practically applicable data.  However, this 

data could be skewed by an infinite number of variables including the nozzle pattern employed 

by firefighters.  It would also be quite difficult to obtain structures in which to conduct these live 

fire tests. 

Overall, there is much more work that can be conducted in these areas.  More information 

is needed so that firefighters can make important decisions both in critical planning stages as 

well as during an incident.  This research only answers a very small portion of this discussion, 

but it is a vital one when fire departments are attempting to determine the best way to apply 

water in these environments to extinguish fires to accomplish the goals of safeguarding life and 

property. 
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9.1 Appendix A: Required Water Flow Calculations 

Energy absorbed by 1 Kg of Water 

(
4.181 𝐾𝐽

𝐾𝑔𝐾
) (80𝐾) = 334.48

𝐾𝐽

𝐾𝑔
 

 

Residential Occupancy 

 

Water needed to absorb all energy 

2𝑀𝑊 =
2000𝐾𝐽/𝑠

334.48 𝐾𝐽/𝐾𝑔
= 5.98

𝐾𝑔

𝑠
 

 

7/8” nozzle, common for 1 ½” hose lines 
𝑚̇ = 161 𝑔𝑝𝑚 (𝑓𝑟𝑜𝑚 𝐸𝑙𝑘ℎ𝑎𝑟𝑡 𝐵𝑟𝑎𝑠𝑠 @50 𝑃𝑆𝐼) 

 
161 𝑔𝑎𝑙𝑙𝑜𝑛𝑠

1 𝑚𝑖𝑛𝑢𝑡𝑒
(

1 𝑚𝑖𝑛

60 𝑠
) (

3.78 𝐿

1 𝑔𝑎𝑙𝑙𝑜𝑛
) (

1 𝐾𝑔

1𝐿
) = 10.143 

𝐾𝑔

𝑠
 

 

Commercial Occupancy 

 

Water application rate 

6.72 𝑀𝑊 =  
6719.7 𝐾𝐽/𝑠

224.48 𝐾𝐽/𝐾𝑔
= 20.09

𝐾𝑔

𝑠
 

 

1 ¼” Nozzle, common for 2 ½” hose lines 

𝑚̇ = 322 𝑔𝑝𝑚 (𝑓𝑟𝑜𝑚 𝐸𝑙𝑘ℎ𝑎𝑟𝑡 𝐵𝑟𝑎𝑠𝑠 @46 𝑃𝑆𝐼) 

 
322 𝑔𝑎𝑙𝑙𝑜𝑛𝑠

1 𝑚𝑖𝑛𝑢𝑡𝑒
(

1 𝑚𝑖𝑛

60 𝑠
) (

3.78 𝐿

1 𝑔𝑎𝑙𝑙𝑜𝑛
) (

1 𝐾𝑔

1𝐿
) = 20.3125

𝐾𝑔

𝑠
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9.1 Appendix B:  Elkhart Brass Flow Chart 
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9.2 Appendix C: Water Weight Calculations 

𝐴 =
𝜋𝑑2

4
 

𝑉 = 𝐴 ∗ 𝑙 

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑉 ∗ 7.48 
𝑔𝑎𝑙

𝑓𝑡3
∗ 8.345 

𝑙𝑏

𝑔𝑎𝑙
 

 

1.5” Hose 

𝐴 =
𝜋. 125𝑓𝑡2

4
= .01227 𝑓𝑡2 

𝑉 = .01227𝑓𝑡2 ∗ 50 𝑓𝑡 = .6134𝑓𝑡3 

𝑊𝑒𝑖𝑔ℎ𝑡 = .6134𝑓𝑡3 ∗ 7.48 
𝑔𝑎𝑙

𝑓𝑡3
∗ 8.345 

𝑙𝑏

𝑔𝑎𝑙
= 38.300 𝑙𝑏 

1.5” Hose= 38.300 lb per 50’, 114.902 lb per 150’ 

 

1.75” Hose 

𝐴 =
𝜋. 145𝑓𝑡2

4
= .01670 𝑓𝑡2 

𝑉 = .01670𝑓𝑡2 ∗ 50 𝑓𝑡 = .8352𝑓𝑡3 

𝑊𝑒𝑖𝑔ℎ𝑡 = .8352𝑓𝑡3 ∗ 7.48 
𝑔𝑎𝑙

𝑓𝑡3
∗ 8.345 

𝑙𝑏

𝑔𝑎𝑙
= 52.100 𝑙𝑏 

1.75” Hose= 52.100 lb per 50’, 156.301 lb per 150’ 

 

2” Hose 

𝐴 =
𝜋. 166𝑓𝑡2

4
= .02182 𝑓𝑡2 

𝑉 = .02182𝑓𝑡2 ∗ 50 𝑓𝑡 = 1.0908𝑓𝑡3 

𝑊𝑒𝑖𝑔ℎ𝑡 = 1.0908𝑓𝑡3 ∗ 7.48 
𝑔𝑎𝑙

𝑓𝑡3
∗ 8.345 

𝑙𝑏

𝑔𝑎𝑙
= 68.090 𝑙𝑏 

2” Hose= 68.090 lb per 50’, 204.270 lb per 150’ 

 

2.5” Hose 

𝐴 =
𝜋. 208𝑓𝑡2

4
= .0341 𝑓𝑡2 

𝑉 = .0341𝑓𝑡2 ∗ 50 𝑓𝑡 = 1.7044𝑓𝑡3 

𝑊𝑒𝑖𝑔ℎ𝑡 = 1.7044𝑓𝑡3 ∗ 7.48 
𝑔𝑎𝑙

𝑓𝑡3
∗ 8.345 

𝑙𝑏

𝑔𝑎𝑙
= 106.391 𝑙𝑏 

2.5” Hose= 106.39 lb per 50’, 319.173 lb per 150’ 
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9.3 Appendix D: 1.75” Data 

9.3.1 Individual Graph 
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9.3.2 Average Graph 
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9.4 Appendix E: 2.5” Data 

9.4.1 Individual Graph 
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9.4.2 Average Graph 
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9.5 Appendix F: Average Comparison Graph  
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9.6 Testing Safety Plan 
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9.7 Testing Hose and Nozzle Systems Images 

9.7.1 General Images 

 
 

Researcher preparing two-and-a-half-inch hose for another replicate. 

 
 

In-Line Pitot Gage used to measure pressure to determine flow. 
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9.7.2 In-Progress Images 

 
Firefighters making their initial connections on a one-and-three-quarter-inch replicate. 

 

 
Firefighters advancing two-and-a-half-inch hose dry while standing. 
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Firefighters advancing charged two-and-a-hal- inch hose while standing. 

 

 
Firefighters advancing two-and-a-half-inch hose while crawling. 
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Firefighters attempt to advance a two-and-a-half-inch hose while flowing. 

 

 
Firefighters flow the two-and-a-half hose after advancing it. 
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9.7.3 Hose Bundles 

 
One-and-three-quarter-inch hose bundles before being deployed. 

 

 
Three fifty-foot long sections of hose in the Denver Load prepared for the next replicate. 


	Big Fire, Big Water: An Evaluation of Fire Service Tactics in High-Rise and Standpipe Equipped Structures
	Recommended Citation

	tmp.1557123428.pdf.dTEbl

