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ABSTRACT

The telomeres of M. oryzae can experience unique rearrangements within
a single generation. These rearrangements are frequently attributed to the
presence of two retrotransposons (MoTeR 1 and MoTeR 2) that are endemic to
the telomeres. These rearrangements can leave footprints within the interior of
the genome that document previous telomere breakage events. The purpose of
this study was to examine MoTeR relics within 10 genomes of strains of M.
oryzae to document telomere instability among strain lineages, as well as to
uncover MoTeR relic distribution, shared evolutionary history, and associated
genome rearrangements. A series of local BLASTn and grep searches in the
Unix Command Line were used to find and describe MoTeR relics. We found that
MoTeR relics were found, on average, within 250 kb of the telomere and were
often flanked by duplicate sequences that also mapped closely to telomeres. Our
initial hypothesis for this study that MoTeR relics would largely represent unique
strain or lineage-specific rearrangements was neither unequivocally supported
nor entirely refuted. Intergenomic comparisons of MoTeR relics revealed several
regions of shared synteny among distantly related strains that points towards
their existence within ancestral strains, as well as seemingly strain- and lineage-
specific relics that may be the result of more recent rearrangements. MoTeR
relics serve as markers for investigating telomere dynamics in M. oryzae and
further study might elucidate whether telomere instability within M. oryzae might
play an adaptive potential in being able to quickly evolve and spread into new

host plants as well as overcome resistance in others.
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INTRODUCTION

Agricultural importance - blast disease

Magnaporthe oryzae is a global fungal pathogen commonly referred to as
the blast fungus, frequently used as a model organism for studying plant
pathogen and host interactions. Genetic strains of M. oryzae form pathotypes
specific to a wide variety of cereal grasses including, but not limited to, perennial
ryegrass (Lolium perenne), rice (Oryza sativa), wheat (Triticum aestivum), finger
millet (Eleusine corocana), oat (Avena sativa) and barley (Hordeum vulgare).
Each fungal strain is typically restricted to one grass species or Genus in the
Family Poaceae. Over 50 different species of grasses are hosts to strains of this
fungus (Ou 1985). One host plant, rice, receives significant research funding as it
serves as a staple food item to ~50% of the global population (Skamnioti and
Gurr 2009). In 2009 it was reported that rice blast disease destroyed 10 — 30% of
the world’s annual yield, 10% of which would feed approximately 60 million

people (Skamnioti and Gurr).

The earliest record of rice infection by M. oryzae was documented in
China (1637), and subsequently documented in Japan (1704), Italy (1828), the
United States (1906), and India (1913), and has been reported in more arid
regions such as Iraq (Ou 1985). M. oryzae displays a wide range of tissue affinity
with the ability to infect every above ground organ of the plant (e.g., leaves,
panicles, stems, and nodes) during any stage of plant development (Ou 1985;
Talbot and Wilson 2009). An easily recognizable symptom of infection is in the

form of lesions on grass leaves (blades) that present yellow, and more interiorly



brown, margins and either a brown or gray section in the interior during the later
stages of infection (Figure 1b, c). Infected seeds have helped facilitate the

spread of this fungus to 85 countries and six continents (Kato 2001).

M. oryzae poses a threat to global wheat production as it spread rapidly
through the Brazilian wheat crop and into adjacent South American countries in
1985 gaining the name “wheat blast” (Inoue et al. 2017). A wheat-infecting isolate
was discovered by investigators at the University of Kentucky in the United
States in 2011. The isolate did not come from South America but is thought to
have instead originated from a Lolium pathotype (Farman et al. 2017), a
pathotype being a variant of M. oryzae that infects a specific group of hosts.
Lolium pathotypes infect species like perennial ryegrass while other pathotypes,
such as Oryza and Avena, infect rice and oat species respectively (Inoue et al.
2017). The isolate in Kentucky was less virulent than the Brazilian strain (Farman
et al. 2017). More recently an outbreak of wheat blast originating from South
America had impacts in Bangladesh resulting in a range of 10-100% loss of yield

in wheat crop (Inoue et al. 2017).

The genus Magnaporthe

M. oryzae is a filamentous ascomycete, the body of the organism
consisting of filamentous hyphae and the sexual spores contained in a sac
termed an “ascus”. It phylogenetically groups within the most species abundant
phylum in the fungal kingdom. M. oryzae belongs to the Genus Magnaporthe
nested in the Family Magnaporthaceae, Order Magnaporthales, Class

Sordariomycetes, Subphylum Pezizomycota, and Phylum Ascomycota (Figure



1). Numerous species of ascomycetes are human pathogens, such as
Aspergillus fumigatus which can grow in the lungs of immunocompromised
individuals (Latge 1999), Candida albicans, which can cause infections in the
urinary tract (Sudbery 2011), and species within the genus Trichophyton which
cause several skin infections like ringworm and athlete’s foot (Gnat et. al. 2020).
Like M. oryzae, several other plant pathogens belong to the Ascomycota

including several rusts, powdery mildews, chestnut blight, and ergots (Berbee
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Figure 1 Maximum likelihood tree built from transcriptome data of 21 species from 7 Classes
within the Subphylum Pezizomycotina against the outgroup Saccharomycetes. The species
Magnaporthe oryzae within the Order Magnaporthales is labeled with a star. Each species is
followed by its strain number and genome size. The teleomorph and anamorph structures for the
Orders Magnaporthales, Ophiostomatales, and Diaporthales within the Class Sordariomycetes
are pictured on the right. Reproduced from Luo et al. 2015.

The Fungi
Fungi possess life history strategies that allow for frequent transitions to

parasitic lifestyles. Fungi are natural chemists, as their largely immobile state has



added evolutionary selective pressure on their ability to acquire nutrients, defend
themselves, and colonize new territories. Although, as demonstrated earlier,
several fungi are harmful to humans, many other species use biochemical
strategies that are exceedingly important to the global economy and human
health. The classic example of this can be seen in the antibiotic penicillin. This
chemical is produced by the common bread mold, Penicillium rubens (Fleming
1941). Humans have also utilized yeasts (a noun that broadly encompasses
numerous species of single-celled fungi) for hundreds of years to make breads,
wines, and beers; some species are beautiful demonstrations of phylogeography
and have formed clades that correspond to the specific regions of the world such
as yeasts used to make sake in Asia and others whose ancestry traces the
history of beer making in Europe and subsequent colonialization later of the New

World (Gallone et al. 2016).

The Kingdom Fungi shares a common ancestor with animals and is
estimated to have diverged from the animal lineage about 900 to 1500 million
years ago (Figure 2; Gan et al. 2021). Two commonly recognized phyla within
this kingdom are the Basidiomycetes and the Ascomycetes. The Ascomycota are
the most species rich phylum of the fungal kingdom, yet members of the fungal
kingdom that are more readily recognized are the mushrooms (Basidiomycota).
The phyla Ascomycota and Basidiomycota comprise the Subkingdom Dikarya as
they both form dikaryotic hyphae during sexual reproduction (Hibbett et al. 2007).
Ascomycetes possess a sac-like reproductive structure called the ascus which

houses ascospores — the asci are grouped together in a larger structure called



the perithecium. Basidiomycetes are characterized by their reproductive structure
known as the basidium, which is comprised of a club-like structure topped with
four sexually reproduced basidiospores. During sexual reproduction for members
of dikarya the normally haploid genome of one mating type will fuse with the
haploid genome of another mating type during a process called karyogamy. The
fused nuclei will undergo several meiotic divisions as a diploid cell wherein the
chromosomes from each mating type may undergo recombination. After several
stages of replication and division of the diploid nucleus, the cells will divide into
haploid daughter cells and form ascospores which will be released and

propagated as a new fungus.

seed plants
ferns

green plants
mosses

— L green algae
red algae

_‘C Basidiomycota Dikarya
Ascomycota
Mucoromycota
Glomeromycota Fungi
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— 4‘——‘: diatoms
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Euglenida

Archaea
Bacteria

Straminipila

Figure 2 Simplified diagram of fungi (names in bold) by Meike Piepenbring 2021. Notice that
fungi are more closely related to animals, sharing a more recent common ancestor than with
plants.



The Order Magnaporthales can reproduce through mitotic divisions in their
anamorphs through specialized structures known as conidiophores that extend
from the vegetative, septate hyphae — these form haploid conidiospores (Brock,
Smith, and Madigan 1984) (Figure 3a). The conidiospores of the species M.
oryzae are composed of three cells and have a tear-drop shape (Talbot and

Wilson 2009) (Figure 3a).
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Figure 3 Life cycle of Magnaporthe oryzae. a, Two mating types of different strains sexually
reproduce and develop ascospores within a perithecium. Conidiospores produced asexually



attach to host plant tissue and germinate to produce a structure called the appressorium which
utilizes turgor pressure (~8MPa) to puncture plant tissue and grow invasive hyphae that produce
lesions from which new spores will be released. b, Rice (Oryzae sativa) leaf lesions. ¢, Rice stem
node infection. d, Image from a scanning electron microscope of a conidium (CO) and developing
appressorium (AP) on the surface of a rice leaf. Scale bar, 10 um. e, Image from a transmission
electron microscope illustrating an appressorium on the surface of a rice leaf and invasive hyphae
(IH) growing within the leaf. Scale bar, 5 um. Reproduced from Dean et al. 2005.

One key feature that has facilitated fungal evolutionary success is their
possession of a haploid genome. This might not seem intuitive as having less
genetic material to manipulate through recombination or mutation might seem a
disadvantage, however, the nature of only having one copy of each chromosome
means that mutations to genes in their genome will be expressed as they will not
be masked by another gene copy. This serves as a form of bet-hedging as a
single fungus might produce millions of meiotic spores all with different genomes,
e.g., SNPs, and those that persist should exhibit desirable traits that could
increase the fitness of the next generation, while those with deleterious traits will

be purged from the population (Orr and Otto 1994).

Magnaporthe as a plant pathogen

In the case of M. oryzae, its spores could land on a vegetative structure
(e.g., leaf) on one of the >50 species of grasses it infects. When its spores land
and adhere to a suitable host plant, the spore then germinates and grows to form
an infective structure called an appressorium that utilizes turgor pressure to
penetrate the vegetative tissue of its host (Talbot and Wilson 2009) (Figure 3d,
e). During this initial assault of the host tissue, M. oryzae hyphae release a

cocktail of effector proteins that aid in host infection (Talbot and Wilson 2009).



M. oryzae is a facultative parasite: it does not require its host plant to carry
out certain life stages, but it does depend on its host plants for survival. This
interaction has applied selective pressure for a suite of defense mechanisms
generated by the host plant that help to detect and defend against invasion by M.
oryzae. Much of the pathogenic success in M. oryzae is due to the rapid
evolution of its effector proteins. Several mechanisms exist in the genome that
facilitate the mutation and evolution of effector proteins. The mutation or loss of
function of fungal AVR genes allows for increased infectivity and loss of
recognition by the host plant’s resistance (r) protein receptors (Sanchez-Vallet et
al. 2018). Avr proteins often map to structurally unstable regions of the fungal
genome, i.e., proximal to telomeres, adjacent to transposable elements (TEs), or
within regions of repeat sequence (Sanchez-Vallet et al. 2018). These locations
in the genome make AVR genes more susceptible to high mutation rates and
sequence instability (Sanchez-Vallet et al. 2018). Most resistant plant cultivars do
not maintain resistance as M. oryzae strains can quickly mutate or lose their AVR
genes that would otherwise bind to the plant’s R protein receptors and signal
fungal infection (Dangl, Horvath, and Staskawicz 2013). Modifications to, or loss
of, AVR genes has been inferred as a mechanism for “host jumping” as seen with
the appearance of wheat blast where strains specific to certain host plants may
acquire the ability to infect a different host plant (Inoue et al. 2017). Likewise,
rotation of crops lacking R genes specific to M. oryzae pathotypes and

populations could allow for devastating outbreaks as is thought to be the case for



new wheat variants that were planted in South America in 1985 that lacked the

Rwt3 resistance gene (Inoue et al. 2017).

The Magnaporthe genome

M. oryzae strains have dynamic and variable genomes in size and
architecture (e.g., chromosomal structure). The haploid genome contains ~41
Mbp organized into 7 core chromosomes; however, several strains vary in the
precise size of their core chromosomes, and some have additional
supernumerary chromosomes, or minichromosomes (Dean et al. 2005; Luo et al.
2015; Peng et al. 2019). The linear chromosomes are flanked in their terminal
regions by telomeres that consist of short, repeat sequences (*CCCTAA?) bound
by a shelterin protein complex to prevent chromosome degradation and potential

loss of DNA between cycles of replication (De Lange, Lundblad and Blackburn

2006).
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Figure 4 General layout of chromosome end architecture and terminology in M. oryzae. The
telomere is illustrated as a string of circles representing its composition of telomeric (*CCCTAA?)
repeats. The subterminal region is a general term used to describe domains near chromosome



ends. Within the subterminal region there can be subtelomeres which are duplicate sequences
shared at other chromosome ends. Synteny between the two subtelomeres is represented by the
gray box connecting the two areas in orange. Interstitial telomeres are telomere repeat
sequences that are not continuous and surrounded by non-telomere repeat sequences. In the
first row a full MoTeR element is inserted within the telomere with its 5° end facing towards the
end of the chromosome, and its 3’ end towards the chromosome interior. Further into the
subterminal region is a truncated MoTeR element whose 3’ end has been preserved. This
truncated MoTeR is outside of the telomere of this chromosome, so it is considered a MoTeR
relic. Lastly, a telomere junction indicates the boundary between the telomere and non-telomere
sequence, whereas the telomere-adjacent sequence is found immediately next to the telomere
junction (Adapted from Rahnama et al. 2021).

All background information in the introduction has led to the more refined
arena of the thesis here-in that takes place in the telomeres and subtelomeres of
M. oryzae. A study of the telomeres and subtelomeres within rice-infecting
(Oryza) and perennial ryegrass-infecting (Lolium) strains revealed that telomere
sequence-containing restriction fragments within perennial ryegrass-infecting
strains were highly variable between progeny and parent strains compared to
parents and progeny in rice-infecting strains (Starnes et al. 2012). Nucleotide
sequence analysis revealed two mobile genetic elements (MGEs) residing within
the telomeres of the perennial-ryegrass infecting strains that were inferred to be
the causal agents of telomere instability within perennial ryegrass (Starnes et al.
2012). These MGEs were named Magnaporthe oryzae telomere retrotransposon

elements (MoTeRs) 1 and 2 (Starnes et al. 2012).

Magnaporthe retrotransposons

Magnaporthe oryzae Telomere Retrotransposons (MoTeR) 1 & 2 are
MGEs first discovered within telomeres in the M. oryzae genome of a strain
infecting perennial ryegrass (prg) (Figure 5; Starnes et al. 2012). Telomeric
sequences of prg infecting strains were investigated after southern blot analyses

of telomere restriction fragments of strains infecting rice and prg revealed a high

10



degree of variability in telomere restriction fragment length (RFL) between parent
and progeny in prg (Starnes et al. 2012). Telomeres and their internal sequences
were cloned and sequenced to reveal two MGEs inserted within telomeres within
prg strains (Starnes et al. 2012). Rice strains had little to no variation within RFL
of parent and progeny and subsequent sequencing of rice strain parents and
progeny did not display MGEs within the telomere (Starnes et al. 2012). The
MGEs were determined to function as agents of genomic instability causing
frequent genome rearrangements in prg strains as these frequent

rearrangements were not observed in rice infecting strains (Starnes et al. 2012).
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Figure 5 Schematic diagram of the M. oryzae MoTeR elements. MoTeR1 and MoTer2 are drawn
to scale. Repeated non-coding sequences are indicated by the medium-grey boxes. The terminal
shared sequences between MoTeR1 and MoTeR2 are indicated by light-grey bridging the two
elements. The coding region for reverse transcriptase is embedded within the dark arrow also
coding for a restriction-like endonuclease domain (REL-ENDO). The molecular probes for
MoTeR1 and MoTeR2 are M1_RT and M2 respectively. Reproduced from Starnes et al. 2012.

Sequencing of the MoTeRs revealed that MoTeR1 is ~5 kb in length while
MoTeR2 is ~1.7 kb in length (Starnes et al. 2012) (Figure 5). They both share an
identical 860 bp sequence at their 5’ ends and an identical 77 bp sequence at
their 3’ ends. Both MoTeRs are oriented with their 5’ end proximal to the

chromosome terminus as either a tandem array or as a solitary element (Starnes
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et al. 2012). MoTeR1 contains an open reading-frame (ORF) that putatively
encodes a protein with a reverse transcriptase domain that is 1,070 amino acids
in length (Starnes et al. 2012). The reverse transcriptase domain contained
statistically significant identity as determined by a BLASTx search (i.e., an
acceptable e-value) to those found in retrotransposons in Trypanosoma brucei
gambiense (Aksoy et al. 1990) and Crithidia fasciculata (Gabriel et al. 1990;
Starnes et al. 2012). MoTeR2 contains an ORF that putatively encodes a protein
of unknown function that is 280 amino acids in length (Starnes et al. 2012).
MoTeR1 is a non-LTR retrotransposon while MoTeR2 is non-autonomous as it
seemingly lacks the genes for transposition (Starnes et al. 2012). The
retrotransposons in Trypanosoma brucei gambiense (Aksoy et al. 1990) and
Crithidia fasciculata (Gabriel et al. 1990) both contain restriction enzyme-like
endonuclease domains (REL-ENDO) that insert only within splice leader
sequence genes. The predicted reverse transcriptase in MoTeR1 has a putative
REL-ENDO that is proposed to target telomere repeats (*CCCTAA?) for DNA
strand cleavage (Starnes et al. 2012). The exposed strand of DNA is predicted to
serve as a primer for reverse transcription as the 3’ terminus of MoTeR1 contains
telomere-like sequence that could complementarily anneal (Starnes et al. 2012)

(Figure 6). MoTeRs insert within telomere repeats.
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Figure 6 The theorized mechanism for MoTeR replication within M. oryzae. A. Potential cleavage
site within the upper strand of the telomere repeat containing (*TTAGGG®*) DNA. B. Top strand
cleavage by the restriction enzyme-like endonuclease domain of reverse transcriptase and
annealing of the MoTeR transcript 3’ terminal sequence to the free upper strand of the DNA. C.
Synthesis of complementary DNA (cDNA). The annealing of the MoTeR transcript 3’ end to the
upper strand of DNA will result in terminal duplications. The MoTeR transcript’'s 5’ region could
also anneal to a nick within the bottom strand of DNA resulting in terminal deletions. D. The 3’
region of the cDNA anneals to the 3’ region of the nicked bottom DNA strand followed by the
synthesis of the second strand of MoTeR DNA. E, the nicks in the DNA strands are ligated
resulting in complete MoTeR sequence insertion. Reproduced from Starnes et al. 2012.

The other interrogated fungal strains containing full-length MoTeR
sequences were those infecting wheat and millet (Starnes et al. 2012).
Consistent with the proposed telomere insertional sites the full MoTeR
sequences were present within telomere sequences (Starnes et al. 2012;
Rahnama et al. 2020). Subsequent interrogation of M. oryzae genomes
containing MoTeR sequences demonstrated that telomeres containing MoTeR
sequences were not inherently unstable as first proposed by Starnes et al. (2012)

but variation in sequence length separating MoTeRs in an array allowed for
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instability to occur (Rahnama et al. 2020). Telomeres that contained MoTeR
elements separated by interstitial telomere sequence repeats of 3 or more were
found to be less stable than sequences that contained up to 2 repeats (Rahnama
et al. 2020). Further evidence of telomere instability associated with MoTeR
elements was the presence of truncated MoTeR sequences located within the
interior of the genome that were identified by their maintained 3’ end followed by
one or more telomere repeats (°...CGCGAATTAAAACCCTAAn?®); these
internalized truncated MoTeRs were named MoTeR relics (Rahnama et al.
2020). These relics were evidence of rearrangements in the telomere and served
as indicators of potentially historical or more recent invasions of the telomere into
the surrounding genome. Interestingly, several MoTeR relics were associated
with sequence duplications likely formed through DNA-repair mechanisms

following telomere breakage near MoTeRs (Rahnama et al. 2020).

A BLASTn analysis of the fully assembled LpKY97 fungal genome (the
strain infecting perennial ryegrass; Rahnama et al. 2020) revealed that of the 18
MoTeR relics ten have 5’ flanking sequence duplications (56%), one is a
duplication of a relic and its 5’ flanking sequence (5%), and two are whole locus
duplications (11%) in which the relic and both of its flanking sequences are
duplicated elsewhere in the genome. The remaining five relics do not have any
type of duplication (28%). The frequency of MoTeR relic 5’ flanking sequence
duplications can be explained by frequent chromosomal repair events that may
occur at the 5" boundary of the MoTeR in the telomere where MoTeRs are

present. Interstitial telomere repeats of 3 or more were associated with causing
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telomere instability. They proposed that a double stranded break in a MoTeR
array could lead to degradation of MoTeR DNA creating a truncated MoTeR
(Rahnama et al. 2020). The naked end of the double strand could then be
repaired in one way by the addition of internal DNA that becomes duplicated in
the process. The MoTeR relics with no duplications associated with them were
the next most common (28%) and were explained by possible translocation
events or potential loss of duplicate sequences. Whole locus (11%) and relic + &’
flank duplications (5%) were the least abundant. The exact origins of these
duplications and their length or sequence composition remains uncharacterized.
This information could further explain how MoTeRs come to be truncated and
moved out of the telomeres and which regions of the genome might be more
prone to MoTeR repair. It is speculated that these duplications could serve an
adaptive potential if they were to duplicate genes where-in changes to the
sequence could allow for differences in protein function or merely allow them to
escape recognition by the host plants that the fungus infects (Rahnama et al.

2020).

MoTeR relics are the footprints of genome rearrangements tied to their
origin in the telomere. The purpose of this study was to explore the evolutionary
history of MoTeR relics and how they arose in different strains of M. oryzae by
examining the internalized MoTeR sequences of 10 fully assembled fungal
genomes isolated from strains infecting the host grasses Eleusine (goosegrass),
Triticum (wheat), Lolium (ryegrass), Oryza (rice), Setaria (foxtail), and

Stenotaphrum (St. Augustine’s grass) pathotypes.
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METHODS
Genome Sequence Data

NCBI accession numbers and sources for each of the 10 fully assembled

genome examined in this study are catalogued in Supplementary Table 1.

Local BLAST analyses
Local BLASTn (-e-value 1e-1, -task BLASTn-short, %identity >80%)

searches of full MoTeR1 and MoTeR2 sequences (~5 kb and ~1.7 kb
respectively) as queries against each genome were used to reveal the location,
length, and orientation of MoTeR relics. In the initial BLASTn results aberrant hits
of < 20 nt were filtered using the awk command and excluded from the analysis
(Appendix 1). MoTeR sequences were considered relics if they were found
outside of the terminal telomeric arrays (chromosomal ends) and contained a 3’
terminal sequence of the MoTeR attached to the telomeric repeat/s
(°CGCGAATTAAAACCCTAA?; STTAGGGTTTTAATTCGCG?®). BLASTN hits

that did not contain a 3’ end were excluded from the analysis.

BLASTnN searches (-e-value 1e-20) of each genome against each of the
other 9 genomes were conducted to determine if MoTeR relics were shared/lost
among strains. MoTeR relics were considered shared if the sequences flanking
MoTeR relics were >90% identical for at least 500 bp on either side. If the
sequence was broken up by a transposon insertion it was still considered to
maintain synteny if the flanking sequence around the insertion had the same

identity (>90%; Appendix 1).
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UNIX Command Line — Grepping sequences

In addition to local BLASTn searches, the UNIX Command Line Interface
was used to conduct grep searches of the 3’ end sequences against the genome
(°CGCGAATTAAAACCCTAA?; STTAGGGTTTTAATTCGCG?®). The grep
command can be used to search for exact matches of a query sequence given to
it within a .fasta file. The results of grep searches were blasted (-task BLASTn-
short -e-value 1e-1) against full MoTeR 1 and 2 sequences (~5 kb and 1.7 kb
respectively) to support MoTeR relic identity (> 20 nt). New MoTeR relics found
using grep were then blasted against the genome (e-value 1e-20 % identity =

100) to find their location and orientation within the genome (Appendix 1).

MoTeR Relic Flanking Duplicate Sequence Analysis

BLASTN (-e-value 1e-20) interrogations of each genome against itself
were used to generate .gff files to search for duplicate sequences. Duplications
adjacent to MoTeR relics were manually interrogated using the Integrative
Genomics Viewer (IGV; Thorvaldsdottir et. al., 2013). Duplications were
considered in the analysis if they were within 20 nt of the 3’ or 5’ boundaries of
the MoTeR relic. Sequences that indicated a relic + 5’ flanking sequence
duplication were considered if the length of the duplication was > 500 nt. Flanking
duplicate sequences in IGV were extended if adjacent hits mapped to the same
region of the matching chromosome. In these cases, duplicate sequences were
extended even if they were separated by short regions of unique sequence
and/or transposable elements.

Integrative Genome Viewer
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Chromosome ends of each strain’s genome were manually examined
using the Integrative Genomics Viewer (IGV; Thorvaldsdottir et. al., 2013).
Chromosome termini of each strain were examined for the presence/absence
(Y/N) of terminal MoTeR sequences and fully assembled telomere sequences.
Pos_start represents the left-side of the chromosome while pos_end represents
the right-side of the chromosome. The purpose of this information was to
calculate the distance of individual MoTeR relics to the nearest terminal MoTeR
or telomere sequence. If a MoTeR was present in the telomere, then the position
of the last MoTeR leading into the subtelomere was reported. If there was no
MoTeR present within the telomere, then the position recorded was the end of
the telomere at the edge of the subtelomere. If the telomere was missing from
the assembly, the position was defined as the first or last nucleotide in the
chromosome. Chromosome ends with a single, or partial, telomere repeat

(CCCTAA?;*TTAGGG?®) were not considered fully assembled telomeres.

Graphic visualization — Circos plots

MoTeR relics and adjacent duplicate flanking sequences were visualized
using a custom R code (Appendix 2) applying the package Circos (Krzywinski et.
al., 2009). In the generated figures MoTeR relic orientations are illustrated as
triangles where the tip of the triangle corresponds to the relic’s 3’ end. Relics with
3’ flanking sequence duplications are blue, those with relic + 5’ sequence
duplications are grey, those with no flanking sequence duplications are white,
and relics with a combination of 3’ flanking sequence duplications and relic + 5’

end duplications are grey with a blue border. The color of links corresponds to
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the chromosome in which the duplicate sequence is found flanking the MoTeR

relic. Some relics have been shifted in the plot to aid in their visualization.

RESULTS

MoTeR Relic Mapping and Distributions
MoTeR relics are truncated MoTeR 1 and 2 elements that are found in the
interior of the genome or exclusive of the telomeres. MoTeR relics investigated in

this study were those that contained a conserved 3’ sequence

(CGCGAATTAAAA?®; STTTTAACGCG?) flanked by one or more telomere
repeats (*CCCTAA?; STTAGGG?). The minimal length for relics found was 26
bp except for a relic in chromosome 3 of CD156 (15 bp) whose identity was
supported by local BLASTn searches of MoTeR relics found in chromosome 3 in
strains LpKY, FH, and B71 (Table S2). No full MoTeR 1 (5,034 bp) or MoTeR 2
(1,723 bp) sequences were found in the interior of any of the chromosomes or
strains interrogated. The longest relic (4,277 bp) was found in chromosome 1 of
strain CD156 which resided approximately 750 kb away from telomere 1 (Table
S2). In general, MoTeR relic 3’ sequences were flanked by one to two telomere
repeats with LpKY having the shortest containing a relic with no telomere repeat
in Chromosome 2, and Guy11 having perhaps the longest in Chr2, although its

telomere repeats contain several point mutations (Table S2).

In the 10 assembled genomes a range from one to 17 MoTeR relics were
detected in the seven core chromosomes (Table 1; Figure 7). The highest
number of relics (17) was found in strain LpKY with the highest concentration on

chromosome 3 (5 relics; Figure 7A). Strain U233 only contained one MoTeR relic
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(347 bp) which is approximately 55 kb away from telomere 2 (end of
chromosome 1) flanked by a single telomere repeat (*CCCTAA?, Figure 7F,
Table S2). The strains with the highest occurrence of MoTeR relics following
LpKY (17) were FH, CD156, and US71 containing 14, 15, and 13 relics
respectively (Table 1; Figure 7B, C, J). The strains with the lowest concentrations
of MoTeR relics following U233 were 70-15, Guy11, and Bm88324 containing 3,
4, and 7 relics respectively (Table 1; Figure 7G, E, I). Arcadia2 and B71 shared a

median number of 11 MoTeR relics (Figure 7H, D).

LpKY, FH, CD156, and B71 appeared to share two populations of relics
within chromosomes 3 and 6 that mapped approximately 2.6 Mb and 2.4 Mb to
the nearest telomere or terminal MoTeR. Guy11 contained a MoTeR relic in
chromosome 2 that mapped approximately 3.1 Mb from the nearest telomere or
terminal MoTeR (TableS1). Typically, excluding the centralized relic populations
in chromosomes 3 and 6 in strains LpKY, FH, CD156, and B71, MoTeR relics
mapped within 252 kb of a terminal MoTeR or terminal telomeres. Including the
distances for relics in the chromosomes of the examined strains gives a median
distance for MoTeR relics of approximately 203 kb from the nearest terminal
MoTeR or telomere illustrating that MoTeR relics appear to be more likely to be

found near chromosome ends.
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Figure 7 Map locations of 3' MoTeR relics in the 10 examined Magnaporthe oryzae strain
genomes. A LpKY (Lolium; adapted from Rahnama et al. 2020), B FH (Lolium), C CD156
(Eleusine), D B71 (Triticum), E Guy11 (Oryza), F U233 (Stenotaphrum), G 70-15 (Oryza), H
Arcadia (Setaria), | Bm88324 (Brachiaria), and J US71 (Setaria). MoTeR relics are represente as
green triangles, the base representing the 5’ terminus. The seven core chromosomes are plotted
based on length and are not aligned to each other.
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Chromosomal End Composition

The chromosomal ends (telomeres) of each strain were examined to see if
there was a correlation between the concentration of relics in each strain with the
presence or absence of terminal MoTeRs. Telomeres of strains LpKY and FH
were the most populated with MoTeR 1 and 2 sequences with 13/18 telomeres in
strain LpKY97 containing MoTeR sequences (includes minichromosomes 1 & 2)
and 14/16 telomeres in strain FH (includes minichromosome 1; Table 1). These
strains contained the highest number of MoTeR relics (Table 1). Likewise,
consistent with the findings of Starnes et al. (2012) telomeres in strains 70-15
and Guy11 did not contain MoTeR 1 or 2 sequences (Table 1) and these strains
had some of the lowest occurrences of relics (Table 1). However, U233, the
strain with the least amount of MoTeR relics (1) had MoTeR sequences present
in four of its telomeres while US71, a strain containing 13 MoTeR relics, was
found to not contain MoTeR sequences in any of its telomeres. Of the strains
lacking MoTeRs within their telomeres (US71, Guy11, 70-15, and Bm88324),
several of their telomeres were underrepresented and in the final nucleotide
sequence data set were likely lost during sequencing or genome assembly
(Table 1). Due to their sequence composition telomeres are recalcitrant to the
DNA sequencing enzymology in short read (lllumina) sequencing used to
generate genomic data as their sequences are extremely repetitive. Long read
(Minlon) sequencing is able to ameliorate this by producing longer read lengths
that can encompass kilobases of nucleotides facilitating more complete genome

assemblies (Kim et al. 2021).
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MoTeR Relic Comparisons

As summarized in figure 8 all relics in each chromosome are aligned to
compare relic distribution and retention based on their flanking sequences.
Although relic populations are variable among the ten examined strains the
results showed patterns of relic retention that are seen in strains that share a
most recent common ancestor (Figure S1). Those within the same lineage, such
as strains 70-15 and Guy11 (the Oryza lineages) share synteny in all but one of
their relics and US71 and Arcadia (the Setaria lineages) share eight relics.
Arcadia possesses three unique relics and US71 contains five, all of which are
found within approximately 540 kb or less from the nearest telomere. Four
strains, LpKY, FH (the Lolium lineages), B71 (Triticum), and CD156 (Eleusine)
share several relic populations in chromosomes 3, 6, 7, and 2 (Figure 8). Despite
MoTeR relic synteny among the more closely related lineages, several strains

contain a differential retention of relics across several lineages (Figure S1).
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Figure 8 Mapping of MoTeR relics to the seven core chromosomes of the ten assembled
Magnaporthe oryzae strain genomes LpKY, FH, CD156, B71, Guy11, U233, Arcadia, US71, and
70-15 and Bm88324. Triangles denote the orientation of relics where the apex of the triangle
corresponds to the 3’ end of the relic. For all seven chromosomes unique (strain-specific) relics
are coded as white. All chromosomes are aligned to the chromosome of the strain with the left-
most unique sequence denoted by an * next to the strain name. Colors are used to indicate which
relics are shared among different strains. Similar color represent similar sequences are in the
flanking side of the strains.
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Chromosome 2 has the most differential retention of relics. All strains,
excluding CD156 and U233, shared one or more relics with strain LpKY at the
left end of Chromosome 2 (Figures 8 & 9). None of the strains contained all 4 of
the relics found in strain LpKY that were captured within a 25 kb search window
(Figure 9) and part of chromosome 2 in this region is truncated in Bm88324
(Figure 9). The two relics shared in strains LpKY, Guy11, 70-15, and Bm88324
have been lost in Arcadia and US71 towards the end of chromosome 2 (telomere
3; Figure 9). In chromosome 7, there is a pattern of synteny among strains
Bm88324, B71, CD156, FH, and LpKY in which all five share a relic (in blue) in
Chromosome 7 (Figures 8 and 10). Strains LpKY, FH, and CD156 do not share
the relic found in B71 and Bm88324 (in yellow) which lies ca. 750 bp away

(Figures 8 and 10).
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Figure 9 25 kb window of chromosomal rearrangements in a relic landscape of M. oryzae strains
that share partial synteny with relics in chromosome 2 of strain LpKY but only show retention of
one of two relic populations. Relic populations are surrounded by a black box and connected by
dotted lines. Transposable elements are illustrated as boxes with arrows denoting their 5’ to 3’
orientation on chromosome 2. The beginning of the horizontal black lines does not indicate the
beginning of the chromosome with the exception of strain Bm88324.
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Figure 10 30 kb window of chromosomal rearrangements in a relic landscape of M. oryzae
strains that share partial relic synteny in chromosome 7 of strains Bm88324, B71, CD156, FH,
and LpKY.Bm88324 and B71 share two relics that are approximately 750 bp from each other, but
only one of the two relics (in blue) is maintained in strains CD156, FH, and LpKY. The 5' to 3’
direction of transposable elements is noted by a white arrow. Notice there are different
transposable elements here that were not pictured in Figure 8, distinguished by their difference in
color in the transposon key. MoTeR relics are represented as triangles and are surrounded by a
black box connected by dotted lines.

MoTeR Relic Associated Duplications

Flanking sequences of MoTeR relics were examined to see if they
contained duplicate sequences which could be indicative of how MoTeR relics
moved from the telomere to the interior chromosomal regions. Consistent with a

previous study (Rahnama et al. 2020), four types of duplications were detected:

1) 3’ duplication: duplications that are flanking the 3’ region of the relic,
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2) 5’ duplication: duplications that are flanking the 5’ end of the relic,

3) relic + 5’ duplication: duplications that spanned both the relic and the
sequence flanking its 5’ end, and

4) whole locus duplications: duplications in which the relic and the

sequences on either side of it were duplicated (Figure 11).

3’ Duplication 5’ + Relic Duplication
[——o---1  [f——o---/
|/ — . _ . _._. 4/ - —O{— ..... 7/
5’ Duplication Whole Locus Duplication
[f——o---~/ I/
Jfommmm e 4/ [ _o‘_ ..... 4/

Figure 11 Duplications associated with MoTeR relic sequences. MoTeR relics are represented as
triangles pointing in the 5’ -> 3’ direction. The 3’ duplication represents a duplication beginning at
the 3’ boundary of the MoTeR relic and extending out. The 5’ + relic duplication indicates the
duplication of the MoTeR relic and 5’ flanking sequence. The 5’ duplication begins and extends
from the 5’ boundary of the relic. The whole locus duplication indicates a duplication that extends
beyond either side of the MoTeR relic.

The results showed MoTeR relics were sometimes associated with
sequences that had a copy elsewhere in the genome suggesting potential
rearrangements could be attributed to the MoTeRs (Table 2, figure 9). The
results of association of MoTeR relics with duplications (or no duplications) in 10
strain genomes are summarized in table 2. In strains 70-15, Bm88324, and U233
none of the MoTeR relics were associated with a duplicate sequence (Figure 9G,
I, and J; Table 2). All duplicate sequences mapped to terminal regions of a
chromosome or to another MoTeR relic except for those in strains CD156, LpKY,
B71, and Arcadia that had duplications mapping from 1.5 to 2 Mb into

Chromosome 1 (Figure 10A, C, D, and E). The Arcadia strain also contained a
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duplicate sequence that mapped to approximately 5.5 Mb in Chr 3 (Figure 10E).
The largest duplication recorded was a whole locus duplication in strain US71
that was 23,985 bp long (Table S2). Overall, most duplications were <1,000 bp

long (Table S2).

Duplicate sequences are the likely indicators of MoTeR relic formation. &’
duplications likely resulted from a break in the telomere that led to the 5’
degradation of the MoTeR. The break was likely then healed through non-

homologous end-joining (NHEJ) that duplicated sequences in the process.
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Figure 12 Duplications associated with MoTeR relic sequences. MoTeR relics are represented as
triangles pointing in the 5’ -> 3’ direction. The color of the relic illustrates the type(s) of
duplication(s) associated with it shown in the key. Links between chromosomes connect duplicate
sequences associated with a MoTeR relic(s). Link colors are coded to that chromosome in which
their corresponding MoTeR relic is found. A. CD156. B. FH. C. LpKY. D. B71. E. Arcadia. F.
US71. G. 70-15. H. Guy-11. 1. Bm88324. J. U233.

DISCUSSION

Initial Hypothesis

The purpose of this study was to explore the evolutionary history of
MoTeR relics and how they arose in different strains of M. oryzae by examining
the internalized MoTeR sequences of 10 fully assembled fungal genomes
isolated from strains infecting the host grasses Eleusine (goosegrass), Triticum
(wheat), Lolium (ryegrass), Oryza (rice), Setaria (foxtail), and Stenotaphrum (St.
Augustine’s grass) pathotypes. Our results showed that MoTeR relics were
found, on average, within 250 kb of the telomere, illustrating a strong association

between the two. Intergenomic comparisons of ten strains revealed differential
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retention of relics across strain lineages with retention sometimes among
distantly related lineages, but not more closely related ones as was the case for
the relics found at the beginning of chromosome 2. MoTeR relics were also found
flanked by several duplicate sequences that are likely markers for the
rearrangements that took place to form MoTeR relics and push them outside of
the telomere. These results further highlight the inherent instability associated
with M. oryzae telomeres in the form of ancient rearrangements that took place to

form MoTeR relics.

Our initial prediction for this study was that MoTeR relics would reveal a
history of frequent chromosomal rearrangements influenced by the telomere
based on evidence of telomere instability associated with MoTeRs (Starnes et al.
2012; Rahnama et al. 2020; Rahnama et al. 2021). If MoTeRs influence
structural instability in the telomere, it would be reasonable to posit that the
formation of MoTeR relics would not be a rare event and would likely cause the
formation of unique, strain-specific profiles that would deviate from strain lineage
phylogenies. Results of the frequency and distribution of MoTeR relics among
strains were variable. The number of relics differed widely among strains from
one relic in strain U233 to 25 in strain LpKY. Cross examination of strains
revealed sections of conserved populations of relics, notably among the Triticum,
Eleusine, and Lolium strains. These populations were found in chromosomes 3,
6, and 7, and it appears that these regions may have been inherited during a
recent series of hybridization events from an Eleusine ancestor (Rahnama et al.

2022). Relics were also shared between other strains that were found within the
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same lineage, such as the two Oryza strains (Guy11 and 70-15) and the two

Setaria strains (Arcadia and US71).

| anticipated some conservation of relic sequences among more closely
related strains as well as frequent deviations. What was notable was the
presence of relics that were shared across several distantly related strains, e.g.
LpKY (Lolium) and Guy11 (Oryza), but not consistently among all. For example,
in strain LpKY the beginning of chromosome 2 contained 3 relics that were
shared to varying degrees among all but two strains (U233 and CD156). These
relics were found within 25 kb of each other and strain LpKY was unique in that it
contained all three relics while all the other strains sharing relics in this region
only shared one or two of the three. This region was populated by transposable
elements whose presence could have caused a deletion of the missing relic(s)
(Figure 9). Likewise, the pair of relics shared among strains B71 and Bm88324 in
chromosome 7 that were separated by merely 700 bp may have been disrupted
by transposon activity. MoTeR relic deletions are likely quite common as
highlighted by Rahnama et al. in intergenomic comparisons of the MoTeR relics
of strain CD156 against strains Arcadia, US71, and U233 (2021). In almost all
cases the strains compared to CD156 indicated that the corresponding regions
were sites of relic deletions, sometimes associated with other rearrangements.
This comparison of the four (out of ten) strains examined in this study is notable
as the results are most likely explained by the existence of the MoTeR relics
within an ancestral population of M. oryzae before the divergence of the

examined strain lineages. As regions found within proximity of the telomere are
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not likely to experience selective pressure, their presence or absence in those
regions is likely unimportant (Muszewska et al. 2019). To determine if other relics
are representative of ancestral, lineage, or strain-specific sequences will require
further investigation in examining potential deletions, rearrangements, and
translocations that may have occurred. Thus, our hypothesis has not yet been

falsified.

The comparison of strain CD156 to strains Arcadia, US71, and U233 provides
strong evidence that many, if not all, of the relics present in this study have been
differentially retained over evolutionary time from their ancestral population. |
would predict that some MoTeR relics will still be specific to certain strains as
many map as close as ca. 2,000 bp from the telomere and are potentially the
result of a much more recent rearrangement. However, evidence from this study
already shows that proximity to telomere ends is not equivalent to a recent
rearrangement as seen on chromosome 2 in strain Bm88324 that are
approximately 3-4 kb from the chromosome end (Figure 9). It appears likely that
this proximity to the telomere may have been exacerbated by a recent truncation

event that occurred after the divergence of this strain from its ancestor.

MoTeR relic distribution

In some cases, relics were found more distal to the telomeres than initially
anticipated. These sets of relics, as mentioned earlier, were likely inherited from
an Eleusine common ancestor as several of these strains in the Triticum,
Eleusine, and Lolium lineages have genomes that indicate recent, and rapid,

admixture (Rahnama et al. 2022). The majority of 3’ MoTeR relics were found
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near terminal regions of the chromosome, on average 230 kb distal. Duplicate
sequences associated with MoTeR relics were found to have their corresponding
copy near chromosome ends. Prior analyses revealed that telomere adjacent
sequences, i.e., sequences immediately next to the telomere end, were often
duplicates of other terminal sequences (Rahnama et al. 2021). Telomeres often
exchange information with each other through recombination events and utilize
nearby telomeres for sequence repair. This should not be surprising as telomeres
are often physically clustered together in the nucleus of the cell, facilitating
sequence exchange through homologous recombination with neighboring
telomeres (Linardopoulou et al 2005; Rahnama et al. 2021). Recombination and
rearrangements among telomeres are functionally less disruptive than if a
telomere were to use loci distal to the telomeres that could encode proteins

necessary for cellular function (Linardopoulou et al. 2005).

MoTeR relics were often found in regions populated by other transposable
elements that are highly concentrated near chromosome ends (Muszewska et al.
2019). It is likely that MoTeR relics are retained in these regions because they do
not experience intense purifying selection as do other regions of the genome
(Muszewska et al. 2019). It is postulated that the sequences associated with M.
oryzae telomeres, including MoTeR relics, could be treated as potential borders
for telomeric rearrangements that could occur without having detrimental impacts
(e.g., loss of essential genes) on the genome and the organism (Rahnama et al.
2021). Extended repeat-rich regions subtending telomeres could serve as a

buffer for the more strictly maintained regions of the genome. The genes that
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experience intense purifying selection are not often found near the subtelomere
and these sequences would not be ideal targets for telomere repair if the genome

were to experience damage or replicative stress (Linardopoulou et al. 2005).

Origin of MoTeR relics?

This research effort did not entail an analysis of the mechanisms of formation
of MoTeR relics, but an explanation of their possible origin is worth discussion.
Surveyed chromosome ends from each genome suggest that the abundance of
MoTeR elements present in the telomere does not necessarily correspond to
MoTeR relic abundance (Table 1). However, of the ten examined genomes only
LpKY had a fully represented telomere assembly. It is possible that telomeres
may have not been fully sequenced or did not have enough statistical support for
assembly, so unequivocal conclusions on MoTeR and telomere landscapes in

each strain cannot be made with the current genome assemblies.

Telomere damage and repair is the most probable explanation for the
formation of MoTeR relics. This is supported by their frequent association with
duplicated sequences which are often formed during double-stranded break
repair (Rahnama et al. 2020; Rahnama et al. 2021). While MoTeR 1 is theorized
to be transcriptionally active it would require a sequence of telomere repeats to
transpose to a region outside of the telomere (Starnes et al. 2012). Relics were
searched for signs of transposition (i.e., target site duplications (TSD) but none
were found (Rahnama et al. 2021). It is not improbable that these TSDs may

have once been present and have since been deleted.
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Telomere damage and repair is the most likely explanation for the formation
of MoTeR relics, as posed by Rahnama et al. (2020; 2021), because their
profiles match that of a break that might happen at interstitial telomere repeats
between MoTeR elements which have previously been shown to be associated
with telomere instability and breakage. This breakage could lead to repair
mechanisms like non-homologous end-joining (NHEJ) that could result in
sequence duplications in the process and shuffle the now truncated MoTeR out
of the telomere and closer to the interior of the genome (Rahnama et al 2020).
The frequent presence of duplicate sequences closely associated with MoTeR
relics, the truncated ends of the relics themselves, and the lack of evidence for
transposition support this. Several relics were also found to not be associated
with a duplicate sequence. In these cases, it is possible that a duplicate
sequence may have been lost, that perhaps the MoTeR had transposed and
evidence for it had been lost (i.e., TSDs), or that maybe the relic was a

passenger of another rearrangement that took place (Rahanama et al. 2020).

The presence of all these rearrangements associated with the telomere
begs the question of why this might happen frequently in M. oryzae. The purpose
of the telomere is to protect chromosome ends from degradation but there is
clear evidence that M. oryzae has experienced frequent bouts of telomere failure
throughout its evolutionary history (Rahnama et al. 2021). Telomere failure and
repair within M. oryzae can also be observed within a single generation (Starnes
et al. 2012; Rahnama et al. 2020). MoTeRs do play a role in causing instability in

the telomere, but foxtail strains of M. oryzae have no or very few MoTeRs within
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their telomeres and they still show high rates of recombination (Farman et al.
2014). In fact, while MoTeRs can cause instability within the telomeres of M.
oryzae, they are not the only source of instability, and their mere presence does
not always lead to telomere breakage (Rahnama et al. 2020). The telomere itself
could become deprotected or vulnerable in several ways, whether that be an
abnormality in the expression of the reverse transcriptase enzyme or faulty

telomere capping protein complexes (Chan and Blackburn 2004).

It is thought that higher rates of instability within the telomere of M. oryzae
could provide an adaptive advantage (Rahnama et al 2020; Rahnama et al
2021). Several human pathogens house genes key for adaptation to their host
within the subtelomere which allows for stochastic silencing and activation as
well as higher rates of mutation within genes housed in this region (Berriman et
al. 2005; Freitas-Junior et al. 2000). It is also probable that a crucial resistance
gene in some Oryza strains of M. oryzae, known as Avr-Pita, was lost due to
telomere failure and subsequent truncation or loss of the gene that allowed for
strains lacking this protein to infect rice hosts with the complimentary resistance
proteins. As a result, the rice grasses would not easily recognize fungal strains
without the fungus’ Avr-pita protein to signal their infection (Orbach et al. 2000).
Additionally, mechanisms for repair following double stranded breaks in the
genome often duplicate other sequences to fill in the gaps of the broken
sequence through non-homologous end-joining (NHEJ; Linardopoulou et al.
2005; Rahnama et al. 2020). It has been posed that if a break in the telomere

were to lead to the duplication of a gene, or a stretch of genes, the duplicate
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copy of that gene would then find itself in a more dynamic region of the genome
where it might experience adaptive mutations. It would also have a “back-up”
copy in the chromosome if the twin that migrated to the subtelomere were to gain

some non-advantageous mutations (Rahnama et al. 2020; Rahnama et al 2021).

Limitations

There were several limitations to this study that should be noted as this
study does not present a complete analysis of all MoTeR relics and their
relationships with the chromosomes and strains in which they reside. Some of
these limitations open avenues for future studies and proper utilization of the
UNIX Command Line and appropriate bioinformatics software to detect some of
the more problematic/questionable nucleotide sequences that were potentially

overlooked in this thesis.

1) Itis likely that not all 3" MoTeR relics were found in this study as both grep
and BLASTNn failed to identify some MoTeR relics that were present in
strains. BLASTn is the more advanced approach for finding MoTeR
sequences in the genome as it can handle mismatches in the sequences
when it comes to differences in sequence length as well as a certain
number of nucleotide mismatches. The threshold for how many
mismatches BLAST will allow depends on the length of the sequence as
well as the defined e-value. For short BLASTn | used an e-value of 1e-1
because | was attempting to capture a shorter sequence (~20 nt minimum)

and | wanted to allow for some mismatches. An e-value higher than that
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2)

for sequences this short would have returned far fewer results for many of

the shorter relics present in the genome.

Several new relics were discovered using subsequent BLASTn
pairwise intergenomic comparisons. For example, a local BLASTn
alignment of one strain’s genome against another might reveal the
positions of two matching MoTeR relics. One such example can be seen
in the chromosome 3 of strain CD156 where a 15 nt MoTeR relic was
found matching relics found in the same location in strains LpKY and FH.
This relic was easily missed during BLASTn and grep searches because
matches less than 20 nucleotides were filtered out. However, this 15 nt
relic is supported by the presence of longer relics in the same location in

strains FH and LpKY.

In some strains there were initial patterns of mismatch in relic populations
that had a clear relationship with one another. For example, a relic found
in chromosome 3 in strains LpKY, CD156, and B71 was shared between
strains LpKY and CD156 and between strains CD156 and B71 but was
not detected using BLASTn between strains LpKY and B71. One
explanation could be that some point mutations were between strains
LpKY and CD156 and CD156 and B71, but the point mutations in strains
LpKY and B71 were sufficiently different enough using short BLASTn.
That is, strains LpKY and B71 had an excess of nucleotide differences in
their MoTeR sequences to reach a statistically significant (and detectable)

match using BLASTn but had sufficient identity to CD156 in that their true
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identities were discernable by BLASTn. It should be noted that the BLAST
algorithm utilizes both the length of the two sequences being aligned and
their overall sequence identity to arrive at a positive match based on the
specific e value chosen by the investigator. Future methods might
approach using “fuzzy grep” that would be able to substitute mismatches
that might not be detected by BLASTn. Depending on the length of

sequence this strategy could become laborious. yt

3) Minichromosomes were not investigated in this study because there were
issues with BLASTn and grep detecting matches. This could be due to the
minichromosome assemblies which are problematic as they are often
comprised of sequences found in the core chromosomes and are difficult
to ascertain without first isolating them on an agarose gel. We know that
the minichromosome of strain LpKY is full of MoTeR relics from previous
studies (Rahnama et al. 2020). Additional analysis is needed to elucidate
the presence of MoTeR relics in the strains that have sequenced
minichromosomes. These could certainly reveal dynamic inter-specific
rearrangements between the minichromosomes and the core
chromosomes as previous studies have shown they have been known to
trade sequences (Peng et al. 2019). Further analyses targeting
minichromosomes would also require better genome assemblies as was

the case for B71.

Future directions
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Our initial hypothesis for this study that MoTeR relics would largely represent
unique strain or lineage-specific rearrangements was neither unequivocally
supported nor entirely refuted. In many cases strains shared MoTeR relics in
some chromosomes across distantly related lineages that signified their
formation within ancestral populations before the divergence of the strains
examined. One study also revealed that even seemingly unique relic profiles
were sites of differentially retained ancestral relics (Rahnama et al 2021). Itis
tempting to think that all relics belonged to ancestral lineages, however, this will
require more in-depth comparisons of strains to see if sites might have once
contained a corresponding MoTeR relic or if the relic itself might be the site for a
unique rearrangement. This is an analysis that | intend to explore but for the sake

of time excluded from the current thesis.

Future directions for this study could also pursue the identity of duplicate
sequences for the presence of protein coding regions that may serve as an
adaptive potential. Likewise, reasoning for the formation of 5" duplications were
posed in a 2020 study (Rahnama et al.) but the dynamics behind how a 3’
flanking duplication might have occurred are not entirely clear. Only 3’ end
MoTeR relics were investigated in this study and the methods for searching for
these shorter sequences that have likely undergone mutations are not
unequivocal. Finally, future investigations of MoTeR relic dynamics in
minichromosomes could reveal an interesting narrative of core and
minichromosome “cross-talk” (Peng et al. 2019) that could potentially be related

to MoTeR dynamics if minichromosome and core chromosome telomeres
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interact, or even if MoTeRs themselves could play a role in the formation of
minichromosomes (Rahnama et al. 2020). MoTeR relics and their relationship
with telomeres continue to present doorways for investigating telomere dynamics
in M. oryzae in a system where telomere rearrangements can be observed in a
single generation (Starnes et al. 2012; Rahnama et al. 2020) and their kinetics
could play a role in the rapid adaptation that is so integral to the success of this

fungal pathogen.
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Supplementary Table 1 Sources of genome assemblies including the host plant
they were collected from, their lineage, NCBI Accession Number, and the
reference in which their assembly is published.

Strain Host Lineage Reference NCBI
Accession #
LpKY97 Lolium perenne Lolium Farmanet SAMNO08009564
(perennial al. 2017
ryegrass)
FH L. perenne Lolium Pieck etal. SAMNO08009551
2017
CD156 Eleusine indica Eleusine Chiapello et SAMEA4708261
(goose grass) al. 2015
B71 Triticum aestivum Triticum Inoue etal. SAMNO04942725
(wheat) 2017
Arcadia Setaria viridis Setaria Farmanet SAMN14167122
(green foxtail) al. 2014
uS71 Setaria spp. Setaria Chiapello et SAMEA3373385
al. 2015
Bm88324  Brachiaria mutica Brachiaria Borromeo et  SAMNO08009544
(Buffalo grass) al. 1993
U233 Stenotaphrum Stenotaphrum  Yasuhara- SAMN19488846
secundatum Bell et al.
(St. Augustine 2018
grass)
Guy11 Oryza sativa Oryza Islam etal. SAMN06050151
(rice) 2016
70-15 O. sativa Oryza Deanetal. SAMN02953596
2005
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Supplementary Figure 1 Neighbor-joining distance tree based off number of SNPs per kb in
repeat-masked genome assemblies. Colored circles are used to highlight Magnaporthe oryzae

lineages. Labeled nodes have >80% confidence. Adapted from Gladieux et al. 2018.
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Appendix 1: Unix Command Line

List of commands:

>grep >sort >head >cd >tail
>egrep >sed >Is >mkdir >less
>awk >cat >pwd >man >nano

Installing local BLAST on the command line:

https://www.ncbi.nlm.nih.gov/books/NBK569861/

» Download .fasta files for query and subject sequences in your working
directory
» Make local databases for each .fasta subject file
o For example: Making a database for the Guy11 genome
= > makeblastdb -in Guy11.fasta -out Guy11 db -dbtype nucl

e “in ” represents the sequence file you
will be using to make a database

e “out " is the name you are giving your
database

o “dbtype " is the type of data within your

database, in this case it's made up of nucleotide

» Once you've made your database you can start using BLASTn to search
for matches to your query sequences within the database
o For example: When looking for MoTeR relics one method | used
was blasting full MoTeR1 and MoTeR2 sequences against my
database for each genome
» The query sequences needed to be in .fasta format
e The name of each sequence should follow a “>” and
comprise the first line of the text file. The nucleotides
for that file will then follow. You can have multiple
query sequences within a file as long as they are
prefaced by a “>”.

91



>MoTER1

CCCGAACCCGAACCCAA
ACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCGGAG
GGTTCCCAAGTCGCCTAAACCCGAAGGGTTTAGGATATTATTTCGTTTAT
TAGAATTGGATAATTATTTACCCCTGTTGGACAGGGGGGTTGCAGGGGTT
AAATTAAGGTTTTTTATTATTTATGCGCCGTTTATTTGTTTACCCCCCCA
AATATTATAAAAGCGCGTTCCATCCTCTTAGGAAAAGCGAAGCTTTTCCT
TGTAAAAGTCGCTAGACTTTTACTATAAAAGTCGCTAGACTTTTATACCA
ATCTTTTAACAAAAAGCGTAGCTTTTTGTTGCCAATCTATTAAAAAAAGC
GGAGCTTTTTTTAACTTTTTCTTTTTTTTTTTTTTTTCTTTTTTITTITTTT
TTTTTTCTTTTTTTTTTTTTTTTTTTTTTATATATATTATTATTATTATT
ATTAGCGGTGGGGCTATTTATGCGCTTTAATTTGTGCGGGGCTATTTATG
CGCTTTAATTTGTGCGGGGCTATTAATGCGCTTTAACTTTACAAATTTTA
TTTATGCGCTTTAATTGCTGCGGGCCTGTTAATGCGCTTTAATTTACAAA
TTTCATTAATGCGCTTTAACTTTTATATTTACTAATGCGTTATTTATATA
ATTGCTATTATTATCGTTGCTATTATTATTATTGCTATTATTATCGTTAT
TATTATTGCAATTTTATTATATAAACCCTCGTTTGTCCCTCGATTTATCC
CGTTTCTTTTCCATCCCATCGCGCGTTTTCGTAAGCTTTGGTTTTCGTAG
GATTTGCTTTCGTAGGCTTTGCTTTCGTAGGCTTTCGTCAGCTTTTACCT
GCTTTTATTTTTTCTTTTTCTTTTTATTCCCCCCCCTTTTTTTTACCTGG

» To search for query matches in your database (in this example | used
short blastn to search for MoTeR relics)
o >blastn -query MoTeRs.fasta -db Guy11 _db -task “blastn-short” -
out Guy 11 MoTeR _shortblast.txt -e-value 1e-1_-outfmt 6

“-query ” the sequences you are searching for
“-db ” the database you are searching for
matching sequences within

“-task ‘blastn-short™ is specific to this particular blastn
search looking for MoTeR relics as some of our
matches may be particularly short ****

“-out Ixt” The file name for your blast
results. | typically save them as a .txt file
“-e-value " Manipulating the e-value may

narrow your output or expand it. However, narrowing
and/or expanding to either cause you to miss
important matches or receive too many aberrant
matches that you don’t care about. For short blastn |
used an e-value of 1e-1 as some of the matches
could be short (< 40 nt). A few mismatches within a
short sequence can be picked up by a lower
designated e-value, but are easily lost with higher e-
values.
-“outfmt " The format in which your output file
will be organized. All output files consist of 12
columns. For output 6 they are organized as:

o https://lwww.metagenomics.wiki/tools/blast/blas

tn-output-format-6
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L NN

MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1
MoTER1

Chra
Chr4
Chra
Chr4
Chra
Chra
Chra
Chra
Chra
Chra
Chr4
Chra
Chr4
Chra

.888
.110
.660
.617
.917
.395
.522
.957
.935
.895
.443
.549
.047
.800

571
273
206
188
240
152
134
230
123
95

122
233
257
125

32
14

o ¢qseqid sseqid pident length mismatch
gapopen gstart gend sstart send evalue
bitscore

1.

2.

w

©oNO O A

gseqid — query or source (e.g., gene)
sequence id

sseqid — subject or target (e.g.,
reference genome) sequence id
pident — percentage of identical
matches

length — alignment length
mismatch — number of mismatches
gapopen — number of gap openings
gstart — start of alignment in query
gend — end of alignment in query
sstart — start of alignment in subject

10 send — end of alignment in subject
11.evalue — expect value
12.bitscore — bitscore

e Example output:

=

PONPRLRNORWARONN

CD156_MoTeR_blast.txt

622 1174 5498612 5498084 7.73e-84 313
4505 4777 8608 8867 6.91e-75 283
1050 1255 4771 4970 6.65e-72 274
4549 4735 9142 9326 1.51e-63 246
909 1137 100 337 2.26e-59 232
4881 5032 9632 9778 1.40e-57 226
908 1041 205 337 8.30e-53 210
909 1126 5498259 5498037 1.25e-48 196
908 1030 5498157 5498037 3.04e-46 188
4938 5032 9516 9608 1.12e-39 167
909 1030 4774 4891 1.04e-33 147
957 1174 3 231 4.09e-33 145
907 1150 4579 4823 4.09e-33 145
1002 1126 4771 4891 4.09e-33 145

e To be able to efficiently look through this output you
need to use commands that will help you filter and
sort through all of the matches

o My first criterion was finding matches that
contained the 3’ of MoTeR1 or MoTeR2

e Forthat | could use sort to comb
through the gstart and qend
columns by sorting matches in
that column numerically

o >sort-k7n
CD156_MoTeR _blast.txt
= -k usedto
designate a specific
column (In this case
column 7)
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= nused to tell the
sort command it is
sorting things
numerically
OR | could use ask to search for
matches that met a certain
criterion
o >awk ‘$7 >5000 || $8
>5000’
CD156_MoTeR _blast.txt
= $ designates a
specific column — in
this case we are
looking in columns
7 and 8
= || is part of an OR
statement. We want
an output of
matches in columns
7 and 8 that are
greater than 5000
as the position of
the 3’ end in
MoTeR1 is at
nucleotide 5034 in
the query
sequence. (Position
will differ for
MoTeR2) | provided
a buffer, so we
didn’t miss any
potential matches.
o Awk can be used even
further to organize and
filter through blast outputs
and can be used in
conjunction with sort (and
other commands) to result
in a final output. There are
multiple ways to approach
a dataset with these
commands.

o >awk '$7 >5000 || $8 >5000' CD156_MoTeR_blast.txt | sort -k2 >

CD156_Blast_Relics.txt
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MoTER1 Chrl 94.595 111 1 4 4924 5032 753620 753727 1.62e-32 143

MoTER1 Chrl 97.403 154 (] 3 4881 5034 6008485 6008336 2.44e-65 252

MoTER1 Chr3 90.000 40 4 ] 4995 5034 2424521 2424482 7.12e-04 48.1
MoTER1 Chr3 94.945 3739 68 58 1336 5024 7555161 7551494 0.0 5578

MoTER1 Chré 93.182 88 1 4 4946 5032 8519 8602 8.58e-19 97.6
MoTER1 Chré 93.478 46 (] 1 4987 5032 3897 3939 1.20e-08 63.9
MoTER1 Chré 94.551 3744 75 59 1346 5032 5498001 5494330 0.0 5475

MoTER1 Chré 95.395 152 2 3 4881 5032 9632 9778 1.40e-57 226

MoTER1 Chré 95.455 88 (] 3 4947 5034 9017 9100 5.93e-26 121

MoTER1 Chré 97.895 95 ] 1 4938 5032 9516 9608 1.12e-39 167

MoTER1 Chrb 95.746 3738 66 51 1337 5034 4608343 4604659 0.0 5828

MoTER1 Chré 87.829 304 27 9 4720 5021 12995 13290 9.29e-62 240

MoTER1 Chré 91.667 132 8 3 4905 5034 3282084 3282214 6.63e-35 151

MoTER1 Chré 92.208 77 6 ] 4958 5034 6061687 6061611 3.52e-21 105

MoTER1 Chré 93.333 150 4 4 4880 5028 3737 3881 7.70e-47 190

MoTER1 Chré 95.172 145 5 2 4888 5032 6062120 6061978 1.35e-54 216

MoTER1 Chré 95.644 3168 52 53 1904 5032 5395 8515 0.0 4831

MoTER1 Chré 95.833 144 (] 3 4891 5034 17912 18049 8.62e-56 220

MoTER1 Chr7 86.408 103 10 3 4931 5030 3896503 3896604 4.91e-11 71.9
MoTER1 Chr7 88.043 92 2 5 4931 5021 3904604 3904521 1.20e-08 63.9
MoTER1 Chr7 89.474 38 4 ] 4997 5034 3760976 3761013 0.011 44.1

MoTER1 Chr7 93.103 145 10 0 4888 5032 3904260 3904116 3.28e-52 208

MoTER1 Chr7 94.707 3741 58 65 1346 5032 540 4194 0.0 5479

MoTER1 Chr7 99.099 111 1 0 4924 5034 8733 8843 2.10e-53 212

~

Making comparisons between strains to search for matching and unique relics
was done in a similar manner. Genomes were blasted against each other using
an e-value of 1e-20 and using regular BLASTn rather than short blast to look for
much longer matches.

» Dblastn -query CD156.fasta -db 70-15_db -evalue 1e-20 outfmt 6 -out 70-

15 CD156 blast.txt

After using nucleotide blast the output can be approached from a variety of
ways such as using awk to look at specific positions or isolating certain
chromosomes; probably the most efficient approach I've come to is known as
“‘genome-walking”.

For this | created a simple pipeline that selects the chromosomes | would like
to compare using awk (in this case Chr1 and 70-15.Chr1). Then | set a criterion
that the length of the match should be at least X (in this case 50000). This is
purely subjective and can and should be adjusted, but it allows you to quickly
look through what the largest alignments of the genomes are and whether or not
the sequences and surrounding regions you are interested in align at a glance
and in what orientation. Finally, | would sort one column (in this case 7) of
positions initially to start “walking” from one direction along a chromosome.
Following this | would always inspect the sequences in IGV, especially in the
case that an alignment indicated that both genomes should have the same
relic(s) but my BLASTn and grep analyses did not initially reveal this.

> awk '$1 =="Chr1" && $2 =="70-15.Chr1™ 70-15_CD156_blast.txt | awk
'$4 > 50000' | sort -k 7n
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r -—
[ XCN ) & Downloads — -bash — 152x49

Janes-MacBook-Air:Downloads jane_dostart$ awk '$1 == "Chrl" &% $2 == "70-15.Chrl"' 70-15_CD156_blast.txt | awk '$4 > 50000' | sort -k 7n
Chrl 70-15.Chrl 98.483 65261 478 346 308703 373514 80359 145556 0.0 1.146e+05
Chrl 70-15.Chrl 98.388 50376 387 279 373612 423585 145745 196097 0.0 88136
Chri 70-15.Chrl 97.356 53054 674 416 499589 552074 554785 607677 0.0 89526
Chri 70-15.Chrl 97.419 61728 781 446 569587 620687 615219 676761 0.0 1.044e+05
Chri 70-15.Chrl 98.955 65278 105 356 1991630 2056342 1753060 1818325 0.0 1.162e+05
Chri 70-15.Chrl 99.100 80033 117 388 2133473 2212905 1902992 1983021 0.0 1.432e+05
Chri 70-15.Chrl 99.070 51829 45 236 2237092 2288490 2007279 2059100 0.0 92636
Chri 70-15.Chrl 98.890 55943 59 345 2288487 2343874 2059120 2115055 0.0 99349
Chrl 70-15.Chrl 99.034 67625 168 334 2502776 2569938 2275874 2343475 0.0 1.208e+05
Chri 70-15.Chrl 99.008 68138 141 308 2588150 2655786 2361853 2429956 0.0 1.216e+05
Chri 70-15.Chrl 98.751 67837 291 334 2875764 2943061 2545755 2613574 0.0 1.201e+05
Chrl 70-15.Chrl 99.089 55352 106 245 3412230 3467217 3078849 3134166 0.0 99057
Chri 70-15.Chrl 98.993 60870 108 290 3606194 3666578 3261394 3322243 0.0 1.085e+05
Chri 70-15.Chrl 98.830 55040 194 302 3678662 3733277 3334356 3389369 0.0 97657
Chri 70-15.Chrl 98.555 52444 275 290 4135085 4187093 3793944 3846339 0.0 92200
Chri 70-15.Chrl 98.661 57784 227 326 4187077 4244358 3846349 3904087 0.0 1.019e+05
Chri 70-15.Chrl 98.594 50346 188 317 4244427 4294261 3904080 3954416 0.0 88570
Chri 70-15.Chrl 98.729 110012 371 631 4350697 4459759 4046415 4156348 0.0 1.945e+05
Chri 70-15.Chrl 98.809 57028 183 308 4517211 4573796 4216155 4273128 0.0 1.011e+05
Chri 70-15.Chrl 98.856 94437 253 506 4573769 4667405 4273234 4367643 0.0 1.676e+05
Chrl 70-15.Chrl 99.066 67787 148 296 4834918 4902234 4538241 4606012 0.0 1.212e+05
Chri 70-15.Chrl 97.876 63827 656 398 5285570 5348866 4961563 5025219 0.0 1.097e+05

Janes-MacBook-Air:Downloads jane_dostart$ I

Using grep to search for MoTeR relics

Grep is a command that can be used to look for exact matches in a file. In the
cases that | used grep | would search for MoTeR 3’ end sequences in .fasta files
for genomes. The simplest grep search is shown below. Grep returns the search
term and the line it was found on.

> grep .CGCGAATTAAAA’ CD156_Final.fasta —colour=always

o " — Your search term/sequence

o .fasta - The file you are searching in

o - colour=always — highlights the match of the search term in red
K 53 CD156 — -bash — 152x50

Janes-MacBook-Air:CD156 jane_dostart$ grep 'CGCGAATTAAAA' CD156_Final.fasta ——colour=always
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATTTGTTTAAAACGCGAATTAAAATGCAGGTTATTAT
ACAAAGGCGCGCGAATTAAAACAGCTGCTGAGGAATGTATTATCAGTTGCTTAGTGAGCCTTTGCAAGCACCCCCAGGTC
TAGCAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTATACTTTGAGCTGTCTCCGCTCAATTCTGCTGTTAT
CAAAACCCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCTAACCCATAGACTTGAGGCCGGACGTGAC
CAACGTAGGAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTAAGGGAATTAATAAAGGGCGCCGCGCGCCGG
TACGACAAAACCATTAGCAAATAAGTTTAAAATAAAATAAAGCGCGAATTAAAACCCTAACCATCCCACCACAAATCTAG
TTTTATTTGTACGACAAACCCTTAGCAAATAAGCAGAATATAATAAAGCGCGAATTAAAACCCTAACCCTAAGCGCCGAG
TAAATATTTTTCCGCGTTATAAATTTCGTCCAATTGTTCGGTTTCGCGAATTAAAAGGTCGAATAAAACGTAATAATAAC
CCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCCTAAGTGAAATTTTGAACATCGCGATTTTACTTCC
CAGGCTACAATTAGCGCAAATAAACTTAGAATAAAGTTAAGCGCGAATTAAAACCTTAACCCTAAACTGCGAGGTTGACC
TGATAAAAATATTTTTTCCCGCGAATTAAAATTTATTTAATATTATAAATAAAAATAAAACCAAATTTGTCGCCGATCGT
AGTTTAATATTTATGCGGAACAATTGAAAAGAATGAGCAGGGCCGGTATTTATTTGTTTAAAAACGCGAATTAAAAGTGC
CGTATGCGATAAAATAATTTCCTCCCGCGAATTAAAATTTGCTCGATATTGTGGGCGAGGATATAAACTAAATCCGTCGC
ACGCGAATTAAAACCCTACCCCTAAATTTTGCTTCTATGTTTGCTTTTATATTTGTTCTAATTTTTACTTATTATATTTT
CTTAGAATATAAATAAACGCGAATTAAAACCCTAACCCTACAAGTTAGGAATGCGGCTGTTTATAGTGTTTGTAATATGC
TATCTCCACTCCATTATTTTAAGTAAAATAACGTAGTAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTAAC
TCAAGTAAAACAACGTAGCAAAACAGCTTAAAACATAAATAAACGCGAATTAAAACCTTAAGTTGGGCATTTGAAATTGA
ACCCGCAGTAAAACAACGTAGCAAAGTAGCTTAAAATATAAATAAACGCGAATTAAAACCCTACTACGAGGGTCCTTACC
TAATTTTTCCCCGCGAATTAAAACCTGCTCGATATTGTGGGCGAGGGCACAAACCAGATCCGTCGCCGATCGTTTGGGTA
Janes—-MacBook-Air:CD156 jane_dostart$ I

Because DNA is comprised of two strands which are complimentary and run
antiparallel to each other, there are two sequences that make up the 3’ end of
MoTeRs. Using egrep allows you to look for multiple search terms within a file
separated by a | sign.

> egrep 'CGCGAATTAAAA|TTTTAATTCGCG' CD156_Final.fasta --
colour=always
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[ NON {3 CD156 — -bash — 152x50

Janes-MacBook-Air:CD156 jane_dostart$ egrep 'CGCGAATTAAAA|TTTTAATTCGCG' CD156_Final.fasta —--colour=always
TTTGGGGTATTTTAATTCGCGTCGTGGTTTTCAATTTTGGCATTTACCACTAATTACGACATACGTTCCATAATCGAGGT
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATTTGTTTAAAACGCGAATTAAAATGCAGGTTATTAT
ACAAAGGCGCGCGAATTAAAACAGCTGCTGAGGAATGTATTATCAGTTGCTTAGTGAGCCTTTGCAAGCACCCCCAGGTC
TAGCAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTATACTTTGAGCTGTCTCCGCTCAATTCTGCTGTTAT
GGGTTAGGGTTAGGGTTTTAATTCGCGCTTTATTATATTCTAAGCTTATTTGCTAAGGGTTTTGTCGTACAAATAAAATA
CAAAACCCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCTAACCCATAGACTTGAGGCCGGACGTGAC
CAACGTAGGAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTAAGGGAATTAATAAAGGGCGCCGCGCGCCGG
TACGACAAAACCATTAGCAAATAAGTTTAAAATAAAATAAAGCGCGAATTAAAACCCTAACCATCCCACCACAAATCTAG
CGTTTTAGGGTTTTAATTCGCGCTTTATTTAATTCTAAGCTTATTTGCTAAGGGTTTTGTCGTACAAATAGGGTAGAAAA
TTGTGTTGGCACTTAGGGTTTTAATTCGCGCTTTATTATATTCTAAGCTTATTTGCTAAGGGTTTTGTCGTACAAATAAA
TTTTATTTGTACGACAAACCCTTAGCAAATAAGCAGAATATAATAAAGCGCGAATTAAAACCCTAACCCTAAGCGCCGAG
ATAATATACCCGGACCTTTTTGCCTCGTCAATTAGATAATTTATATCTTATTTTAATTCGCGGACGTTATATTATTACAA
TCCAAGACGAACTTTTAATTCGCGACGACAGTCCCTTCTCTGCGATTTCCGTCCCGCGGTTTATTTGAATCCTCCTTTCA
TAAATATTTTTCCGCGTTATAAATTTCGTCCAATTGTTCGGTTTCGCGAATTAAAAGGTCGAATAAAACGTAATAATAAC
GACCATGGAGATGCGGAGTGGTTACGGAATCCGTACCGCTCTCTTTTTAATTCGCGGGACCCCTGTAAAAATAAAATAAA
CCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCCTAAGTGAAATTTTGAACATCGCGATTTTACTTCC
CAGGCTACAATTAGCGCAAATAAACTTAGAATAAAGTTAAGCGCGAATTAAAACCTTAACCCTAAACTGCGAGGTTGACC
TGATAAAAATATTTTTTCCCGCGAATTAAAATTTATTTAATATTATAAATAAAAATAAAACCAAATTTGTCGCCGATCGT
AGTTTAATATTTATGCGGAACAATTGAAAAGAATGAGCAGGGCCGGTATTTATTTGTTTAAAAACGCGAATTAAAAGTGC
CGTATGCGATAAAATAATTTCCTCCCGCGAATTAAAATTTGCTCGATATTGTGGGCGAGGATATAAACTAAATCCGTCGC
GTTTTAATTCGCGTTTTATTTTATTCTAAGCTATTTTGCTAGTTGTTTTGCTGTACAAAGGGAAGTAAAATAGAAAAATA
ACGCGAATTAAAACCCTACCCCTAAATTTTGCTTCTATGTTTGCTTTTATATTTGTTCTAATTTTTACTTATTATATTTT
CTTAGAATATAAATAAACGCGAATTAAAACCCTAACCCTACAAGTTAGGAATGCGGCTGTTTATAGTGTTTGTAATATGC
TGGAACAGAAGTTAGGGTTTTAATTCGCGTTTATTAATATTCTAAGCTACTTTGCTACGTTGTTTTATTTGAAATAACGT
ACCGTCGTCTTTGGGTGCAAGGAAAATGGGGATTAGTGGGCGCTCTCGAGTCAGTTGGTTGGGGTTTTAATTCGCGTTTA
TATCTCCACTCCATTATTTTAAGTAAAATAACGTAGTAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTAAC
TCAAGTAAAACAACGTAGCAAAACAGCTTAAAACATAAATAAACGCGAATTAAAACCTTAAGTTGGGCATTTGAAATTGA
ACCCGCAGTAAAACAACGTAGCAAAGTAGCTTAAAATATAAATAAACGCGAATTAAAACCCTACTACGAGGGTCCTTACC
TAATTTTTCCCCGCGAATTAAAACCTGCTCGATATTGTGGGCGAGGGCACAAACCAGATCCGTCGCCGATCGTTTGGGTA
Janes-MacBook-Air:CD156 jane_dostart$ I

Finally, with grep | needed to extend the sequences surrounding my
search terms to first confirm that they were part of a MoTeR sequence and were
not due to random chance. | also needed to extend the surrounding sequence to
facilitate mapping them within the genome. To include lines surrounding the
search term you can include the options: -A, -B, or -C with the number of lines
you would like to include in the output. -A stands for after the search term, -B for
before the search term, and -C includes both before and after. In the case below
you can see how extending -C by 3 lines gives you a more detailed output.
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o000 £3 CD156 — -bash — 152x50

Janes-MacBook-Air:CD156 jane_dostart$ egrep 'CGCGAATTAAAA|TTTTAATTCGCG' -C3 CD156_Final.fasta --colour=always
GATGCGATTATAACAATTTCGCAGGCAATTTTGCTAACCAAACCGCTTTTGACGGGCTGGTATCCAAACATTAAAACCTT
TAATATATAATCCTTTTTTATAATATAAGCAACATTTATGGGCCCAAGGTTAAATTACCGGCCTGTTTATCCTGGGACGC
AATATGGCTCGATAATTATAAACAATTAATTACGCGATATTGGCTGGCGATTTATTATATTTTTAAAAAAATGCTCCGAA
TTTGGGGTATTTTAATTCGCGTCGTGGTTTTCAATTTTGGCATTTACCACTAATTACGACATACGTTCCATAATCGAGGT
TTTTTACTATTGTTTCAATCCCGGATATTGCTTTTATTACGCCACCAACCAAAATAAATTAATACAATTTGTCCATGGGC
TATTTTTTGTCAAACATTTTATTACCAGCGATATAAAAAGTGGTGGGTATAGTTATTGTAATTCGGCGGAGGCCAAATTT
TCCATTTTCCCCATAAAAAATGGGATGCAAATACGCGTCGACATACCACGTACAAAACAATTTTAATTTTAAAATTAAAG

TTAAACCCGGTACAGGGTAAGTAACCCCACTCGCTGACCTTTGAATTGCATTCCTGCATTAACAAAATAACGGAATTCCA
CCATTCCACCACCCCACTTCGGCACTATATAAAATGGACTATATATAAATAAAGTGGGCTTATTACATGCAAAATAATGC
ATATAATTAACAGGGATAAAAAAGCCGGGCCGTGGAACTGCTAAAATCTGGGCTAATATATACCTTCGCTTAGGTTTAAC
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATTTGTTTAAAACGCGAATTAAAATGCAGGTTATTAT
CCATAATATGGATCCAAATACCGGTATTCCGATTTTGGATAATATCGAAAAAGGCCATTTTGGAGGCGAAACCTTAAAAA
TATTAATTTTTGGAATAAGCTATTCCATCCAATTACTCCTTACCGTGTAAAAAACTGACAATAATTAAAACAGGCATTCC
AATAATAATATGGGGCGAGGGACCTGAGGCAAACCCAGACAGCAGCCCTGCCGTGTCCGCCTACCAGATCAACCGGTGCA

TCGGCTCTGGGCCATACCAAGCTCTGTGGCGACCTTGCTACAGTTCCCATCTTTCCTAGGAGGTGGGTAAGGTTGGTGGG
GTCAACTGGTCGGTCGTCGCACCGGCAAAATTGATGATACGGCTAAAACGCTGTGAGCTATTATCAAACAAAGTGTCCTT
TAAGGGGCCTGCCAATGGTAAGTAAAGTTACTATGTAGGCCGACAAAAGGACGCAGAGTTACGGAGTAGGTAAAGCAGCG
ACAAAGGCGCGCGAATTAAAACAGCTGCTGAGGAATGTATTATCAGTTGCTTAGTGAGCCTTTGCAAGCACCCCCAGGTC
CCAACAGTCTACGTTGCAAAAGTAATTATCCAAGCTTGCCAAGGTTTACCTTGTCTCCATTCATGGAAGCACGTTGAGGA
AAACCCAGAACTGGAACCCACATGTCCAATACGCGGAAAGTGCCCCTCCCATTTCGTCATTTTGACAGCAGATATGACTG
CCACATCCAAAGGAAGCTACGACACAGCTGGCACTCACAGCAAAGGTACATGCCCGGTATTGTACCTATGCGCGCGAAAG

CACGTTTGTTATTTTCCTTTATTAACCACGTTCACTACTTTTCTATTATTATTAACCACGCTCGCTAATTTCCTTTATTT

To both confirm the identity of the sequence as well as its position in the
genome you need to convert your grep output to .fasta format and trim the
sequences. Save your grep output as a text file (without the —colour=always
option — this would change the text file format).

> egrep 'CGCGAATTAAAA|TTTTAATTCGCG' -C3 CD156_Final.fasta >
CD156_MoTeR_grep.txt

Next you can remove the dashes in your text file by using the sed command.
This command is used to substitute or replace a subject with something else in a
file. In this case we will be replacing the ‘- -* with nothing, so we are essentially
erasing it and replacing it with a space.

» sed's/--/[' CD156_MoTeR_grep.txt > CD156_MoTeR_grep_sed.txt
o ‘s/__replace this/ _with this/’
o The sis an option in sed used for substituting
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'@ @ CD156 — less CD156_MoTeR_grep_sed.txt — 152x50

GATGCGATTATAACAATTTCGCAGGCAATTTTGCTAACCAAACCGCTTTTGACGGGCTGGTATCCAAACATTAAAACCTT
TAATATATAATCCTTTTTTATAATATAAGCAACATTTATGGGCCCAAGGTTAAATTACCGGCCTGTTTATCCTGGGACGC
AATATGGCTCGATAATTATAAACAATTAATTACGCGATATTGGCTGGCGATTTATTATATTTTTAAAAAAATGCTCCGAA
TTTGGGGTATTTTAATTCGCGTCGTGGTTTTCAATTTTGGCATTTACCACTAATTACGACATACGTTCCATAATCGAGGT
TTTTTACTATTGTTTCAATCCCGGATATTGCTTTTATTACGCCACCAACCAAAATAAATTAATACAATTTGTCCATGGGC
TATTTTTTGTCAAACATTTTATTACCAGCGATATAAAAAGTGGTGGGTATAGTTATTGTAATTCGGCGGAGGCCAAATTT
TCCATTTTCCCCATAAAAAATGGGATGCAAATACGCGTCGACATACCACGTACAAAACAATTTTAATTTTAAAATTAAAG

TTAAACCCGGTACAGGGTAAGTAACCCCACTCGCTGACCTTTGAATTGCATTCCTGCATTAACAAAATAACGGAATTCCA
CCATTCCACCACCCCACTTCGGCACTATATAAAATGGACTATATATAAATAAAGTGGGCTTATTACATGCAAAATAATGC
ATATAATTAACAGGGATAAAAAAGCCGGGCCGTGGAACTGCTAAAATCTGGGCTAATATATACCTTCGCTTAGGTTTAAC
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATTTGTTTAAAACGCGAATTAAAATGCAGGTTATTAT
CCATAATATGGATCCAAATACCGGTATTCCGATTTTGGATAATATCGAAAAAGGCCATTTTGGAGGCGAAACCTTAAAAA
TATTAATTTTTGGAATAAGCTATTCCATCCAATTACTCCTTACCGTGTAAAAAACTGACAATAATTAAAACAGGCATTCC
AATAATAATATGGGGCGAGGGACCTGAGGCAAACCCAGACAGCAGCCCTGCCGTGTCCGCCTACCAGATCAACCGGTGCA

TCGGCTCTGGGCCATACCAAGCTCTGTGGCGACCTTGCTACAGTTCCCATCTTTCCTAGGAGGTGGGTAAGGTTGGTGGG
GTCAACTGGTCGGTCGTCGCACCGGCAAAATTGATGATACGGCTAAAACGCTGTGAGCTATTATCAAACAAAGTGTCCTT
TAAGGGGCCTGCCAATGGTAAGTAAAGTTACTATGTAGGCCGACAAAAGGACGCAGAGTTACGGAGTAGGTAAAGCAGCG
ACAAAGGCGCGCGAATTAAAACAGCTGCTGAGGAATGTATTATCAGTTGCTTAGTGAGCCTTTGCAAGCACCCCCAGGTC
CCAACAGTCTACGTTGCAAAAGTAATTATCCAAGCTTGCCAAGGTTTACCTTGTCTCCATTCATGGAAGCACGTTGAGGA
AAACCCAGAACTGGAACCCACATGTCCAATACGCGGAAAGTGCCCCTCCCATTTCGTCATTTTGACAGCAGATATGACTG
CCACATCCAAAGGAAGCTACGACACAGCTGGCACTCACAGCAAAGGTACATGCCCGGTATTGTACCTATGCGCGCGAAAG

CACGTTTGTTATTTTCCTTTATTAACCACGTTCACTACTTTTCTATTATTATTAACCACGCTCGCTAATTTCCTTTATTT

For the following steps | manually changed the file to a fasta format. For
this you will need to exit the command line and work within the text file. There is
likely a way to code this, but it took longer for me to try and figure out how than
just doing this step manually myself. For BLAST it is easier to make comparisons
between the grepped sequences and both MoTeRs 1 and 2 as well as the
genome as blastn will only give you an output with the length of the match as well
as the positions. To facilitate the process,-it is better to trim the sequences to
include only the boundary of the 3’ sequence as well as what would be the
continued MoTeR sequence in the 5’ direction. Include the position of the first or
last nucleotide in the 3’ end sequence in the sequence name.
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o060 CD156_MoTeR_grep_sed.txt

Qv Done Replace

>Sequencel@l
TTTGGGGTATTTTAATTCGCGTCGTGGTTTTCAATTTTGGCATTTACCACTAATTACGACATACGTTCCATAATCGAGGT
TTTTTACTATTGTTTCAATCCCGGATATTGCTTTTATTACGCCACCAACCAAAATAAATTAATACAATTTGTCCATGGGC
TATTTTTTGTCAAACATTTTATTACCAGCGATATAAAAAGTGGTGGGTATAGTTATTGTAATTCGGCGGAGGCCAAATTT
TCCATTTTCCCCATAAAAAATGGGATGCAAATACGCGTCGACATACCACGTACAAAACAATTTTAATTTTAAAATTAAAG
>Sequence2@307
TTAAACCCGGTACAGGGTAAGTAACCCCACTCGCTGACCTTTGAATTGCATTCCTGCATTAACAAAATAACGGAATTCCA
CCATTCCACCACCCCACTTCGGCACTATATAAAATGGACTATATATAAATAAAGTGGGCTTATTACATGCAAAATAATGC
ATATAATTAACAGGGATAAAAAAGCCGGGCCGTGGAACTGCTAAAATCTGGGCTAATATATACCTTCGCTTAGGTTTAAC
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATTTGTTTAAAACGCGAATTAAAA
>Sequence3@262
TCGGCTCTGGGCCATACCAAGCTCTGTGGCGACCTTGCTACAGTTCCCATCTTTCCTAGGAGGTGGGTAAGGTTGGTGGG
GTCAACTGGTCGGTCGTCGCACCGGCAAAATTGATGATACGGCTAAAACGCTGTGAGCTATTATCAAACAAAGTGTCCTT
TAAGGGGCCTGCCAATGGTAAGTAAAGTTACTATGTAGGCCGACAAAAGGACGCAGAGTTACGGAGTAGGTAAAGCAGCG
ACAAAGGCGCGCGAATTAAAA]

>Sequence4@285
CACGTTTGTTATTTTCCTTTATTAACCACGTTCACTACTTTTCTATTATTATTAACCACGCTCGCTAATTTCCTTTATTT
TAACAACGTATTCCTTTTTCCTTTATTTTATTTTTCGTTTTTTTCGTTCTTTTAGGATTTTATTTTTCGTTTATTTATTT
CTTTTCTACTTTTTCCTACTTATGTTTTACACCTTGTATTTTATATTTGTCTCCACTCCATTATTTCAAGTAAAACAACG
TAGCAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTA

>Sequence5@l
TTAGGGTTTTAATTCGCGCTTTATTATATTCTAAGCTTATTTGCTAAGGGTTTTGTCGTACAAATAAAATA
GAAAAACAAACGGGAAAATAAAACCGTAAAAAGAAAAAGAAAAAAAAAAATATTAGTAGGTTGGGGTTATAATAATAAGG
GTGGGGATACTAGAAAATCGGAAAATAAAAACAATAATAAGAATAGAAACAAAAATAAAAACAAAAATAAAAACAAAATA
AACACAAAATAAAGACAAAAACAAAACAAAAACAAAACAAAACAAAACAAAACAAAAACAAAAGTAGGGACGTTACCTAT

Once this has been formatted you can blast it against MoTeRs 1 and 2 as
well as the genome it belongs to.

BLASTIing grep sequences against MoTeR sequences (in this example | only
used 5 sequences from the grep output)

» blastn -query CD156_MoTeR _grep_sed.ixt -db MoTeR _database -task
‘blastn-short’ -evalue 1e-1 -outfmt 6 -out CD156grep_MoTeR _blast.txt

® [ ) CD156 — less CD156grep_MoTeR_blast.txt — 187x46
Sequence2(@307 MoTER2 94.118 17 1 ] 291 307 1707 1723 0.025 26.3
Sequence2(@307 MoTER2 100.000 12 0 ] 281 292 198 209 0.098 24.3
Sequence2@307  MoTER1 94.118 17 1 0 291 307 5018 5034 0.025 26.3
Sequence2(@307 MoTER1 100.000 12 0 ] 281 292 198 209 0.098 24.3
Sequence3@262 MoTER2 100.000 13 ] ] 249 261 1711 1723 0.021 26.3
Sequence3@262 MoTER1 100.000 13 0 0 249 261 5022 5034 0.021 26.3
Sequence4@285 MoTER2 87.500 40 5 ] 241 280 1684 1723 1.53e-06 40.1
Sequence4(@285 MoTER2 100.000 12 ] ] 43 54 687 698 0.091 24.3
Sequence4@285 MoTER1 87.500 40 5 ] 241 280 4995 5034 1.53e-06 40.1
Sequence4@285 MoTER1 100.000 12 0 0 43 54 687 698 0.091 24.3
Sequence4(@285 MoTER1 100.000 12 ] ] 3 14 4460 4449 0.091 24.3
Sequence5@1 MoTER1 97.403 154 0 3 7 156 5034 4881 2.35e-70 252
Sequence5@1 MoTER1 84.034 119 10 5 198 311 4788 4674 1.11e-10 54.0
Sequence5@1 MoTER2 100.000 60 0 ] 7 66 1723 1664 2.26e-30 119

CD156grep_MoTeR_blast.txt (END)]

From this output you can use the position of the 3’ end in the sequence to
match it to the 3’ end sequence of MoTeR 1 (at position 5034) and of MoTeR 2
(at position 1723). You can also filter out any hits that are particularly short. |
didn’t include anything less than 20 nt. Following this you can then blast the
grepped sequences against the genome to find their position.

» Dblastn -query CD156_MoTeR _grep_sed.ixt -db CD156_database -evalue
1e-20 -outfmt 6 -out CD156grep_Genome_blast.txt
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To organize the output the easiest thing you can do is to awk for a 100%
match in column 3 as we grepped these sequences from the genome, so they
should each have an exact match. This will allow you to find the position in the
genome as well as its orientation.

> awk '$3 == 100.00' CD156grep_Genome_blast.txt

‘o000 £ CD156 — -bash — 187x46

Janes-MacBook-Air:CD156 jane_dostart$ blastn -query CD156_MoTeR_grep_sed.txt -db CD156_database -evalue le-20 -outfmt 6 -out CD156grep_Genome_blast.txt
Janes-MacBook-Air:CD156 jane_dostart$ awk '$3 == 100.00' CD156grep_Genome_blast.txt

Sequencel@l Chrl 100.000 320 0 0 1 320 727441 727760 7.40e-169 592
Sequence2@307  Chrl 100.000 307 ] ] 1 307 1411761 1412067 1.19e-161 568
Sequence3@262  Chrl 100.000 262 [} [ 1 262 2209201 2209462 1.04e-136 484
Sequence4@285  Chrl 100.000 285 ] ] 1 285 5748801 5749085 1.87e-149 527
Sequence5Q1 Chri 100.000 311 0 ) 1 311 6008330 6008640 7.23e-164 575

Janes-MacBook-Air:CD156 jane_dostart$ J

After this step you should compare your grep matches that contained
MoTeR relics, as confirmed by the grep-MoTeR blast, with your already recorded
MoTeR relics that were captured by blasting the MoTeRs against the genome. |
would then follow this by examining the sequences in IGV. In my case my .gff
files for IGV did not show the MoTeR relics found using grep, so | had to
designate their boundaries myself to investigate if they were associated with any
rearrangements/duplications in the genome.
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Appendix 2: Graphics in R Studio
###Plotting relics and their associated duplications on chromosomes in Circlize
using R Studio Version 4.0.2

## By: Jane E. Dostart

library(readxl)
library(dplyr)
library(tidyr)
library(circlize)

library(readr)

#Each color in this list corresponds to a specific chromosome. This list will
change in length
# As you account for differences in numbers of chromosomes (ie.

minichromosomes)

color2 = c("#C62828", "#HEF6C00", "#F9A825", "#2E7D32", "#1565CQ",

"#283593", "#6A1BOA", "#AD1457", "#E9Q1EG3")

#Read in the data for lengths of chromosomes, positions of relics, and positions

of duplicate sequences.

LpKY <- read_xIsx("LpKY_MoTeR_Duplications.xIsx", col_names = TRUE)
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#This sets the first track with the corresponding length of each chromosome
df <-

LpKY %>%

select(Chromosome, Chr_start, Chr_end) %>%

drop_na()

head(df)

#This reads in your duplicate sequences. Source_links and Target_links
correspond to each other and

#should be in order in each file as to the corresponding regions a duplicate
sequence is found in in

#each chromosome

source_links <-
LpKY %>%
select(chr = Chr_relic, start = relic_dup_start, end = relic_dup_end) %>%
as.data.frame(table(unlist(source_links))) %>%

drop_na()

target_links <-

LpKY %>%

select(chr = Chr_dup, start = o.chr_dup_start, end = o.chr_dup_end) %>%
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as.data.frame(table(unlist(target_links))) %>%

drop_na()

#Reading in relic positions
Relics <-
LpKY %>%
select(Chromosome_relic, "end_position(3')") %>%

drop_na()

circos.clear()

#This helps to position the plot where you want it to be in the window. If part of

your figure

#is being cut off, manipulating this code (specifically your ylim) will help.

circos.par("track.height" = 0.8, gap.degree = 1.5, cell.padding = ¢(0,0,0,0),
canvas.ylim = ¢(-1.1, 1.1), canvas.xlim = c¢(-1.1, 1.1))

#This actually sets up your track to plot your data onto. The lengths of your

chromosomes are now

#used to lay down the canvas or base of your plot. You won't see a figure until

the next bit of code.

circos.initialize(factors = df$Chromosome,

xlim = matrix (c(rep(0,9), df$Chr_end), ncol = 2))
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#Visualizing the chromosomes - This creates rectangles that represent the
chromosome. You can manipulate
#interior and border color, size, and labels here.
circos.track(ylim=c(0,1),panel.fun=function(x,y) {
chr=CELL_METAS$sector.index
xlim=CELL_METAS$xlim
ylim=CELL_METAS$ylim
circos.text(mean(xlim),2.5,chr,cex=0.75,col="black",
facing="bending.inside",niceFacing=TRUE, font=2)

},bg.col=color2,bg.border=F track.height=0.11)

#Adding axis labels - | found this to be useful as it seemed the default axis labels
were in
#kilobases instead of megabases
brk <- ¢(0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5)*10"6
circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {
circos.axis(h="top",major.at=brk,labels=round(brk/10”6,1),labels.cex=0.5,
col="black",labels.col="black",lwd=0.7,labels.facing="clockwise")

},bg.border=F)

#Adding target and source links - genome duplications - For my figures the

duplicate sequences correspond
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#specifically to the relic they were found adjacent to.

#original - circos.genomicLink(source_links, target_links, col = c("#D53E4F",
"#D53E4F", "#D53E4F", "#FEEQ8B", "#FEEO8B", "#FEE08B", "#FEE08B",
"#99D594"))

circos.genomicLink(source_links, target_links, col =
c("#EF6C00","#EF6C00","#EF6C00","#EF6CO00","#EF6C00","#FO9A825","#FI9A82
5" "#FOA825","#FOA825" "#FIAB25","#283593","#283593","#283593","#283593",
"#283593","#AD1457" "#AD1457" "#AD1457" "#AD1457" "#AD 1457",

"#AD1457", "#AD1457", "#AD1457"))

#color2 = c("#C62828", "#EF6C00", "#F9A825", "#2E7D32", "#1565C0Q",

"#283593", "#6A1BOA", "#AD1457", "#E9Q1EG3")

#Plotting Relics with No duplications. You could technically separate the types of
relics into different

#columns in your dataset, but where | used triangles to represent the direction of
the relics here

# "pch = 24 OR pch =25" | had to manipulate things a bit more directly, so |
entered in the position for each.

#Some of the triangles don't look great, so there may be a better way in R, or you
might use Adobe lllustrator.

#You will also find that many of the relics will overlap and be difficult to

distinguish, so manipulating
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# the x coordinates allows you to visualize them. The true positions are found in

the excel file.

circos.trackPoints(factors = c("Chr2", "Chr3", "Chr3", "Chr6", "Chr7", "MiniChr1"),
cex = 0.8,
x = ¢(42376, 2548296, 7355697, 3271965, 3825400, 398360),
y=c(0.4,0.4,0.4,0.4,0.4,0.4),

pch = 24, bg = "white")

circos.trackPoints(factors = c("Chr5", "Chr7", "Chr7"), cex = 0.8,
x = (4395439, 3688512, 3835928),
y =¢(0.4,0.4,0.4),

pch = 25, bg = "white")

#Plotting Relics with 5' Duplications
circos.trackPoints(factors = ¢("Chr3", "Chr3"), cex = 0.8,
x = ¢(152722, 2751680),
y =¢(0.4, 0.4),

pch = 24, bg = "red")

#Plotting Relic + 5' Duplications

circos.trackPoints(factors = c("Chr3", "MiniChr1", "MiniChr1", "MiniChr1"), cex =

0.8,
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x = ¢(2787030, 2700125, 2783081, 2806591),
y = (0.4, 0.4, 0.4, 0.4),

pch = 24, bg = "grey")

circos.trackPoints(factors = ¢("Chr6", "Chr6"), cex = 0.8,

X =¢(83149, 2132281),

y =¢c(0.4, 0.4),

pch = 25, bg = "grey")
#Plotting relics with Whole locus duplications
circos.trackPoints(factors = "Chr3", cex = 0.8,

x = 2787030,

y =04,

pch = 24, bg = "purple")
circos.trackPoints(factors = "MiniChr1", cex = 0.8,

x = 2382001,

y =04,

pch = 25, bg = "purple")
#Plotting relics with 3' and 5' Duplications
circos.trackPoints(factors = ¢("Chr2", "Chr3"), cex = 0.8,

X = ¢(25940, 2742283),

y =¢(0.4, 0.4),

pch = 25, bg = "red", col = "blue")

#plotting areas with patterns of Breakage-induced-replication
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circos.trackPoints(factors = ¢("MiniChr1", "MiniChr1", "MiniChr1", "MiniChr1"),
cex = 0.8,

x =¢(1359742, 1362129,1364517, 1366906),

y =c¢(0.4,0.4,0.4,0.4),

pch = 24, bg = "green")

109



	Magnaporthe Oryzae Telomeric Retrotransposon (moter) Relics Further Highlight Telomere Dynamics In A Rapidly Evolving Fungal Pathogen
	Recommended Citation

	Microsoft Word - Document25

