Eastern Kentucky University

Encompass

Online Theses and Dissertations

Student Scholarship

2022

Magnaporthe Oryzae Telomeric Retrotransposon (moter) Relics Further Highlight Telomere Dynamics In A Rapidly Evolving Fungal Pathogen

Jane Ellen Dostart Eastern Kentucky University

Follow this and additional works at: https://encompass.eku.edu/etd

Part of the Microbiology Commons

Recommended Citation

Dostart, Jane Ellen, "Magnaporthe Oryzae Telomeric Retrotransposon (moter) Relics Further Highlight Telomere Dynamics In A Rapidly Evolving Fungal Pathogen" (2022). *Online Theses and Dissertations*. 708. https://encompass.eku.edu/etd/708

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.

MAGNAPORTHE ORYZAE TELOMERIC RETROTRANSPOSONS (MOTER) RELICS FURTHER HIGHLIGHT TELOMERE DYNAMICS IN A RAPIDLY EVOLVING FUNGAL PATHOGEN

ΒY

JANE E DOSTART

THESIS APPROVED:

Dr. Patrick J. Calie, Chair, Advisory Committee

Dr. Mostafa Rahnama, Co-chair, Advisory Committee

Dr. Stephen Richter, Member, Advisory Committee

Hayes

Dr. David Hayes, Member, Advisory Committee

Dr. Ryan Keith Baggett, Dean, Graduate School

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Master of Science degree at Eastern Kentucky University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this document are allowable without special permission, provided that accurate acknowledgements of the source are made. Permission for extensive quotation from or reproduction of this document may be granted by my major professor. In [his/her] absence, by the Head of Interlibrary Services when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this document for financial gain shall not be allowed without my written permission.

Signature:

Date: 10/28/2022

MAGNAPORTHE ORYZAE TELOMERIC RETROTRANSPOSON (MOTER) RELICS FURTHER HIGHLIGHT TELOMERE DYNAMICS IN A RAPIDLY EVOLVING FUNGAL PATHOGEN

 $\mathbf{B}\mathbf{Y}$

JANE E DOSTART

Submitted to the Faculty of the Graduate School of Eastern Kentucky University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

© Copyright by JANE E DOSTART 2022 All Rights Reserved.

ACKNOWLEDGEMENTS

I would like to firstly thank my two advisors, Dr. Patrick Calie and Dr. Mostafa Rahnama for their continued support and guidance throughout the work that went into this thesis. They agreed to many a weekend or evening call/visit to discuss science, writing, and my general well-being for which I am profoundly grateful. I would also like to thank Dr. Mark Farman for allowing me to participate in this project and for his wonderful collaboration between the University of Kentucky and Eastern Kentucky University. I thank my committee members, Dr. Stephen Richter and Dr. David Hayes for their review and comments as well as Dr. Melanie Link-Perez for her initial input and insightful comments for my thesis proposal. I would also like to thank Dr. Lindsay Cormier for pulling me into this wonderful opportunity. For that, I am eternally grateful. I want to thank Dr. Marcia Pierce for all the pep talks and humor that helped me through some difficult times as well as the opportunity to learn and grow on the other side of the classroom in BIO 111 and behind the scenes in the always entertaining microkitchen. I also thank all of those in the Biological Organization for Graduate Students (BOGS) including Reni Gull, Jeni Knight, Aaron Devine, Emily Jones, Ted Brancheau, and Hope Dull as well as all the students in the cohorts before and after mine. I want to thank my family for being incredibly supportive and interested in my research. And lastly, I would like to thank my partner Nate Hooven for all his love and support.

iii

ABSTRACT

The telomeres of *M. oryzae* can experience unique rearrangements within a single generation. These rearrangements are frequently attributed to the presence of two retrotransposons (MoTeR 1 and MoTeR 2) that are endemic to the telomeres. These rearrangements can leave footprints within the interior of the genome that document previous telomere breakage events. The purpose of this study was to examine MoTeR relics within 10 genomes of strains of M. oryzae to document telomere instability among strain lineages, as well as to uncover MoTeR relic distribution, shared evolutionary history, and associated genome rearrangements. A series of local BLASTn and grep searches in the Unix Command Line were used to find and describe MoTeR relics. We found that MoTeR relics were found, on average, within 250 kb of the telomere and were often flanked by duplicate sequences that also mapped closely to telomeres. Our initial hypothesis for this study that MoTeR relics would largely represent unique strain or lineage-specific rearrangements was neither unequivocally supported nor entirely refuted. Intergenomic comparisons of MoTeR relics revealed several regions of shared synteny among distantly related strains that points towards their existence within ancestral strains, as well as seemingly strain- and lineagespecific relics that may be the result of more recent rearrangements. MoTeR relics serve as markers for investigating telomere dynamics in *M. oryzae* and further study might elucidate whether telomere instability within M. oryzae might play an adaptive potential in being able to quickly evolve and spread into new host plants as well as overcome resistance in others.

iv

Table of Contents

INTRODUCTION	. 1
Agricultural importance - blast disease	.1
The genus Magnaporthe	.2
The Fungi	.3
Magnaporthe as a plant pathogen	.7
The Magnaporthe genome	.9
Magnaporthe retrotransposons	10
METHODS	16
Genome Sequence Data	16
Local BLAST analyses	16
UNIX Command Line – Grepping sequences	17
MoTeR Relic Flanking Duplicate Sequence Analysis	17
Graphic visualization – Circos plots	18
RESULTS	19
MoTeR Relic Mapping and Distributions	19
Chromosomal End Composition	23
MoTeR Relic Comparisons	24
MoTeR Relic Associated Duplications	28
DISCUSSION	34
Initial Hypothesis	34
MoTeR relic distribution	37
Origin of MoTeR relics?	39
Limitations	42
Future directions	44
LITERATURE CITED	47
SUPPLEMENTARY MATERIALS	54
APPENDICES	90
Appendix 1: Unix Command Line	91
Appendix 2: Graphics in R Studio10	02

LIST OF TABLES

Table 1 Examined Magnaporthe oryzae strains. Total number of MoTeR relicsidentified per strain, telomeres containing full and partial MoTeR 1 and 2sequences, and the ratio of fully assembled telomeres to unassembledtelomeres. This table summarizes results from chromosomal end composition inSupplementary Table 2.22Table 2 Types of duplications in each strain of M. oryzae. Several relics havemultiple duplications associated with them, so the total number of duplications31

LIST OF FIGURES

Figure 1 Maximum likelihood tree built from transcriptome data of 21 species from 7 Classes within the Subphylum Pezizomycotina against the outgroup Saccharomycetes. The species Magnaporthe oryzae within the Order Magnaporthales is labeled with a star. Each species is followed by its strain number and genome size. The teleomorph and anamorph structures for the Orders Magnaporthales, Ophiostomatales, and Diaporthales within the Class Sordariomycetes are pictured on the right. Reproduced from Luo et al. 2015.3

Figure 4 General layout of chromosome end architecture and terminology in M. oryzae. The telomere is illustrated as a string of circles representing its composition of telomeric (⁵CCCTAA³) repeats. The subterminal region is a general term used to describe domains near chromosome ends. Within the subterminal region there can be subtelomeres which are duplicate sequences shared at other chromosome ends. Synteny between the two subtelomeres is represented by the gray box connecting the two areas in orange. Interstitial telomeres are telomere repeat sequences that are not continuous and surrounded by non-telomere repeat sequences. In the first row a full MoTeR element is inserted within the telomere with its 5' end facing towards the end of the chromosome, and its 3' end towards the chromosome interior. Further into the subterminal region is a truncated MoTeR element whose 3' end has been preserved. This truncated MoTeR is outside of the telomere of this chromosome. so it is considered a MoTeR relic. Lastly, a telomere junction indicates the boundary between the telomere and non-telomere sequence, whereas the telomere-adjacent sequence is found immediately next to the telomere junction

Figure 6 The theorized mechanism for MoTeR replication within M. oryzae. **A**. Potential cleavage site within the upper strand of the telomere repeat containing (⁵TTAGGG^{3'}) DNA. **B**. Top strand cleavage by the restriction enzyme-like endonuclease domain of reverse transcriptase and annealing of the MoTeR transcript 3' terminal sequence to the free upper strand of the DNA. **C**. Synthesis of complementary DNA (cDNA). The annealing of the MoTeR transcript 3' end to the upper strand of DNA will result in terminal duplications. The MoTeR transcript's 5' region could also anneal to a nick within the bottom strand of DNA resulting in terminal deletions. **D**. The 3' region of the cDNA anneals to the 3' region of the nicked bottom DNA strand followed by the synthesis of the second strand of MoTeR DNA. **E**, the nicks in the DNA strands are ligated resulting in complete MoTeR sequence insertion. Reproduced from Starnes et al. 2012.13

Figure 9 25 kb window of chromosomal rearrangements in a relic landscape of M. oryzae strains that share partial synteny with relics in chromosome 2 of strain LpKY but only show retention of one of two relic populations. Relic populations are surrounded by a black box and connected by dotted lines. Transposable elements are illustrated as boxes with arrows denoting their 5' to 3' orientation on

chromosome 2. The beginning of the horizontal black lines does not indicate the beginning of the chromosome with the exception of strain Bm88324......27

LIST OF SUPPLEMENTARY TABLES

Supplementary Table 1 Sources of genome assemblies including the host plant they were collected from, their lineage, NCBI Accession Number, and the Supplementary Table 2 MoTeR relic comparisons among 10 fully assembled Magnaporthe oryzae strain genomes (LpKY, FH, CD156, B71, Bm88324, U233, US71, Guy11, 70-15, Arcadia). MoTeR relics are truncated MoTeR 1 and 2 elements that are found in the interior of the genome, or more specifically, outside of telomeres. MoTeR relics investigated were only those that contained a conserved 3' sequence (^{5'}CGCGAATTAAAA^{3'};^{3'}TTTTAACGCG^{5'}) flanked by one or more telomere repeats (5'CCCTAA3';3'TTAGGG5'). 35 of 80 3' MoTeR relics identified contain single nucleotide polymorphisms in the MoTeR sequence **Supplementary Table 3** Telomere assembly and terminal MoTeR presence/absence and position. Chromosome ends of each strain were examined for the presence/absence (Y/N) of terminal MoTeR sequences and fully assembled telomere sequences. Pos start represents the left-side of the chromosome while pos end represents the right-side of the chromosome. The purpose of this information was to calculate the distance of individual MoTeR relics to the nearest terminal MoTeR or telomere sequence. If a MoTeR was present in the telomere, then the position of the last MoTeR leading into the subtelomere was reported. If there was no MoTeR present within the telomere, then the position recorded was the end of the telomere at the edge of the subtelomere. If the telomere itself was missing from the assembly the position was defined as the first or last nucleotide in the chromosome. Chromosome ends Supplementary Table 4 MoTeR relic positions and their associated duplications. The positions for the duplicate sequences adjacent to the relics are listed first. The chromosome and position that each duplicate sequence maps to is noted with an *. 3' duplications are duplicate sequences that are found flanking the 3' sequence of MoTeR relics. Relic + 5' duplications are duplicate sequences that

LIST OF SUPPLEMENTARY FIGURES

INTRODUCTION

Agricultural importance - blast disease

Magnaporthe oryzae is a global fungal pathogen commonly referred to as the blast fungus, frequently used as a model organism for studying plant pathogen and host interactions. Genetic strains of *M. oryzae* form pathotypes specific to a wide variety of cereal grasses including, but not limited to, perennial ryegrass (*Lolium perenne*), rice (*Oryza sativa*), wheat (*Triticum aestivum*), finger millet (*Eleusine corocana*), oat (*Avena sativa*) and barley (*Hordeum vulgare*). Each fungal strain is typically restricted to one grass species or Genus in the Family *Poaceae*. Over 50 different species of grasses are hosts to strains of this fungus (Ou 1985). One host plant, rice, receives significant research funding as it serves as a staple food item to ~50% of the global population (Skamnioti and Gurr 2009). In 2009 it was reported that rice blast disease destroyed 10 – 30% of the world's annual yield, 10% of which would feed approximately 60 million people (Skamnioti and Gurr).

The earliest record of rice infection by *M. oryzae* was documented in China (1637), and subsequently documented in Japan (1704), Italy (1828), the United States (1906), and India (1913), and has been reported in more arid regions such as Iraq (Ou 1985). *M. oryzae* displays a wide range of tissue affinity with the ability to infect every above ground organ of the plant (e.g., leaves, panicles, stems, and nodes) during any stage of plant development (Ou 1985; Talbot and Wilson 2009). An easily recognizable symptom of infection is in the form of lesions on grass leaves (blades) that present yellow, and more interiorly

brown, margins and either a brown or gray section in the interior during the later stages of infection (Figure 1b, c). Infected seeds have helped facilitate the spread of this fungus to 85 countries and six continents (Kato 2001).

M. oryzae poses a threat to global wheat production as it spread rapidly through the Brazilian wheat crop and into adjacent South American countries in 1985 gaining the name "wheat blast" (Inoue et al. 2017). A wheat-infecting isolate was discovered by investigators at the University of Kentucky in the United States in 2011. The isolate did not come from South America but is thought to have instead originated from a *Lolium* pathotype (Farman et al. 2017), a pathotype being a variant of *M. oryzae* that infects a specific group of hosts. *Lolium* pathotypes infect species like perennial ryegrass while other pathotypes, such as *Oryza* and *Avena*, infect rice and oat species respectively (Inoue et al. 2017). The isolate in Kentucky was less virulent than the Brazilian strain (Farman et al. 2017). More recently an outbreak of wheat blast originating from South America had impacts in Bangladesh resulting in a range of 10-100% loss of yield in wheat crop (Inoue et al. 2017).

The genus Magnaporthe

M. oryzae is a filamentous ascomycete, the body of the organism consisting of filamentous hyphae and the sexual spores contained in a sac termed an "ascus". It phylogenetically groups within the most species abundant phylum in the fungal kingdom. *M. oryzae* belongs to the Genus *Magnaporthe* nested in the Family *Magnaporthaceae*, Order *Magnaporthales*, Class *Sordariomycetes*, Subphylum *Pezizomycota*, and Phylum *Ascomycota* (Figure

1). Numerous species of ascomycetes are human pathogens, such as *Aspergillus fumigatus* which can grow in the lungs of immunocompromised individuals (Latgé 1999), *Candida albicans*, which can cause infections in the urinary tract (Sudbery 2011), and species within the genus *Trichophyton* which cause several skin infections like ringworm and athlete's foot (Gnat *et. al.* 2020). Like *M. oryzae*, several other plant pathogens belong to the Ascomycota including several rusts, powdery mildews, chestnut blight, and ergots (Berbee 2001).

Figure 1 Maximum likelihood tree built from transcriptome data of 21 species from 7 Classes within the Subphylum Pezizomycotina against the outgroup Saccharomycetes. The species Magnaporthe oryzae within the Order Magnaporthales is labeled with a star. Each species is followed by its strain number and genome size. The teleomorph and anamorph structures for the Orders Magnaporthales, Ophiostomatales, and Diaporthales within the Class Sordariomycetes are pictured on the right. Reproduced from Luo et al. 2015.

The Fungi

Fungi possess life history strategies that allow for frequent transitions to

parasitic lifestyles. Fungi are natural chemists, as their largely immobile state has

added evolutionary selective pressure on their ability to acquire nutrients, defend themselves, and colonize new territories. Although, as demonstrated earlier, several fungi are harmful to humans, many other species use biochemical strategies that are exceedingly important to the global economy and human health. The classic example of this can be seen in the antibiotic penicillin. This chemical is produced by the common bread mold, *Penicillium rubens* (Fleming 1941). Humans have also utilized *yeasts* (a noun that broadly encompasses numerous species of single-celled fungi) for hundreds of years to make breads, wines, and beers; some species are beautiful demonstrations of phylogeography and have formed clades that correspond to the specific regions of the world such as yeasts used to make sake in Asia and others whose ancestry traces the history of beer making in Europe and subsequent colonialization later of the New World (Gallone et al. 2016).

The Kingdom Fungi shares a common ancestor with animals and is estimated to have diverged from the animal lineage about 900 to 1500 million years ago (Figure 2; Gan et al. 2021). Two commonly recognized phyla within this kingdom are the Basidiomycetes and the Ascomycetes. The Ascomycota are the most species rich phylum of the fungal kingdom, yet members of the fungal kingdom that are more readily recognized are the mushrooms (Basidiomycota). The phyla Ascomycota and Basidiomycota comprise the Subkingdom Dikarya as they both form dikaryotic hyphae during sexual reproduction (Hibbett et al. 2007). Ascomycetes possess a sac-like reproductive structure called the ascus which houses ascospores – the asci are grouped together in a larger structure called

the perithecium. Basidiomycetes are characterized by their reproductive structure known as the basidium, which is comprised of a club-like structure topped with four sexually reproduced basidiospores. During sexual reproduction for members of dikarya the normally haploid genome of one mating type will fuse with the haploid genome of another mating type during a process called karyogamy. The fused nuclei will undergo several meiotic divisions as a diploid cell wherein the chromosomes from each mating type may undergo recombination. After several stages of replication and division of the diploid nucleus, the cells will divide into haploid daughter cells and form ascospores which will be released and propagated as a new fungus.

Figure 2 Simplified diagram of fungi (names in bold) by Meike Piepenbring 2021. Notice that fungi are more closely related to animals, sharing a more recent common ancestor than with plants.

The Order *Magnaporthales* can reproduce through mitotic divisions in their anamorphs through specialized structures known as conidiophores that extend from the vegetative, septate hyphae – these form haploid conidiospores (Brock, Smith, and Madigan 1984) (Figure 3a). The conidiospores of the species *M. oryzae* are composed of three cells and have a tear-drop shape (Talbot and Wilson 2009) (Figure 3a).

Figure 3 Life cycle of Magnaporthe oryzae. **a**, Two mating types of different strains sexually reproduce and develop ascospores within a perithecium. Conidiospores produced asexually

attach to host plant tissue and germinate to produce a structure called the appressorium which utilizes turgor pressure (~8MPa) to puncture plant tissue and grow invasive hyphae that produce lesions from which new spores will be released. **b**, Rice (Oryzae sativa) leaf lesions. **c**, Rice stem node infection. **d**, Image from a scanning electron microscope of a conidium (CO) and developing appressorium (AP) on the surface of a rice leaf. Scale bar, 10 μ m. **e**, Image from a transmission electron microscope illustrating an appressorium on the surface of a rice leaf and invasive hyphae (IH) growing within the leaf. Scale bar, 5 μ m. Reproduced from Dean et al. 2005.

One key feature that has facilitated fungal evolutionary success is their possession of a haploid genome. This might not seem intuitive as having less genetic material to manipulate through recombination or mutation might seem a disadvantage, however, the nature of only having one copy of each chromosome means that mutations to genes in their genome will be expressed as they will not be masked by another gene copy. This serves as a form of bet-hedging as a single fungus might produce millions of meiotic spores all with different genomes, e.g., SNPs, and those that persist should exhibit desirable traits that could increase the fitness of the next generation, while those with deleterious traits will be purged from the population (Orr and Otto 1994).

Magnaporthe as a plant pathogen

In the case of *M. oryzae*, its spores could land on a vegetative structure (e.g., leaf) on one of the >50 species of grasses it infects. When its spores land and adhere to a suitable host plant, the spore then germinates and grows to form an infective structure called an appressorium that utilizes turgor pressure to penetrate the vegetative tissue of its host (Talbot and Wilson 2009) (Figure 3d, e). During this initial assault of the host tissue, *M. oryzae* hyphae release a cocktail of effector proteins that aid in host infection (Talbot and Wilson 2009).

M. oryzae is a facultative parasite: it does not require its host plant to carry out certain life stages, but it does depend on its host plants for survival. This interaction has applied selective pressure for a suite of defense mechanisms generated by the host plant that help to detect and defend against invasion by M. oryzae. Much of the pathogenic success in *M. oryzae* is due to the rapid evolution of its effector proteins. Several mechanisms exist in the genome that facilitate the mutation and evolution of effector proteins. The mutation or loss of function of fungal AVR genes allows for increased infectivity and loss of recognition by the host plant's resistance (r) protein receptors (Sánchez-Vallet et al. 2018). Avr proteins often map to structurally unstable regions of the fungal genome, i.e., proximal to telomeres, adjacent to transposable elements (TEs), or within regions of repeat sequence (Sánchez-Vallet et al. 2018). These locations in the genome make AVR genes more susceptible to high mutation rates and sequence instability (Sánchez-Vallet et al. 2018). Most resistant plant cultivars do not maintain resistance as *M. oryzae* strains can quickly mutate or lose their AVR genes that would otherwise bind to the plant's R protein receptors and signal fungal infection (Dangl, Horvath, and Staskawicz 2013). Modifications to, or loss of, AVR genes has been inferred as a mechanism for "host jumping" as seen with the appearance of wheat blast where strains specific to certain host plants may acquire the ability to infect a different host plant (Inoue et al. 2017). Likewise, rotation of crops lacking R genes specific to *M*. oryzae pathotypes and populations could allow for devastating outbreaks as is thought to be the case for

new wheat variants that were planted in South America in 1985 that lacked the Rwt3 resistance gene (Inoue et al. 2017).

The Magnaporthe genome

M. oryzae strains have dynamic and variable genomes in size and architecture (e.g., chromosomal structure). The haploid genome contains ~41 Mbp organized into 7 core chromosomes; however, several strains vary in the precise size of their core chromosomes, and some have additional supernumerary chromosomes, or minichromosomes (Dean *et al.* 2005; Luo *et al.* 2015; Peng *et al.* 2019). The linear chromosomes are flanked in their terminal regions by telomeres that consist of short, repeat sequences (⁵CCCTAA^{3'}) bound by a shelterin protein complex to prevent chromosome degradation and potential loss of DNA between cycles of replication (De Lange, Lundblad and Blackburn 2006).

Figure 4 General layout of chromosome end architecture and terminology in M. oryzae. The telomere is illustrated as a string of circles representing its composition of telomeric (⁵CCCTAA^{3'}) repeats. The subterminal region is a general term used to describe domains near chromosome

ends. Within the subterminal region there can be subtelomeres which are duplicate sequences shared at other chromosome ends. Synteny between the two subtelomeres is represented by the gray box connecting the two areas in orange. Interstitial telomeres are telomere repeat sequences that are not continuous and surrounded by non-telomere repeat sequences. In the first row a full MoTeR element is inserted within the telomere with its 5' end facing towards the end of the chromosome, and its 3' end towards the chromosome interior. Further into the subterminal region is a truncated MoTeR element whose 3' end has been preserved. This truncated MoTeR is outside of the telomere of this chromosome, so it is considered a MoTeR relic. Lastly, a telomere junction indicates the boundary between the telomere and non-telomere sequence, whereas the telomere-adjacent sequence is found immediately next to the telomere junction (Adapted from Rahnama et al. 2021).

All background information in the introduction has led to the more refined arena of the thesis here-in that takes place in the telomeres and subtelomeres of *M. oryzae*. A study of the telomeres and subtelomeres within rice-infecting (*Oryza*) and perennial ryegrass-infecting (*Lolium*) strains revealed that telomere sequence-containing restriction fragments within perennial ryegrass-infecting strains were highly variable between progeny and parent strains compared to parents and progeny in rice-infecting strains (Starnes et al. 2012). Nucleotide sequence analysis revealed two mobile genetic elements (MGEs) residing within the telomeres of the perennial-ryegrass infecting strains that were inferred to be the causal agents of telomere instability within perennial ryegrass (Starnes *et al.* 2012). These MGEs were named *Magnaporthe oryzae* telomere retrotransposon elements (MoTeRs) 1 and 2 (Starnes *et al.* 2012).

Magnaporthe retrotransposons

<u>Magnaporthe oryzae Te</u>lomere <u>R</u>etrotransposons (MoTeR) 1 & 2 are MGEs first discovered within telomeres in the *M. oryzae* genome of a strain infecting perennial ryegrass (prg) (Figure 5; Starnes *et al.* 2012). Telomeric sequences of prg infecting strains were investigated after southern blot analyses of telomere restriction fragments of strains infecting rice and prg revealed a high

degree of variability in telomere restriction fragment length (RFL) between parent and progeny in prg (Starnes *et al.* 2012). Telomeres and their internal sequences were cloned and sequenced to reveal two MGEs inserted within telomeres within prg strains (Starnes *et al.* 2012). Rice strains had little to no variation within RFL of parent and progeny and subsequent sequencing of rice strain parents and progeny did not display MGEs within the telomere (Starnes *et al.* 2012). The MGEs were determined to function as agents of genomic instability causing frequent genome rearrangements in prg strains as these frequent rearrangements were not observed in rice infecting strains (Starnes *et al.* 2012).

Figure 5 Schematic diagram of the M. oryzae MoTeR elements. MoTeR1 and MoTer2 are drawn to scale. Repeated non-coding sequences are indicated by the medium-grey boxes. The terminal shared sequences between MoTeR1 and MoTeR2 are indicated by light-grey bridging the two elements. The coding region for reverse transcriptase is embedded within the dark arrow also coding for a restriction-like endonuclease domain (REL-ENDO). The molecular probes for MoTeR1 and MoTeR2 are M1_RT and M2 respectively. Reproduced from Starnes et al. 2012.

Sequencing of the MoTeRs revealed that MoTeR1 is ~5 kb in length while MoTeR2 is ~1.7 kb in length (Starnes *et al.* 2012) (Figure 5). They both share an identical 860 bp sequence at their 5' ends and an identical 77 bp sequence at their 3' ends. Both MoTeRs are oriented with their 5' end proximal to the chromosome terminus as either a tandem array or as a solitary element (Starnes

et al. 2012). MoTeR1 contains an open reading-frame (ORF) that putatively encodes a protein with a reverse transcriptase domain that is 1,070 amino acids in length (Starnes et al. 2012). The reverse transcriptase domain contained statistically significant identity as determined by a BLASTx search (i.e., an acceptable e-value) to those found in retrotransposons in Trypanosoma brucei gambiense (Aksoy et al. 1990) and Crithidia fasciculata (Gabriel et al. 1990; Starnes et al. 2012). MoTeR2 contains an ORF that putatively encodes a protein of unknown function that is 280 amino acids in length (Starnes et al. 2012). MoTeR1 is a non-LTR retrotransposon while MoTeR2 is non-autonomous as it seemingly lacks the genes for transposition (Starnes et al. 2012). The retrotransposons in Trypanosoma brucei gambiense (Aksoy et al. 1990) and Crithidia fasciculata (Gabriel et al. 1990) both contain restriction enzyme-like endonuclease domains (REL-ENDO) that insert only within splice leader sequence genes. The predicted reverse transcriptase in MoTeR1 has a putative REL-ENDO that is proposed to target telomere repeats (⁵CCCTAA³) for DNA strand cleavage (Starnes et al. 2012). The exposed strand of DNA is predicted to serve as a primer for reverse transcription as the 3' terminus of MoTeR1 contains telomere-like sequence that could complementarily anneal (Starnes et al. 2012) (Figure 6). MoTeRs insert within telomere repeats.

Figure 6 The theorized mechanism for MoTeR replication within M. oryzae. **A**. Potential cleavage site within the upper strand of the telomere repeat containing (⁵'TTAGGG^{3'}) DNA. **B**. Top strand cleavage by the restriction enzyme-like endonuclease domain of reverse transcriptase and annealing of the MoTeR transcript 3' terminal sequence to the free upper strand of the DNA. **C**. Synthesis of complementary DNA (cDNA). The annealing of the MoTeR transcript 3' end to the upper strand of DNA will result in terminal duplications. The MoTeR transcript's 5' region could also anneal to a nick within the bottom strand of DNA resulting in terminal deletions. **D**. The 3' region of the second strand of MoTeR DNA. **E**, the nicks in the DNA strands are ligated resulting in complete MoTeR sequence insertion. Reproduced from Starnes et al. 2012.

The other interrogated fungal strains containing full-length MoTeR

sequences were those infecting wheat and millet (Starnes et al. 2012).

Consistent with the proposed telomere insertional sites the full MoTeR

sequences were present within telomere sequences (Starnes et al. 2012;

Rahnama et al. 2020). Subsequent interrogation of M. oryzae genomes

containing MoTeR sequences demonstrated that telomeres containing MoTeR

sequences were not inherently unstable as first proposed by Starnes et al. (2012)

but variation in sequence length separating MoTeRs in an array allowed for

instability to occur (Rahnama et al. 2020). Telomeres that contained MoTeR elements separated by interstitial telomere sequence repeats of 3 or more were found to be less stable than sequences that contained up to 2 repeats (Rahnama et al. 2020). Further evidence of telomere instability associated with MoTeR elements was the presence of truncated MoTeR sequences located within the interior of the genome that were identified by their maintained 3' end followed by one or more telomere repeats (^{5'}...**CGCGAATTAAAA**<u>CCCTAA</u>_(n)^{3'}); these internalized truncated MoTeRs were named MoTeR relics (Rahnama et al. 2020). These relics were evidence of rearrangements in the telomere and served as indicators of potentially historical or more recent invasions of the telomere into the surrounding genome. Interestingly, several MoTeR relics were associated with sequence duplications likely formed through DNA-repair mechanisms following telomere breakage near MoTeRs (Rahnama et al. 2020).

A BLASTn analysis of the fully assembled LpKY97 fungal genome (the strain infecting perennial ryegrass; Rahnama et al. 2020) revealed that of the 18 MoTeR relics ten have 5' flanking sequence duplications (56%), one is a duplication of a relic and its 5' flanking sequence (5%), and two are whole locus duplications (11%) in which the relic and both of its flanking sequences are duplicated elsewhere in the genome. The remaining five relics do not have any type of duplication (28%). The frequency of MoTeR relic 5' flanking sequence duplications can be explained by frequent chromosomal repair events that may occur at the 5' boundary of the MoTeR in the telomere where MoTeRs are present. Interstitial telomere repeats of 3 or more were associated with causing

telomere instability. They proposed that a double stranded break in a MoTeR array could lead to degradation of MoTeR DNA creating a truncated MoTeR (Rahnama et al. 2020). The naked end of the double strand could then be repaired in one way by the addition of internal DNA that becomes duplicated in the process. The MoTeR relics with no duplications associated with them were the next most common (28%) and were explained by possible translocation events or potential loss of duplicate sequences. Whole locus (11%) and relic + 5' flank duplications (5%) were the least abundant. The exact origins of these duplications and their length or sequence composition remains uncharacterized. This information could further explain how MoTeRs come to be truncated and moved out of the telomeres and which regions of the genome might be more prone to MoTeR repair. It is speculated that these duplications could serve an adaptive potential if they were to duplicate genes where-in changes to the sequence could allow for differences in protein function or merely allow them to escape recognition by the host plants that the fungus infects (Rahnama et al. 2020).

MoTeR relics are the footprints of genome rearrangements tied to their origin in the telomere. The purpose of this study was to explore the evolutionary history of MoTeR relics and how they arose in different strains of *M. oryzae* by examining the internalized MoTeR sequences of 10 fully assembled fungal genomes isolated from strains infecting the host grasses *Eleusine* (goosegrass), *Triticum* (wheat), *Lolium* (ryegrass), *Oryza* (rice), *Setaria* (foxtail), and *Stenotaphrum* (St. Augustine's grass) pathotypes.

METHODS

Genome Sequence Data

NCBI accession numbers and sources for each of the 10 fully assembled genome examined in this study are catalogued in Supplementary Table 1.

Local BLAST analyses

Local BLASTn (-e-value 1e-1, -task BLASTn-short, %identity >80%) searches of full MoTeR1 and MoTeR2 sequences (~5 kb and ~1.7 kb respectively) as queries against each genome were used to reveal the location, length, and orientation of MoTeR relics. In the initial BLASTn results aberrant hits of < 20 nt were filtered using the awk command and excluded from the analysis (Appendix 1). MoTeR sequences were considered relics if they were found outside of the terminal telomeric arrays (chromosomal ends) and contained a 3' terminal sequence of the MoTeR attached to the telomeric repeat/s (⁵'CGCGAATTAAAA**CCCTAA**³; ⁵'**TTAGGG**TTTTAATTCGCG³). BLASTn hits that did not contain a 3' end were excluded from the analysis.

BLASTn searches (-e-value 1e-20) of each genome against each of the other 9 genomes were conducted to determine if MoTeR relics were shared/lost among strains. MoTeR relics were considered shared if the sequences flanking MoTeR relics were >90% identical for at least 500 bp on either side. If the sequence was broken up by a transposon insertion it was still considered to maintain synteny if the flanking sequence around the insertion had the same identity (>90%; Appendix 1).

UNIX Command Line – Grepping sequences

In addition to local BLASTn searches, the UNIX Command Line Interface was used to conduct grep searches of the 3' end sequences against the genome (^{5'}CGCGAATTAAAA**CCCTAA**^{3'}; ^{5'}**TTAGGG**TTTTAATTCGCG^{3'}). The grep command can be used to search for exact matches of a query sequence given to it within a .fasta file. The results of grep searches were blasted (-task BLASTnshort -e-value 1e-1) against full MoTeR 1 and 2 sequences (~5 kb and 1.7 kb respectively) to support MoTeR relic identity (> 20 nt). New MoTeR relics found using grep were then blasted against the genome (e-value 1e-20 % identity = 100) to find their location and orientation within the genome (Appendix 1).

MoTeR Relic Flanking Duplicate Sequence Analysis

BLASTn (-e-value 1e-20) interrogations of each genome against itself were used to generate .gff files to search for duplicate sequences. Duplications adjacent to MoTeR relics were manually interrogated using the Integrative Genomics Viewer (IGV; Thorvaldsdottir et. al., 2013). Duplications were considered in the analysis if they were within 20 nt of the 3' or 5' boundaries of the MoTeR relic. Sequences that indicated a relic + 5' flanking sequence duplication were considered if the length of the duplication was > 500 nt. Flanking duplicate sequences in IGV were extended if adjacent hits mapped to the same region of the matching chromosome. In these cases, duplicate sequences were extended even if they were separated by short regions of unique sequence and/or transposable elements.

Integrative Genome Viewer

Chromosome ends of each strain's genome were manually examined using the Integrative Genomics Viewer (IGV; Thorvaldsdottir et. al., 2013). Chromosome termini of each strain were examined for the presence/absence (Y/N) of terminal MoTeR sequences and fully assembled telomere sequences. Pos_start represents the left-side of the chromosome while pos_end represents the right-side of the chromosome. The purpose of this information was to calculate the distance of individual MoTeR relics to the nearest terminal MoTeR or telomere sequence. If a MoTeR was present in the telomere, then the position of the last MoTeR leading into the subtelomere was reported. If there was no MoTeR present within the telomere, then the position recorded was the end of the telomere at the edge of the subtelomere. If the telomere was missing from the assembly, the position was defined as the first or last nucleotide in the chromosome. Chromosome ends with a single, or partial, telomere repeat (⁵CCCTAA³;³TTAGGG⁵) were not considered fully assembled telomeres.

Graphic visualization – Circos plots

MoTeR relics and adjacent duplicate flanking sequences were visualized using a custom R code (Appendix 2) applying the package Circos (Krzywinski et. al., 2009). In the generated figures MoTeR relic orientations are illustrated as triangles where the tip of the triangle corresponds to the relic's 3' end. Relics with 3' flanking sequence duplications are blue, those with relic + 5' sequence duplications are grey, those with no flanking sequence duplications are white, and relics with a combination of 3' flanking sequence duplications and relic + 5' end duplications are grey with a blue border. The color of links corresponds to

the chromosome in which the duplicate sequence is found flanking the MoTeR relic. Some relics have been shifted in the plot to aid in their visualization.

RESULTS

MoTeR Relic Mapping and Distributions

MoTeR relics are truncated MoTeR 1 and 2 elements that are found in the interior of the genome or exclusive of the telomeres. MoTeR relics investigated in this study were those that contained a conserved 3' sequence (⁵CGCGAATTAAAA³; ⁵TTTTAACGCG³) flanked by one or more telomere repeats (5'CCCTAA3'; 5'TTAGGG3'). The minimal length for relics found was 26 bp except for a relic in chromosome 3 of CD156 (15 bp) whose identity was supported by local BLASTn searches of MoTeR relics found in chromosome 3 in strains LpKY, FH, and B71 (Table S2). No full MoTeR 1 (5,034 bp) or MoTeR 2 (1,723 bp) sequences were found in the interior of any of the chromosomes or strains interrogated. The longest relic (4,277 bp) was found in chromosome 1 of strain CD156 which resided approximately 750 kb away from telomere 1 (Table S2). In general, MoTeR relic 3' sequences were flanked by one to two telomere repeats with LpKY having the shortest containing a relic with no telomere repeat in Chromosome 2, and Guy11 having perhaps the longest in Chr2, although its telomere repeats contain several point mutations (Table S2).

In the 10 assembled genomes a range from one to 17 MoTeR relics were detected in the seven core chromosomes (Table 1; Figure 7). The highest number of relics (17) was found in strain LpKY with the highest concentration on chromosome 3 (5 relics; Figure 7A). Strain U233 only contained one MoTeR relic

(347 bp) which is approximately 55 kb away from telomere 2 (end of chromosome 1) flanked by a single telomere repeat (⁵'CCCTAA^{3'}, Figure 7F, Table S2). The strains with the highest occurrence of MoTeR relics following LpKY (17) were FH, CD156, and US71 containing 14, 15, and 13 relics respectively (Table 1; Figure 7B, C, J). The strains with the lowest concentrations of MoTeR relics following U233 were 70-15, Guy11, and Bm88324 containing 3, 4, and 7 relics respectively (Table 1; Figure 7G, E, I). Arcadia2 and B71 shared a median number of 11 MoTeR relics (Figure 7H, D).

LpKY, FH, CD156, and B71 appeared to share two populations of relics within chromosomes 3 and 6 that mapped approximately 2.6 Mb and 2.4 Mb to the nearest telomere or terminal MoTeR. Guy11 contained a MoTeR relic in chromosome 2 that mapped approximately 3.1 Mb from the nearest telomere or terminal MoTeR (TableS1). Typically, excluding the centralized relic populations in chromosomes 3 and 6 in strains LpKY, FH, CD156, and B71, MoTeR relics mapped within 252 kb of a terminal MoTeR or terminal telomeres. Including the distances for relics in the chromosomes of the examined strains gives a median distance for MoTeR relics of approximately 203 kb from the nearest terminal MoTeR or telomere illustrating that MoTeR relics appear to be more likely to be found near chromosome ends.

Figure 7 Map locations of 3' MoTeR relics in the 10 examined Magnaporthe oryzae strain genomes. **A** LpKY (Lolium; adapted from Rahnama et al. 2020), **B** FH (Lolium), **C** CD156 (Eleusine), **D** B71 (Triticum), **E** Guy11 (Oryza), **F** U233 (Stenotaphrum), **G** 70-15 (Oryza), **H** Arcadia (Setaria), **I** Bm88324 (Brachiaria), and **J** US71 (Setaria). MoTeR relics are represente as green triangles, the base representing the 5' terminus. The seven core chromosomes are plotted based on length and are not aligned to each other.

Genome	Pathotype/Host	Number of 3' MoTeR Relics	Number of Telomeres Containing MoTeR Sequence	Assembled/Unassem bled Telomeres
LpKY97	Lolium	17+8*	13*	18/0
Ŧ	Lolium	14	14*	15/1
U233	Stenotaphrum	-	4	10/4
US71	Setaria	13	0	212
Arcadia2	Setaria	11	2	10/4
CD156	Eleusine	15	6	1 0/4
Guy11	Oryza	4	0	9/5
B71	Triticum	11	11	9/5
70-15	Oryza	з	0	11/3
Bm88324	Brachiaria	7	0	717

*Includes minichromosomes (LpKY: 2 minichromosomes, FH: 1 minichromosome), second number after + represent the number of relics on the mini chromosomes
Chromosomal End Composition

The chromosomal ends (telomeres) of each strain were examined to see if there was a correlation between the concentration of relics in each strain with the presence or absence of terminal MoTeRs. Telomeres of strains LpKY and FH were the most populated with MoTeR 1 and 2 sequences with 13/18 telomeres in strain LpKY97 containing MoTeR sequences (includes minichromosomes 1 & 2) and 14/16 telomeres in strain FH (includes minichromosome 1; Table 1). These strains contained the highest number of MoTeR relics (Table 1). Likewise, consistent with the findings of Starnes et al. (2012) telomeres in strains 70-15 and Guy11 did not contain MoTeR 1 or 2 sequences (Table 1) and these strains had some of the lowest occurrences of relics (Table 1). However, U233, the strain with the least amount of MoTeR relics (1) had MoTeR sequences present in four of its telomeres while US71, a strain containing 13 MoTeR relics, was found to not contain MoTeR sequences in any of its telomeres. Of the strains lacking MoTeRs within their telomeres (US71, Guy11, 70-15, and Bm88324), several of their telomeres were underrepresented and in the final nucleotide sequence data set were likely lost during sequencing or genome assembly (Table 1). Due to their sequence composition telomeres are recalcitrant to the DNA sequencing enzymology in short read (Illumina) sequencing used to generate genomic data as their sequences are extremely repetitive. Long read (MinIon) sequencing is able to ameliorate this by producing longer read lengths that can encompass kilobases of nucleotides facilitating more complete genome assemblies (Kim et al. 2021).

MoTeR Relic Comparisons

As summarized in figure 8 all relics in each chromosome are aligned to compare relic distribution and retention based on their flanking sequences. Although relic populations are variable among the ten examined strains the results showed patterns of relic retention that are seen in strains that share a most recent common ancestor (Figure S1). Those within the same lineage, such as strains 70-15 and Guy11 (the *Oryza* lineages) share synteny in all but one of their relics and US71 and Arcadia (the *Setaria* lineages) share eight relics. Arcadia possesses three unique relics and US71 contains five, all of which are found within approximately 540 kb or less from the nearest telomere. Four strains, LpKY, FH (the *Lolium* lineages), B71 (*Triticum*), and CD156 (*Eleusine*) share several relic populations in chromosomes 3, 6, 7, and 2 (Figure 8). Despite MoTeR relic synteny among the more closely related lineages, several strains contain a differential retention of relics across several lineages (Figure S1).

Figure 8 Mapping of MoTeR relics to the seven core chromosomes of the ten assembled Magnaporthe oryzae strain genomes LpKY, FH, CD156, B71, Guy11, U233, Arcadia, US71, and 70-15 and Bm88324. Triangles denote the orientation of relics where the apex of the triangle corresponds to the 3' end of the relic. For all seven chromosomes unique (strain-specific) relics are coded as white. All chromosomes are aligned to the chromosome of the strain with the leftmost unique sequence denoted by an * next to the strain name. Colors are used to indicate which relics are shared among different strains. Similar color represent similar sequences are in the flanking side of the strains.

Chromosome 2 has the most differential retention of relics. All strains, excluding CD156 and U233, shared one or more relics with strain LpKY at the left end of Chromosome 2 (Figures 8 & 9). None of the strains contained all 4 of the relics found in strain LpKY that were captured within a 25 kb search window (Figure 9) and part of chromosome 2 in this region is truncated in Bm88324 (Figure 9). The two relics shared in strains LpKY, Guy11, 70-15, and Bm88324 have been lost in Arcadia and US71 towards the end of chromosome 2 (telomere 3; Figure 9). In chromosome 7, there is a pattern of synteny among strains Bm88324, B71, CD156, FH, and LpKY in which all five share a relic (in blue) in Chromosome 7 (Figures 8 and 10). Strains LpKY, FH, and CD156 do not share the relic found in B71 and Bm88324 (in yellow) which lies ca. 750 bp away (Figures 8 and 10).

Figure 9 25 kb window of chromosomal rearrangements in a relic landscape of M. oryzae strains that share partial synteny with relics in chromosome 2 of strain LpKY but only show retention of one of two relic populations. Relic populations are surrounded by a black box and connected by dotted lines. Transposable elements are illustrated as boxes with arrows denoting their 5' to 3' orientation on chromosome 2. The beginning of the horizontal black lines does not indicate the beginning of the chromosome with the exception of strain Bm88324.

Figure 10 30 kb window of chromosomal rearrangements in a relic landscape of M. oryzae strains that share partial relic synteny in chromosome 7 of strains Bm88324, B71, CD156, FH, and LpKY.Bm88324 and B71 share two relics that are approximately 750 bp from each other, but only one of the two relics (in blue) is maintained in strains CD156, FH, and LpKY. The 5' to 3' direction of transposable elements is noted by a white arrow. Notice there are different transposable elements here that were not pictured in Figure 8, distinguished by their difference in color in the transposon key. MoTeR relics are represented as triangles and are surrounded by a black box connected by dotted lines.

MoTeR Relic Associated Duplications

Flanking sequences of MoTeR relics were examined to see if they

contained duplicate sequences which could be indicative of how MoTeR relics

moved from the telomere to the interior chromosomal regions. Consistent with a

previous study (Rahnama et al. 2020), four types of duplications were detected:

1) 3' duplication: duplications that are flanking the 3' region of the relic,

2) 5' duplication: duplications that are flanking the 5' end of the relic,

3) relic + 5' duplication: duplications that spanned both the relic and the

sequence flanking its 5' end, and

4) whole locus duplications: duplications in which the relic and the sequences on either side of it were duplicated (Figure 11).

Figure 11 Duplications associated with MoTeR relic sequences. MoTeR relics are represented as triangles pointing in the 5' -> 3' direction. The 3' duplication represents a duplication beginning at the 3' boundary of the MoTeR relic and extending out. The 5' + relic duplication indicates the duplication of the MoTeR relic and 5' flanking sequence. The 5' duplication begins and extends from the 5' boundary of the relic. The whole locus duplication indicates a duplication that extends beyond either side of the MoTeR relic.

The results showed MoTeR relics were sometimes associated with sequences that had a copy elsewhere in the genome suggesting potential rearrangements could be attributed to the MoTeRs (Table 2, figure 9). The results of association of MoTeR relics with duplications (or no duplications) in 10 strain genomes are summarized in table 2. In strains 70-15, Bm88324, and U233 none of the MoTeR relics were associated with a duplicate sequence (Figure 9G, I, and J; Table 2). All duplicate sequences mapped to terminal regions of a chromosome or to another MoTeR relic except for those in strains CD156, LpKY, B71, and Arcadia that had duplications mapping from 1.5 to 2 Mb into Chromosome 1 (Figure 10A, C, D, and E). The Arcadia strain also contained a

duplicate sequence that mapped to approximately 5.5 Mb in Chr 3 (Figure 10E). The largest duplication recorded was a whole locus duplication in strain US71 that was 23,985 bp long (Table S2). Overall, most duplications were <1,000 bp long (Table S2).

Duplicate sequences are the likely indicators of MoTeR relic formation. 5' duplications likely resulted from a break in the telomere that led to the 5' degradation of the MoTeR. The break was likely then healed through nonhomologous end-joining (NHEJ) that duplicated sequences in the process.

	Number	Ŷ	ų	ດາ	Relic+5	Whole Locus
Strain	of Relics	Duplications	Duplications	duplications	Duplications	Duplications
CD156	15	9	8	0	4	0
Ħ	14	9	10	5	7	0
ГрКҮ	25	6	з	4	9	7
B71	14	4	7	3	7	0
Arcadia	10	7	-	-	-	0
US71	13	6	0	0	0	4
70-15	3	з	0	0	0	0
Guy11	4	e	7	0	0	0
Bm88324	7	0	0	0	0	0
U233	-	0	0	0	0	0

Table 2 Types of duplications in each strain of M. oryzae. Several relics have multiple duplications associated with them, so the total number of duplications recorded may exceed the number of relics per strain.

Figure 12 Duplications associated with MoTeR relic sequences. MoTeR relics are represented as triangles pointing in the 5' -> 3' direction. The color of the relic illustrates the type(s) of duplication(s) associated with it shown in the key. Links between chromosomes connect duplicate sequences associated with a MoTeR relic(s). Link colors are coded to that chromosome in which their corresponding MoTeR relic is found. A. CD156. **B.** FH. **C.** LpKY. **D.** B71. **E.** Arcadia. **F.** US71. **G.** 70-15. **H.** Guy-11. **I.** Bm88324. **J.** U233.

DISCUSSION

Initial Hypothesis

The purpose of this study was to explore the evolutionary history of MoTeR relics and how they arose in different strains of *M. oryzae* by examining the internalized MoTeR sequences of 10 fully assembled fungal genomes isolated from strains infecting the host grasses *Eleusine* (goosegrass), *Triticum* (wheat), *Lolium* (ryegrass), *Oryza* (rice), *Setaria* (foxtail), and *Stenotaphrum* (St. Augustine's grass) pathotypes. Our results showed that MoTeR relics were found, on average, within 250 kb of the telomere, illustrating a strong association between the two. Intergenomic comparisons of ten strains revealed differential retention of relics across strain lineages with retention sometimes among distantly related lineages, but not more closely related ones as was the case for the relics found at the beginning of chromosome 2. MoTeR relics were also found flanked by several duplicate sequences that are likely markers for the rearrangements that took place to form MoTeR relics and push them outside of the telomere. These results further highlight the inherent instability associated with *M. oryzae* telomeres in the form of ancient rearrangements that took place to form MoTeR relics.

Our initial prediction for this study was that MoTeR relics would reveal a history of frequent chromosomal rearrangements influenced by the telomere based on evidence of telomere instability associated with MoTeRs (Starnes et al. 2012; Rahnama et al. 2020; Rahnama et al. 2021). If MoTeRs influence structural instability in the telomere, it would be reasonable to posit that the formation of MoTeR relics would not be a rare event and would likely cause the formation of unique, strain-specific profiles that would deviate from strain lineage phylogenies. Results of the frequency and distribution of MoTeR relics among strains were variable. The number of relics differed widely among strains from one relic in strain U233 to 25 in strain LpKY. Cross examination of strains revealed sections of conserved populations of relics, notably among the *Triticum*, *Eleusine*, and *Lolium* strains. These populations were found in chromosomes 3, 6, and 7, and it appears that these regions may have been inherited during a recent series of hybridization events from an *Eleusine* ancestor (Rahnama et al. 2022). Relics were also shared between other strains that were found within the

same lineage, such as the two *Oryza* strains (Guy11 and 70-15) and the two *Setaria* strains (Arcadia and US71).

I anticipated some conservation of relic sequences among more closely related strains as well as frequent deviations. What was notable was the presence of relics that were shared across several distantly related strains, e.g. LpKY (Lolium) and Guy11 (Oryza), but not consistently among all. For example, in strain LpKY the beginning of chromosome 2 contained 3 relics that were shared to varying degrees among all but two strains (U233 and CD156). These relics were found within 25 kb of each other and strain LpKY was unique in that it contained all three relics while all the other strains sharing relics in this region only shared one or two of the three. This region was populated by transposable elements whose presence could have caused a deletion of the missing relic(s) (Figure 9). Likewise, the pair of relics shared among strains B71 and Bm88324 in chromosome 7 that were separated by merely 700 bp may have been disrupted by transposon activity. MoTeR relic deletions are likely guite common as highlighted by Rahnama et al. in intergenomic comparisons of the MoTeR relics of strain CD156 against strains Arcadia, US71, and U233 (2021). In almost all cases the strains compared to CD156 indicated that the corresponding regions were sites of relic deletions, sometimes associated with other rearrangements. This comparison of the four (out of ten) strains examined in this study is notable as the results are most likely explained by the existence of the MoTeR relics within an ancestral population of *M. oryzae* before the divergence of the examined strain lineages. As regions found within proximity of the telomere are

not likely to experience selective pressure, their presence or absence in those regions is likely unimportant (Muszewska et al. 2019). To determine if other relics are representative of ancestral, lineage, or strain-specific sequences will require further investigation in examining potential deletions, rearrangements, and translocations that may have occurred. Thus, our hypothesis has not yet been falsified.

The comparison of strain CD156 to strains Arcadia, US71, and U233 provides strong evidence that many, if not all, of the relics present in this study have been differentially retained over evolutionary time from their ancestral population. I would predict that some MoTeR relics will still be specific to certain strains as many map as close as ca. 2,000 bp from the telomere and are potentially the result of a much more recent rearrangement. However, evidence from this study already shows that proximity to telomere ends is not equivalent to a recent rearrangement as seen on chromosome 2 in strain Bm88324 that are approximately 3-4 kb from the chromosome end (Figure 9). It appears likely that this proximity to the telomere may have been exacerbated by a recent truncation event that occurred after the divergence of this strain from its ancestor.

MoTeR relic distribution

In some cases, relics were found more distal to the telomeres than initially anticipated. These sets of relics, as mentioned earlier, were likely inherited from an *Eleusine* common ancestor as several of these strains in the *Triticum*, *Eleusine*, and Lolium lineages have genomes that indicate recent, and rapid, admixture (Rahnama et al. 2022). The majority of 3' MoTeR relics were found

near terminal regions of the chromosome, on average 230 kb distal. Duplicate sequences associated with MoTeR relics were found to have their corresponding copy near chromosome ends. Prior analyses revealed that telomere adjacent sequences, i.e., sequences immediately next to the telomere end, were often duplicates of other terminal sequences (Rahnama et al. 2021). Telomeres often exchange information with each other through recombination events and utilize nearby telomeres for sequence repair. This should not be surprising as telomeres are often physically clustered together in the nucleus of the cell, facilitating sequence exchange through homologous recombination with neighboring telomeres (Linardopoulou et al 2005; Rahnama et al. 2021). Recombination and rearrangements among telomeres are functionally less disruptive than if a telomere were to use loci distal to the telomeres that could encode proteins necessary for cellular function (Linardopoulou et al. 2005).

MoTeR relics were often found in regions populated by other transposable elements that are highly concentrated near chromosome ends (Muszewska *et al.* 2019). It is likely that MoTeR relics are retained in these regions because they do not experience intense purifying selection as do other regions of the genome (Muszewska et al. 2019). It is postulated that the sequences associated with *M. oryzae* telomeres, including MoTeR relics, could be treated as potential borders for telomeric rearrangements that could occur without having detrimental impacts (e.g., loss of essential genes) on the genome and the organism (Rahnama et al. 2021). Extended repeat-rich regions subtending telomeres could serve as a buffer for the more strictly maintained regions of the genome. The genes that

experience intense purifying selection are not often found near the subtelomere and these sequences would not be ideal targets for telomere repair if the genome were to experience damage or replicative stress (Linardopoulou et al. 2005).

Origin of MoTeR relics?

This research effort did not entail an analysis of the mechanisms of formation of MoTeR relics, but an explanation of their possible origin is worth discussion. Surveyed chromosome ends from each genome suggest that the abundance of MoTeR elements present in the telomere does not necessarily correspond to MoTeR relic abundance (Table 1). However, of the ten examined genomes only LpKY had a fully represented telomere assembly. It is possible that telomeres may have not been fully sequenced or did not have enough statistical support for assembly, so unequivocal conclusions on MoTeR and telomere landscapes in each strain cannot be made with the current genome assemblies.

Telomere damage and repair is the most probable explanation for the formation of MoTeR relics. This is supported by their frequent association with duplicated sequences which are often formed during double-stranded break repair (Rahnama et al. 2020; Rahnama et al. 2021). While MoTeR 1 is theorized to be transcriptionally active it would require a sequence of telomere repeats to transpose to a region outside of the telomere (Starnes et al. 2012). Relics were searched for signs of transposition (i.e., target site duplications (TSD) but none were found (Rahnama *et al.* 2021). It is not improbable that these TSDs may have once been present and have since been deleted.

Telomere damage and repair is the most likely explanation for the formation of MoTeR relics, as posed by Rahnama et al. (2020; 2021), because their profiles match that of a break that might happen at interstitial telomere repeats between MoTeR elements which have previously been shown to be associated with telomere instability and breakage. This breakage could lead to repair mechanisms like non-homologous end-joining (NHEJ) that could result in sequence duplications in the process and shuffle the now truncated MoTeR out of the telomere and closer to the interior of the genome (Rahnama et al 2020). The frequent presence of duplicate sequences closely associated with MoTeR relics, the truncated ends of the relics themselves, and the lack of evidence for transposition support this. Several relics were also found to not be associated with a duplicate sequence. In these cases, it is possible that a duplicate sequence may have been lost, that perhaps the MoTeR had transposed and evidence for it had been lost (i.e., TSDs), or that maybe the relic was a passenger of another rearrangement that took place (Rahanama et al. 2020).

The presence of all these rearrangements associated with the telomere begs the question of why this might happen frequently in *M. oryzae*. The purpose of the telomere is to protect chromosome ends from degradation but there is clear evidence that *M. oryzae* has experienced frequent bouts of telomere failure throughout its evolutionary history (Rahnama et al. 2021). Telomere failure and repair within *M. oryzae* can also be observed within a single generation (Starnes et al. 2012; Rahnama et al. 2020). MoTeRs do play a role in causing instability in the telomere, but foxtail strains of *M. oryzae* have no or very few MoTeRs within

their telomeres and they still show high rates of recombination (Farman et al. 2014). In fact, while MoTeRs can cause instability within the telomeres of M. oryzae, they are not the only source of instability, and their mere presence does not always lead to telomere breakage (Rahnama et al. 2020). The telomere itself could become deprotected or vulnerable in several ways, whether that be an abnormality in the expression of the reverse transcriptase enzyme or faulty telomere capping protein complexes (Chan and Blackburn 2004).

It is thought that higher rates of instability within the telomere of *M. oryzae* could provide an adaptive advantage (Rahnama et al 2020; Rahnama et al 2021). Several human pathogens house genes key for adaptation to their host within the subtelomere which allows for stochastic silencing and activation as well as higher rates of mutation within genes housed in this region (Berriman et al. 2005; Freitas-Junior et al. 2000). It is also probable that a crucial resistance gene in some Oryza strains of M. oryzae, known as Avr-Pita, was lost due to telomere failure and subsequent truncation or loss of the gene that allowed for strains lacking this protein to infect rice hosts with the complimentary resistance proteins. As a result, the rice grasses would not easily recognize fungal strains without the fungus' Avr-pita protein to signal their infection (Orbach et al. 2000). Additionally, mechanisms for repair following double stranded breaks in the genome often duplicate other sequences to fill in the gaps of the broken sequence through non-homologous end-joining (NHEJ; Linardopoulou et al. 2005; Rahnama et al. 2020). It has been posed that if a break in the telomere were to lead to the duplication of a gene, or a stretch of genes, the duplicate

copy of that gene would then find itself in a more dynamic region of the genome where it might experience adaptive mutations. It would also have a "back-up" copy in the chromosome if the twin that migrated to the subtelomere were to gain some non-advantageous mutations (Rahnama et al. 2020; Rahnama et al 2021).

Limitations

There were several limitations to this study that should be noted as this study does not present a complete analysis of all MoTeR relics and their relationships with the chromosomes and strains in which they reside. Some of these limitations open avenues for future studies and proper utilization of the UNIX Command Line and appropriate bioinformatics software to detect some of the more problematic/questionable nucleotide sequences that were potentially overlooked in this thesis.

1) It is likely that not all 3' MoTeR relics were found in this study as both grep and BLASTn failed to identify some MoTeR relics that were present in strains. BLASTn is the more advanced approach for finding MoTeR sequences in the genome as it can handle mismatches in the sequences when it comes to differences in sequence length as well as a certain number of nucleotide mismatches. The threshold for how many mismatches BLAST will allow depends on the length of the sequence as well as the defined e-value. For short BLASTn I used an e-value of 1e-1 because I was attempting to capture a shorter sequence (~20 nt minimum) and I wanted to allow for some mismatches. An e-value higher than that

for sequences this short would have returned far fewer results for many of the shorter relics present in the genome.

Several new relics were discovered using subsequent BLASTn pairwise intergenomic comparisons. For example, a local BLASTn alignment of one strain's genome against another might reveal the positions of two matching MoTeR relics. One such example can be seen in the chromosome 3 of strain CD156 where a 15 nt MoTeR relic was found matching relics found in the same location in strains LpKY and FH. This relic was easily missed during BLASTn and grep searches because matches less than 20 nucleotides were filtered out. However, this 15 nt relic is supported by the presence of longer relics in the same location in strains FH and LpKY.

2) In some strains there were initial patterns of mismatch in relic populations that had a clear relationship with one another. For example, a relic found in chromosome 3 in strains LpKY, CD156, and B71 was shared between strains LpKY and CD156 and between strains CD156 and B71 but was not detected using BLASTn between strains LpKY and B71. One explanation could be that some point mutations were between strains LpKY and CD156 and CD156 and B71, but the point mutations in strains LpKY and B71 were sufficiently different enough using short BLASTn. That is, strains LpKY and B71 had an excess of nucleotide differences in their MoTeR sequences to reach a statistically significant (and detectable) match using BLASTn but had sufficient identity to CD156 in that their true

identities were discernable by BLASTn. It should be noted that the BLAST algorithm utilizes both the length of the two sequences being aligned and their overall sequence identity to arrive at a positive match based on the specific e value chosen by the investigator. Future methods might approach using "fuzzy grep" that would be able to substitute mismatches that might not be detected by BLASTn. Depending on the length of sequence this strategy could become laborious. yt

3) Minichromosomes were not investigated in this study because there were issues with BLASTn and grep detecting matches. This could be due to the minichromosome assemblies which are problematic as they are often comprised of sequences found in the core chromosomes and are difficult to ascertain without first isolating them on an agarose gel. We know that the minichromosome of strain LpKY is full of MoTeR relics from previous studies (Rahnama et al. 2020). Additional analysis is needed to elucidate the presence of MoTeR relics in the strains that have sequenced minichromosomes. These could certainly reveal dynamic inter-specific rearrangements between the minichromosomes and the core chromosomes as previous studies have shown they have been known to trade sequences (Peng et al. 2019). Further analyses targeting minichromosomes would also require better genome assemblies as was the case for B71.

Future directions

Our initial hypothesis for this study that MoTeR relics would largely represent unique strain or lineage-specific rearrangements was neither unequivocally supported nor entirely refuted. In many cases strains shared MoTeR relics in some chromosomes across distantly related lineages that signified their formation within ancestral populations before the divergence of the strains examined. One study also revealed that even seemingly unique relic profiles were sites of differentially retained ancestral relics (Rahnama et al 2021). It is tempting to think that all relics belonged to ancestral lineages, however, this will require more in-depth comparisons of strains to see if sites might have once contained a corresponding MoTeR relic or if the relic itself might be the site for a unique rearrangement. This is an analysis that I intend to explore but for the sake of time excluded from the current thesis.

Future directions for this study could also pursue the identity of duplicate sequences for the presence of protein coding regions that may serve as an adaptive potential. Likewise, reasoning for the formation of 5' duplications were posed in a 2020 study (Rahnama et al.) but the dynamics behind how a 3' flanking duplication might have occurred are not entirely clear. Only 3' end MoTeR relics were investigated in this study and the methods for searching for these shorter sequences that have likely undergone mutations are not unequivocal. Finally, future investigations of MoTeR relic dynamics in minichromosomes could reveal an interesting narrative of core and minichromosome "cross-talk" (Peng et al. 2019) that could potentially be related to MoTeR dynamics if minichromosome and core chromosome telomeres

interact, or even if MoTeRs themselves could play a role in the formation of minichromosomes (Rahnama et al. 2020). MoTeR relics and their relationship with telomeres continue to present doorways for investigating telomere dynamics in *M. oryzae* in a system where telomere rearrangements can be observed in a single generation (Starnes et al. 2012; Rahnama et al. 2020) and their kinetics could play a role in the rapid adaptation that is so integral to the success of this fungal pathogen.

LITERATURE CITED

- Aksoy, S., S. Williams, S. Chang, and F.F. Richards, 1990 SLACS retrotransposon from *Trypanosoma brucei gambiense* is similar to mammalian LINEs. Nucleic Acids Res. 18: 785–792.
- Berbee, M.L., 2001 The phylogeny of plant and animal pathogens in the Ascomycota. Physiological and Molecular Plant Pathology. 59(4):165-187.
- Berriman, M., E. Ghedin, C. Hertz-Fowler, G. Blandin, H. Renauld, D.C. Bartholomeu, N.J. Lennard, E. Caler, N.E. Hamlin, B. Haas, U. Böhme, L. Hannick, M.A. Aslett, J. Shallom, L. Marcello, L. Hou, B. Wickstead, U.C.M. Alsmark, C. Arrowsmith, R.J. Atkin, A.J. Barron, F. Bringaud, K. Brooks, M. Carrington, I. Cherevach, T.J. Chillingworth, C. Churcher, L.N. Clark, C.H. Corton, A. Cronin, R.M. Davies, J. Doggett, A. Djikeng, T. Feldblyum, M.C. Field, A. Fraser, I. Goodhead, Z. Hance, D. Harper, B.R. Harris, H. Hauser, J. Hostetler, A. Ivens, K. Jagels, D. Johnson, J. Johnson, K. Jones, A.X. Kerhornou, H. Koo, N. Larke, S. Landfear, C. Larkin, V. Leech, A. Line, A. Lord, A. MacLeod, P.J. Mooney, S. Moule, D.M.A. Martin, G.W. Morgan, K. Mungall, H. Norbertczak, D. Ormond, G. Pai, C.S. Peacock, J. Peterson, M.A. Quail, E. Rabbinowitsch, M.A. Rajandream, C. Reitter, S.L. Salzberg, M. Sanders, S. Schobel, S. Sharp, M. Simmonds, A.J. Simpson, L. Tallon, C.M.R. Turner, A. Tait, A.R. Tivey, S. Van Aken, D. Walker, D. Wanless, S. Wang, B. White, O. White, S. Whitehead, J. Woodward, J. Wortman, M.D. Adams, T.M. Embley, K. Gull, E. Ullu, J.D. Barry, A.H. Fairlamb, F. Opperdoes, B.G. Barrell, J.E.

Donelson, N. Hall, C.M. Fraser, S.E. Melville, and N.M. El-Sayed, 2005 The genome of the African trypanosome *Trypanosoma brucei*. Science 309(5733): 416-22.

- Brock, T. D., D. W. Smith, and M. T. Madigan, 1984 *Biology of Microorganisms.* Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Chan, S.R.W.L and E.H. Blackburn, 2004 Telomeres and telomerase. Royal Society 359(1441).
- Dangl, J.L., D.M. Horvath, and B.J. Staskawicz, 2013 Pivoting the plant immune system from dissection to deployment. Science 341(6147): 746-751.
- Dean, R. A., N. J. Talbot, D. J. Ebbole, M. L. Farman, T. K. Mitchell, M.J. Orbach, M. Thon, R. Kulkarni, J.R. Xu, H. Pan, N.D. Read, Y.I. Lee, I. Carbone, D. Brown, Y.O. Yeon, N. Donofrio, S.J. Jun, D.M. Soanes, S. Djonovic, E. Kolomlots, C. Rehmeyer, W. Li, M. Harding, S. Kim, M.H. Lebrun, H. Bohnert, S. Coughlan, J. Butler, S. Calvo, L. Ma, R. Nicol, S. Purcell, C. Nusbaum, J.E. Galagan, and B.W. Birren, 2005 The genome sequence of the rice blast fungus *Magnaporthe grisea*. Nature 434: 980-986.
- De Lange, T., V. Lundblad, and E.H. Blackburn, 2006 A history of telomere biology. In: Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p. 1-19.
- Farman, M., O.S. Novikova, J.H. Starnes, and D.W. Thornbury, 2014 "Subtelomere organization, evolution, and dynamics in the rice blast fungus *Magnaporthe oryzae*," in Subtelomeres, eds E.J. Louis and M.M.

Becker (Berlin: Springer-Verlag), 71-99. Doi: 10.1007/978-3-642-41566-

Farman, M.L., G. Peterson, L. Chen, J. Starnes, B. Valent, P. Bachi, L. Murdock,
D. Hershman, K. Pedley, J.M. Fernandes, and J. Bavaresco, 2017 The *Lolium* Pathotype of *Magnaporthe oryzae* recovered from a single blasted wheat plant in the United States. Plant Disease 101: 684-692.

Fleming, A., 1941 Penicillin. Br. Med. J. 2(4210):386.

- Freitas-Junior, L. H., E. Bottius, L. A. Pirrit, K. W. Deitsch, C. Scheidig, F. Guinet,
 U. Nehrbass, T.E. Wellems, and A. Scherfet, 2000 Frequent ectopic
 recombination of virulence factor genes in telomeric chromosome clusters
 of *P. falciparum*. Nature 407: 1018-1022.
- Gabriel, A., T.J. Yen, D.C. Schwartz, C.L. Smith, J.D. Boeke, B. Sollner-Webb, and D.W. Cleveland, 1990 A rapidly rearranging retrotransposon within the miniexon gene locus of *Crithidia fasciculata*. Mol. Cell. Biol. 10: 615–624.
- Gallone, B., J. Steensels, T. Prahl, L. Soriaga, V. Saels, B. Herrera-Malaver, A. Merlevede, M. Roncoroni, K. Voordeckers, L. Miraglia, C. Teiling, B. Steffy, M. Taylor, A. Schwartz, T. Richardson, C. White, G. Baele, S. Maere, and K.J. Verstrepen, 2016 Domestication and divergence of *Saccharomyces cerevisiae* beer yeasts. Cell 166(6):1397-1410.e16
- Gan, T., T. Luo, K. Pang, C. Zhou, G. Zhou, B. Wan, G. Li, Q. Yi, A.D. Czaja, and S. Xiao, 2021 Cryptic terrestrial fungus-like fossils of the early Ediacaran Period. Nature Comm 12:641.
- Gnat, S., D. Lagowski, and A. Nowakiewicz, 2020 Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections.J. Applied Microbiol. 129(2):212-232.

- Gladieux, P., B. Condon, S. Ravel, D. Soanes, J.L.N. Maciel, A. Nhani Jr., R.
 Terauchi, M. Lebrun, D. Tharreau, T. Mitchell, K.F. Pedley, B. Valent, N.J.
 Talbot, M. Farman, and E. Fournier, 2018 Gene flow between divergent
 cereal- and grass-specific lineages of the rice blast fungus *Magnaporthe oryzae*. American Soc. Microbiol. 9(1) e01219-17
- Hibbett, D.S., M. Binder, J.F. Bischoff, M. Blackwell, P.F. Cannon, O.E. Eriksson,
 S. Huhndorf, T. James, P.M. Kirk, R. Lücking, H.T. Lumbsch, F. Lutzoni,
 P.B. Matheny, D.J. McLaughlin, M.J. Powell, S. Redhead, C.L. Schoch,
 J.W. Spatafora, J.A. Stalpers, R. Vilgalys, M.C. Aime, A. Aptroot, R.
 Bauer, D. Begerow, G.L. Benny, L.A. Castlebury, P.W. Crous, Y.C. Dai,
 W. Gams, D.M. Geiser, G.W. Griffith, C. Gueidan, D.L. Hawksworth, G.
 Hestmark, K. Hosaka, R.A. Humber, K.D. Hyde, J.E. Ironside, U. Köljalg,
 C.P. Kurtzman, K.H. Larsson, R. Lichtwardt, J. Longcore, J. Miadlikowska,
 A. Miller, J.M. Moncalvo, S. Mozley-Standridge, F. Oberwinkler, E.
 Parmasto, V. Reeb, J.D. Rodgers, C. Roux, L. Ryvarden, J.P. Sampaio, A.
 Schüßler, J. Sugiyama, R.G. Thorn, L. Tibell, W.A. Untereiner, C. Walker,
 Z. Weng, A. Weir, M. Weiss, M.M. White, K. Winka, Y.J. Yao, and N.
 Zhang, 2007 A higher-level phylogenetic classification of the Fungi.
 Mycological Res. 111(5): 509-547.
- Inoue, Y., T.T.P. Vy, K. Yoshida, H. Asano, C. Mitsuoka, S. Asuke, V.L. Anh,
 C.J.R. Cumagun, I. Chuma, R. Terauchi, K. Kato, T. Mitchell, B. Valent, M.
 Farman, and Y. Tosa, 2017 Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357: 80-83.

Kato, H. 2001 Rice blast disease. Pesticide Outlook 12: 23-25.

- Kim, E., J. Kim, C. Kim, and J. Lee, 2021 Long-read sequencing and *de novo* genome assemblies reveal complex chromosome end structures caused by telomere dysfunction at the single nucleotide level. Nucleic Acids Res 49(6): 3338-3353.
- Krzywinski, M., J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, and M.A. Marra, 2009 Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639-1645.
- Latgé, J., 1999 *Aspergillus fumigatus* and aspergillosis. Clinical Micro. Rev. 12(2): 310-350.
- Levis, R.W., R. Ganesan, K. Houtchens, L.A. Tolar, and F. Sheen, 1993 Transposons in place of telomeric repeats at a *Drosophila* telomere. Cell 75(6): 1083-1093.
- Linardopoulou, E.V., E.M. Williams, Y. Fan, C. Friedman, J.M. Young, and B.J. Trask, 2005 Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94-100.
- Luo, J., H. Qiu, G. Cai, N.E. Wagner, D. Bhattacharya, and N. Zhang, 2015 Phylogenomic analysis uncovers the evolutionary history of nutrition and infection mode in rice blast fungus and other Magnaporthales. Sci. Reports 5(9448):1-6.
- Muszewska, A., K. Steczkiewicz, M. Stepniewska-Dziubinska, and K. Ginalski, 2019 Transposable elements contribute to fungal genes and impact fungal lifestyle. Scientific Reports. 9: 4307.

- Okazaki, S., H. Ishikawa, and H. Fujiwara, 1995 Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, *Bombyx mori.* Mol. Cell Biol. 15(8):4545-4552.
- Orbach, M.J., L. Farrall, J.A. Sweigard, F.G. Chumley, and B. Valent, 2000 A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12(11):2019-32.
- Orr, H.A., and S.P. Otto, 1994 Does diploidy increase the rate of adaptation? Genetics 136(4): 1475-1480.
- Ou, S.H., 1985 *Rice Diseases.* Commonwealth Agricultural Bureaux, Slough, UK.
- Peng, Z., E. Oliveira-Garcia, G. Lin, Y. Hu, M. Dalby, P. Migeon, H. Tang, M. Farman, D. Cook, F. F. White, B. Valent, and S. Liu, 2019 Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genetics 15(9): 1-23.
- Rahnama, M., O. Novikova, J. Starnes, L. Chen, S. Zhang, and M. Farman,
 2020 Transposon-mediated destabilization: a driver of genome evolution
 in the blast fungus. Nucleic Acids Res. 48(13):7197-7217.
- Rahnama, M., B. Wang, J. Dostart, O. Novikova, D. Yackzan, A. Yackzan, H.
 Bruss, M. Baker, H. Jacob, X. Zhang, A. Stewart, M. Heist, J. Hoover, P.
 Calie, L. Chen, J. Liu, M.L. Farman, 2021 Telomere roles in fungal
 genome evolution and adaptation. Front. Genet. e676751
- Rahnama, M., B. Condon, J.P. Ascari, J.R. Dupuis, E. Del Ponte, K.F. Pedley, S. Martinez, B. Valent, and M.L. Farman, 2022 Recombination of standing

variation in a multi-hybrid swarm drove adaptive radiation in a fungal pathogen and gave rise to two pandemic plant diseases. Nature Comm. *In Review*

- Sánchez-Vallet, A., S. Fouché, I. Fudal, F.E. Hartmann, J.L. Soyer, A. Tellier, and D. Croll, 2018 The Genome Biology of Effector Gene Evolution in Filamentous Plant Pathogens. Ann. Rev. Phytopath. 56:21-40.
- Skamnioti, P., and S.J. Gurr, 2009 Against the grain: safeguarding rice from rice blast disease. Trends Biotech. 27: 141-150.
- Starnes, J. H., D.W. Thornbury, O.S. Novikova, C.J. Rehmeyer, and M.L. Farman, 2012 Telomere-targeted retrotransposons in the rice blast fungus *Magnaporthe oryzae*: agents of telomere instability. Genetics. 191: 389-406.
- Sudbery, P.E., 2011 Growth of *Candida albicans* hyphae. Nature Reviews Microbiology. 9: 737-748.
- Takahashi, H., S. Okazaki, and H. Fujiwara, 1997 A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, *Bombyx mori*. Nucleic Acids Res. 25(8): 1578-1584.
- Talbot, NJ., and R.A. Wilson, 2009 Under pressure: investigating the biology of plant infection by *Magnaporthe oryza*. Nature Rev. Microbiol. 7:185-195.
- Thorvaldsdottir, H., J.T. Robinson, and J.P. Mesirov, 2013 Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 14(2):178-192.

SUPPLEMENTARY MATERIALS

Supplementary Table 1 Sources of genome assemblies including the host plant they were collected from, their lineage, NCBI Accession Number, and the reference in which their assembly is published.

Strain	Host	Lineage	Reference	NCBI
				Accession #
LpKY97	<i>Lolium perenne</i> (perennial ryegrass)	Lolium	Farman et al. 2017	SAMN08009564
FH	L. perenne	Lolium	Pieck et al. 2017	SAMN08009551
CD156	<i>Eleusine indica</i> (goose grass)	Eleusine	Chiapello et al. 2015	SAMEA4708261
B71	<i>Triticum aestivum</i> (wheat)	Triticum	Inoue et al. 2017	SAMN04942725
Arcadia	Setaria viridis (green foxtail)	Setaria	Farman et al. 2014	SAMN14167122
US71	Setaria spp.	Setaria	Chiapello et al. 2015	SAMEA3373385
Bm88324	<i>Brachiaria mutica</i> (Buffalo grass)	Brachiaria	Borromeo et al. 1993	SAMN08009544
U233	Stenotaphrum secundatum (St. Augustine grass)	Stenotaphrum	Yasuhara- Bell et al. 2018	SAMN19488846
Guy11	<i>Oryza sativa</i> (rice)	Oryza	Islam et al. 2016	SAMN06050151
70-15	O. sativa	Oryza	Dean et al. 2005	SAMN02953596

References for genome assemblies

- Borromeo, E.S., R.J. Nelson, J.M. Bonman, and H. Leung, 1993 Genetic differentiation among isolates of *Pyricularia* infecting rice and weed hosts. Phytopathology 83: 393-399.
- Chiapello, H., L. Mallet, C. Guérin, G. Aguileta, J. Amselem, T. Kroj, E. Ortega-Abboud, M. Lebrun, B. Henrissat, A. Gendrault, F. Rodolphe, D. Tharreau, and E. Fournier, 2015 Deciphering genome content and evolutionary relationships of isolates from the fungus *Magnaporthe oryzae* attacking different host plants. Genome Biol. And Evol. 7(10): 2896-2912.
- Dean, R. A., N. J. Talbot, D. J. Ebbole, M. L. Farman, T. K. Mitchell, M.J. Orbach, M. Thon, R. Kulkarni, J.R. Xu, H. Pan, N.D. Read, Y.I. Lee, I. Carbone, D. Brown, Y.O. Yeon, N. Donofrio, S.J. Jun, D.M. Soanes, S. Djonovic, E. Kolomlots, C. Rehmeyer, W. Li, M. Harding, S. Kim, M.H. Lebrun, H. Bohnert, S. Coughlan, J. Butler, S. Calvo, L. Ma, R. Nicol, S. Purcell, C. Nusbaum, J.E. Galagan, and B.W. Birren, 2005 The genome sequence of the rice blast fungus *Magnaporthe grisea*. Nature 434: 980-986.
- Farman, M., O.S. Novikova, J.H. Starnes, and D.W. Thornbury, 2014 "Subtelomere organization, evolution, and dynamics in the rice blast fungus *Magnaporthe oryzae*," in Subtelomeres, eds E.J. Louis and M.M. Becker (Berlin: Springer-Verlag), 71-99. Doi: 10.1007/978-3-642-41566-1_4
- Farman, M.L., G. Peterson, L. Chen, J. Starnes, B. Valent, P. Bachi, L. Murdock, D. Hershman, K. Pedley, J.M. Fernandes, and J. Bavaresco, 2017 The *Lolium* Pathotype of *Magnaporthe oryzae* recovered from a single blasted wheat plant in the United States. Plant Disease 101: 684-692.
- Inoue, Y., T.T.P. Vy, K. Yoshida, H. Asano, C. Mitsuoka, S. Asuke, V.L. Anh, C.J.R. Cumagun, I. Chuma, R. Terauchi, K. Kato, T. Mitchell, B. Valent, M. Farman, and Y. Tosa, 2017 Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357: 80-83.
- Islam, M.T., D. Croll, P. Gladieux, D.M. Soanes, A. Persoons, P. Bhattacharjee, M.S. Hossain, D.R. Gupta, M.M. Rahman, M.G. Mahboob, N. Cook, M.U. Salam, M.Z. Surovy, V.B. Sancho, J.L.N. Maciel, A. NhaniJúnior, V.L. Castroagudín, J.T. de Assis Reges, P.C. Ceresini, S. Ravel, R. Kellner, E. Fournier, D. Tharreau, M. Lebrun, B.A. McDonald, T. Stitt, D. Swan, N.J. Talbot, D.G.O. Saunders, J. Win, and S. Kamoun, 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of *Magnaporthe oryzae*. BMC Biol. 14:84
- Pieck, M.L., A. Ruck, M.L. Farman, G.L. Peterson, J.P. Stack, B. Valent, and K.F. Pedley, 2016 Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Dis. 101: 103-109.
- Yasuhara-Bell, J., K. F. Pedley, M. Farman, B. Valent and J. P. Stack, 2018 Specific Detection of the Wheat Blast Pathogen (*Magnaporthe oryzae Triticum*) by Loop-Mediated Isothermal Amplification. Plant Dis. 102: 2550-2559.

agnaporthe oryzae strain ia). MoTeR relics are truncated ecifically, outside of telomeres. ce ts (^{5'} CCCTAA ^{3';3'} TTAGGG ^{5'}). 35 of ts (^{5'} CCCTAA ^{3';3'} TTAGGG ^{5'}). 35 of FeR sequence and/or telomere	3' end sequence	CGCGAATTAAAACCCTAACCCTTA	<u>GCGCGAATTAAGACCCAT</u>	<u>CGCGAATTAAAA</u> CCCTATA	<u>CGCGAATTAAAA</u> CCCTA	<u>CGCGAATTAAAA</u> CCCTAA	<u>CGCGAATTAAAA</u> CCCT	<u>CGCGAATTAAAA</u> CCCTAACCCT
hbled M 5, Arcad more sp sequer e repea the Mo ⁷	Relic length	40	4,277	40	40	347	26	67
among 10 fully assen US71, Guy11, 70-15 or of the genome, or ained a conserved 3' one or more telomer le polymorphisms in	Distance from Nearest Telomere or Terminal MoTeR	215205	753727	0 259256	2 309277	0 552589	6 295109	2 562293
isons a U233, interio at conta ted by ced by ced by c	3' end position	215205	753727	57 49 08(6127382	494759(569224(5425062
ble 2 MoTeR relic compar H, CD156, B71, Bm88324, ments that are found in the tigated were only those that $A^{3;3}$ <u>TTTTAACGCG⁵</u>) flank identified contain single nu	Shared with	1		ı	·	ı	US71	US71
ientary Ta elics inves elics inves <u>AATTAAA</u> TeR relics	Strain	CD156	CD156	CD156	B71	U233	Arcadia	Arcadia
Supplerr genomes MoTeR 1 MoTeR r (⁵ <u>CGCG</u>) 80 3' Mo 80 3' Mo repeat(s)	Chr	-	-

Chr	Strain	Shared with	3' end position	Distance from Nearest Telomere or Terminal MoTeR	Relic length	3' end sequence
-	Arcadia	US71	5374231	613124	140	TTATGGTGAGG GTTTTAATTCGCA
-	US71	ı	158743	158743	38	<u>CGCGAATTAAAA</u> CCTTAACCCTAA
-	US71	·	313516	31 35 16	38	<u>CGCGAATTAAAA</u> CCTTAACCCTAA
-	US71	Arcadia	5599609	623091	440	TTATGGTGAGG GTTTTAATTCGCA
-	US71	Arcadia	5650676	572024	67	<u>CGCGAATTAAAA</u> CCCTAACCCT
-	US71	Arcadia	5918660	304040	26	<u>CGCGAATTAAAA</u> CCCTGA
2	ГрКҮ 97		25940	12467	98	<u>ACGCGAATTAAAA</u> CCCTAA
7	LpKY 97	FH, B71 & Arcadia	28 00 7	14534	117	* <u>AAATTAAGCGC</u>
7	LpKY 97	Guy11 & Bm88324, 70-15	42376	28903	40	<u>GCGCGAATTAAAA</u> CCCTAACCCTAAC
7	ГрКҮ 97	Guy11 & Bm88324, 70-15	43519	30046	102	CGCGAAACAAAA CCCAAA
2	ΕH	LpKY97, B71 & Arcadia	645364	63 38 74	109	GGTTAGGGTTTTAATTCGCG
Chr	Strain	Shared with	3' end position	Distance from Nearest Telomere or Terminal MoTeR	Relic length	3' end sequence
-----	--------	----------------------------	--------------------	--	-----------------	----------------------------------
2	70-15	LpKY97 & Bm88324, Guy11	36813	36813	63	CGCGAAATAAAA CCCAAA
e	ГрКУ97	FH, Arcadia & Bm88324	152722	146667	40	GG GTT AG GGTTTT AATTCGCGT
ю	LpKY97	FH, CD156 & B71	2548296	2542241	41	AGGGTTAG GGTTTTAATTCGCGT
з	LpKY97	FH, CD156 & B71	2742283	2736228	40	<u>ACGCGAATTAAAA</u> CCCTAACCCTA
ю	LpKY97	FH, CD156 & B71	2751680	2745625	41	GTTAGGITTTAATTCGCG
e	ГрКҮ97	FH, CD156 & B71	2787030	2780975	31	GGTTGGGGTTTTAATTCGCG
ю	ГРКУ97	FH & *CD156	7355697	59179	114	TTAGGGTTTTAATTCGCGC
ю	Η	LpKY 97, Arcadia & Bm88324	169997	161496	40	GG GTT AG GGTTTT AATTCGCG
0	H	LpKY97, CD156 & B71	2553536	2545035	41	GG GTT AG GGTTTT AATTCGCG
ю	H	LpKY97, CD156 & B71	2749138	2740637	40	<u>CGCGAATTAAAA</u> CCCTAACCCTA

3' end sequence	GTTAGGG TITTAATTCGCG	GGTTG GGGTTTTAATTCGCG	TTAGGGITTTAATTCGCG	AGGGTTAG GGTTTTAATTCGCG	<u>CGCGAATTAAAA</u> CCCTAACCCTA	GTTAGGG TTTTAATTCGCG	GGTTGGGGTTTTAATTCGCG	TTAGGGITTAATTCGCT	GTCAGGGTTAGGGTTTTAATTCGCG	<u>CGCGAATTAAAA</u> CCCTAACCCTA
Relic length	41	40	119	40	40	41	31	*15	41	40
Distance from Nearest Telomere	or Terminal MoTeR 2750044	2785416	57 264	2424482	2621949	2625549	2660716	426559	2523720	27 19208
3' end position	2758545	2793917	7315089	2424482	2621949	2625549	2660716	7124927	2523720	27 19208
Shared with	LpKY 97, CD156 & B71	LpKY97, CD156 & B71	LpKY 97, CD156 & B71	LpKY 97, FH & B71	LpKY 97, FH & B71	LpKY 97, FH & B71	LpKY 97, FH & B71	LpKY97 & FH	LpKY97, FH & CD156	LpKY97, FH & CD156
Strain	H	Æ	Ŧ	CD156	CD156	CD156	CD156	CD156	B71	B71
Chr	3	e	e	ю	e	ю	e	ю	e	ю

Chr	Strain	Shared with	3' end position	Distance from Nearest Telomere or Terminal MoTeR	Relic length	3' end sequence
e	B71	LpKY97, FH & CD156	27 22 82 8	27 22 82 8	41	GTTAGGG TTTTAATTCGCG
e	B71	LpKY97, FH & CD156	2758440	2758440	31	GGTTG GGGTTTTAATTCGCG
e	B71		7468533	738187	40	TAGGGTTAGGG
ę	Arcadia	LpKY 97, FH & Bm88324	165684	165560	40	GG GTT AG GGTTTT AATTCGCG
e	Bm88324	LpKY97, FH & Arcadia	148531	148531	40	GG GTT AG GGTTTT AATTCGCG
4	Arcadia	US71	15722	15312	239	<u>CGCGAATTAAAACCCTAACCCTAA</u>
4	Bm88324		5007462	983162	131	<u>CGCGAATTAAAACCCTAA</u>
4	US71		7328	7328	40	TTAGGGITTTAATTCGCG
4	US71	Arcadia	51572	51572	241	<u>CGCGAATTAAAACCCTAAC</u>
4	US71		51745	51745	165	<u>CGCGAATTAAAACCCTAACCCTAA</u>

Chr	Strain	Shared with	3' end position	Distance from Nearest Telomere or Terminal MoTeR	Relic length	3' end sequence
5	грКУ 97	Η	4395439	1701	147	<u>CGCGAATTAAAA</u> CCCTAACCC
5	Æ	грКҮ 97	44 23 68 1	2139	149	<u>CGCGAATTAAAA</u> CCCTAACCC
S	Guy11	70-15	1852.04	185079	140	TTATGGTGAGG GTTTTAATTCGCG
ъ С	Arcadia		122817	122697	105	<u>CGCGAGTTAGAACCCTAACCCTAA</u>
5	Arcadia	US71	47 00 15 1	120119	166	AGGGTTAGGGTTTTAATTCGCG
£	US71		4630653	245799	370	TTAGGGTTAGG GTTTTAATTCGCG
5	US71	Arcadia	4756255	120197	1539	<u>CGCGAATTAAAA</u> CCCTAACCCT
2	70-15	Guy11	102769	102769	141	TTATGGTGAGGGTTTTAATTCGCG
9	ГрКҮ 97	FH, CD156 & B71	83 14 9	78782	31	<u>CGCGAATTAAAA</u> CCCTAA
9	LpKY 97	FH, CD156 & B71	2132281	2127914	40	GTTGG GGTTTTAATTCGCG

ā			ā		:	2
Chr	Strain	Shared with	3 [°] end position	Distance from Nearest Telomere or Terminal MoTeR	Relic length	3' end sequence
9	LpKY97	FH, CD156 & B71	3271965	2851743	131	<u>CGCGAATTAAAACCTAACCATCCCA</u>
9	H	LpKY97, CD156 & B71	83149	70615	31	<u>CGCGAATTAAAA</u> CCCTAA
9	H	LpKY97, CD156 & B71	2144774	2132240	39	TTGGG GTTTTAATTCGCG
9	Æ	LpKY97, CD156 & B71	3282558	2820790	131	<u>CGCGAATTAAAA</u> CCCTAA
9	CD156	LpKY97, FH & B71	95554	77505	31	<u>CGCGAATTAAAACCCTAA</u>
9	CD156	LpKY97, FH & B71	2153119	2135070	40	TTGGG GTTTTAATTCGCG
9	CD156	LpKY97, FH & B71	3282214	2779397	132	<u>CGCGAATTAAAA</u> CCCTAACC
9	B71	LpKY97, FH & CD156	78239	71228	31	<u>CGCGAATTAAAA</u> CCCTAA
9	B71	LpKY97, FH & CD156	2138379	2138379	40	GTTGG GGTTTTAATTCGCG
9	B71	LpKY 97, FH & CD156	3275257	2808416	135	<u>CGCGAATTAAAA</u> CCCTAACC

Chr	Strain	Shared with	3' end position	Distance from Nearest Telomere or Terminal MoTeR	Relic length	3' end sequence
9	Arcadia	US71	22696	22696	1146	<u>CGCGAATTAAAACCCTAACCCTA</u>
9	US71	Arcadia	42833	42833	1146	<u>CGCGAATTAAAACCCTAACCCTA</u>
7	ГрКУ 97	FH, CD156, Bm88324 & B71	3688512	161862	38	<u>CGCGAATTAAAACCTTAACCCTAA</u>
7	ГрКҮ 97	FH& CD156	3825400	24974	63	TTAGGTGTGGGTTTTAAATCGCG
7	ГрКҮ 97	FH& CD156	3835928	14446	110	<u>CGCGAATTGAAACCCTAACCCTAA</u>
7	H	LpKY97, CD156, Bm88324 & B71	3694340	154907	37	CGCGAATTAAAACCTTAACCCTAA
7	H	LpKY97 & CD156	3836980	12267	63	TTAGGGTG TGGGTTTTAAA TCGCG
7	H	LpKY97 & CD156	3841696	7551	116	CGCGAATTGAAACCCTAACCCTAA
7	CD156	LpKY97, FH, Bm88324 & B71	3761013	14 31 03	38	<u>CGCGAATTAAAACCTTAACCCTAA</u>
7	CD156	LpKY97 & FH	3893775	10341	63	TTAGGGTGTGGGTTTTAAATCGCG

СҺг	Strain	Shared with	3' end	Distance from	Relic	3' end sequence
			position	Nearest Telomere or Terminal MoTeR	length	
7	CD156	LpKY97 & FH	3896604	7512	105	CGCGAATTGAAACCCTAACCCTAA
7	B71	Bm88324	37 55 03 8	28 09 48	59	GG AA GTTAAGGTTAGG TTTTAAA TTC GCG
7	B71	LpKY 97 , FH, Bm88324 & CD156	37 55 790	280196	59	<u>CGCGAATTAAAACCTTAACCCTAA</u>
4	Arcadia	·	2960437	54 10 93	132	CGCGAATTAAAACCCCTAA
7	Arcadia	US71	2820959	68 05 71	40	CGCGAATTAAAACCCTAA
7	Bm88324	ı	56 02 50	560250	56	AGGG TTAG GGTTTTAATTCGCG
7	Bm88324	B71	4570424	191128	112	GTTAAGGTTAGGTTTTAAA TTCGCG
7	Bm88324	B71, LpKY97, FH, & CD156	4571156	190396	124	CGCGAATTAAAACCCAAAA
7	US71	Arcadia	4051648	107847	40	<u>CGCGAATTAAAA</u> CCCTAA

Supplementan	rable 3 Telomer	e assembly	and terminal MoTeF	R presence	/absence ar	nd position. Chromos	ome
ends of each st	rain were examine	d for the pre	senœ/absence (Y∥	N) of termin	al MoTeR s	equences and fully	
assembled telo	mere sequences. I	Pos_start rep	presents the left-sid	e of the chr	omosome v	vhile pos_end repres	ents
the right-side of	the chromosome.	The purpos	e of this information	was to cal	culate the d	istance of individual	
MoTeR relics to	the nearest termin	nal MoTeR c	or telomere sequenc	ce. If a MoT	eR was pre	sent in the telomere,	then
the position of t	he last MoTeR lea	ding into the	subtelomere was n	eported. If	there was n	o MoTeR present wit	hin the
telomere, then t	he position record	led was the e	and of the telomere	at the edge	of the subt	elomere. If the telom	ere
itself was missir	ng from the assem	bly the posit	ion was defined as	the first or	last nucleoti	de in the chromosom	e.
Chromosome e	nds with a single,	or partial, tel	omere repeat (^{5'} CC	CTAA ³ ; ³ T	TAGGG ^{5'}) w	/ere not considered fi	ully
assembled telo	meres.						
Strain	Chromosome	Terminal	pos start	Fully	Terminal	pos end F	ully

Strain	Chromosome	Terminal MoTeR pos_start?	pos_start	Fully assembled telomere pos_start?	Terminal MoTeR pos_end?	pos_end	Fully assembled telomere pos_end?
CD156	Chr1	z	0	z	۲	6008336	×
CD156	Chr2	z	0	z	z	8265001	z
CD156	Chr3	z	0	z	≻	7551486	≻
CD156	Chr4	≻	97.78	≻	≻	5494330	≻
CD156	Chr5	z	0	≻	≻	4604659	≻
CD156	Chr6	≻	18049	≻	≻	6061611	≻
CD156	Chr7	≻	8843	≻	≻	3904116	≻
ΗIJ	Chr1	z	0	z	≻	6243661	۲

Strain	Chromosome	Terminal MoTeR pos_start?	pos_start	Fully assembled telomere pos_start?	Terminal MoTeR pos_end?	pos_end	Fully assembled telomere pos_end?
H	Chr2	≻	11490	۲	z	8522316	۲
ΗI	Chr3	≻	8501	≻	≻	7372353	۲
H	Chr4	≻	11502	≻	≻	5445612	≻
ΗJ	Chr5	≻	21432	≻	≻	4425820	≻
H	Chr6	≻	12534	≻	≻	6103348	≻
H	Chr7	≻	5142	≻	≻	3849247	≻
H	MinChr1_V3	۲	3461	≻	≻	1828878	≻
Arcadia	Chr1	z	111	≻	z	5987355	۶
Arcadia	Chr2	z	0	z	z	8805158	≻
Arcadia	Chr3	z	124	≻	≻	6770325	۲
Arcadia	Chr4	≻	410	≻	z	7569745	۲
Arcadia	Chr5	z	120	≻	z	4820270	≻
Arcadia	Chr6	z	0	z	z	6337561	z
Arcadia	Chr7	z	0	z	z	3501530	۲
Guy11	Chr1	z	0	z	z	5788060	z
Guy11	Chr2	z	101	≻	z	8590670	۲
Guy11	Chr3	z	192	≻	z	6810598	≻

Fully assembled telomere pos_end?	۲	z	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	۲	z	۲	۲	۲
pos_end	5685480	4603878	7294679	4182135	6326480	7953596	7414876	5421679	4397140	6123708	3850374	2980065	860985	5500179	7852337	7954589	7641527
Terminal MoTeR pos_end?	z	z	z	z	≻	z	≻	z	≻	≻	z	≻	≻	z	≻	≻	z
Fully assembled telomere pos_start?	z	۲	z	≻	۲	۲	۲	۲	≻	۲	≻	≻	۲	z	۲	z	≻
pos_start	0	125	0	110	176	13473	6055	11475	5260	4367	202	13431	6577	5	132	5	170
Terminal MoTeR pos_start?	z	z	z	z	z	≻	≻	≻	≻	≻	z	≻	≻	z	z	z	z
Chromosome	Chr4	Chr5	Chr6	Chr7	Chr1	Chr2	Chr3	Chr4	Chr5	Chr6	Chr7	MiniChr1	MiniChr2	Chr1	Chr2	Chr3	Chr4
Strain	Guy11	Guy11	Guy11	Guy11	LрКҮ	LрКҮ	U233	U233	U233	U233							

ı

Strain	Chromosome	Terminal MoTeR pos_start?	pos_start	Fully assembled telomere pos_start?	Terminal MoTeR pos_end?	pos_end	Fully assembled telomere pos_end?
U233	Chr5	z	157	۶	≻	5438331	۲
U233	Chr6	z	166	≻	z	3716274	۲
U233	Chr7	≻	323	≻	z	1631780	z
B71	Chr1	z	0	z	≻	6436659	۲
B71	Chr2	≻	6451	z	≻	7898963	z
B71	Chr3	z	0	z	z	8206720	z
R71	Chr4	>	15215	>	>	5307353	z
B71	Chr5	· >	5056	· >	· >	4434190	: >
B71	Chr6	~ ~	7011	z	~ ~	6083673	z
B71	Chr7	≻	12722	z	≻	4035986	z
70-15	Chr1	z	0	z	z	7978600	z
70-15	Chr2	z	0	≻	z	8319960	≻
70-15	Chr3	z	0	≻	z	6606598	z
70-15	Chr4	z	0	≻	z	5546960	۲
70-15	Chr5	z	0	≻	z	44 90 0 59	۲
70-15	Chr6	z	0	≻	z	4133993	۲
70-15	Chr7	z	0	≻	z	3415785	≻

Strain	Chromosome	Terminal MoTeR pos_start?	pos_start	Fully assembled telomere pos_start?	Terminal MoTeR pos_end?	pos_end	Fully assembled telomere pos_end?
Bm 88324	Chr1	z	0	z	z	5302774	۲
Bm 883 24	Chr2	z	0	z	z	7716396	۶
Bm 883 24	Chr3	z	0	۶	z	6380525	z
Bm 88324	Chr4	z	0	z	z	5990624	۶
Bm 883 24	Chr5	z	0	z	z	4768407	۶
Bm 883 24	Chr6	z	0	۶	z	5423066	z
Bm 88324	Chr7	z	0	۶	z	4761552	z
US71	Chr1	z	0	z	z	6222700	۲
US71	Chr2	z	0	≻	z	8539580	z
US71	Chr3	z	0	۲	z	6862639	z
US71	Chr4	z	0	z	z	6008318	۲
US71	Chr5	z	0	z	z	4876452	z
US71	Chr6	z	0	≻	z	6422269	≻

Fully	assembled telomere pos_end?	z
pos_end		41 59 495
Terminal	MoleK pos_end?	z
Fully	assembled telomere pos_start?	۶
pos_start		0
	MoleK pos_start?	z
Chromosome		Chr7
Strain		US71

Supplementary Figure 1 Neighbor-joining distance tree based off number of SNPs per kb in repeat-masked genome assemblies. Colored circles are used to highlight Magnaporthe oryzae lineages. Labeled nodes have >80% confidence. Adapted from Gladieux et al. 2018.

Supplementar sequences adja noted with an * 5' duplications	y Table 4 N acent to the . 3' duplicati are duplicat	AoTeR relic p relics are lisi ions are dupl e sequences	oositions and the differt. The clicate sequences that contain the that contain the sequences that contain the sequences that contain the sequences that contain the sequences the sequen	heir associa chromosom ses that are ooth the reli	ated duplica e and position found flank c itself and	tions. The on that ea ing the 3' its flanking	positions ch duplica sequence 5' seque	for the du ate sequen of MoTeR ence.	plicate ce maps to is relics. Relic +
Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	Chr Ch	Start (5')*	End (3')*
Chr1	CD 156	215205	3,	215231	216153	922	Chr1	82487	83397
Chr1	CD156	753727							
Chr1	CD156	5749080	ъ,	5749041	5749080	242	Chr3	2488147	2488390
Chr1	CD156	5749080	Relic + 5'	5748567	5749085	518	Chr6	95111	95570
Chr2	CD156	7550702	Relic + 5'	7550142	7550719	577	Chr6	94948	95571
Chr2	CD156	7550702	Relic + 5'	7550142	7550720	578	Chr3	2660698	2661270
Chr2	CD 156	7551004	ο,	7551022	755228	1206	Chr6	6024169	6025375

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr2	CD 156	7553167							
Chr3	CD156	2424482	o,	2423615	2424461	849	Chr5	4504267	4505293
Chr3	CD 156	2621949	3,	2621959	2622189	230	Chr1	1600219	1600452
Chr3	CD156	2625538	3,	2622713	2625525	2812	Chr5	191310	204348
Chr3	CD156	2660705	3,	2658586	2660695	2230	Chr5	213434	215664
Chr6	CD156	95565	Relic + 5'	94948	95571	623	Chr2	7550142	7550719
Chr6	CD156	2153119							
Chr6	CD156	3282214							
Chr7	CD156	3761013							
Chr7	CD 156	3896608							

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr2	Æ	645364	3,	645105	645357	252	Chr3	2737140	2737390
Chr3	Æ	169997							
Chr3	H	2553539	3,	2552748	2553514	766	Chr5	4314329	4315093
Chr3	Ŧ	2749138	2î	2748956	2749089	133	Chr6	83016	83152
Chr3	Æ	2749138	ũ	2748981	2749092	111	Chr	345699	345812
Chr3	H	2749138	ũ	2748981	2749090	109	Chr6	2144767	2144876
Chr3	Æ	2758548	3, 3	2758162	2758535	373	Chr5	213344	213716

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr3	Ŧ	2758548	ñ	2758162	2758519	357	MinChr1	1069191	1069546
Chr3	Æ	2758548	Ω	2758604	2758649	45	Chr2	645093	645138
Chr3	Æ	2758548	Ω	2758605	2758783	178	Chr6	2144589	2144767
Chr3	Æ	2793917	Relic+5'	2793911	2794087	176	Chr6	82971	83152
Chr3	Æ	2793917	ñ	2793783	2793907	124	Chr3	224782	224907
Chr3	Æ	7315089	ñ	7315218	7315452	234	Chr7	3851320	3851555
Chr3	Æ	7315089	ы,	7315218	7315462	244	Chr7	4812	5058

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr3	Æ	7315089	3,	7315233	7315452	219	Chr5	4425912	7315452
Chr3	Æ	7315089	3, 3	7315233	7315441	208	Chr4	5445680	5445886
Chr3	H	7315089	3,	7315233	7315275	42	Chr6	6103302	6103344
Chr5	Æ	4423681							
Chr6	H	83146	Relic+5'	82971	83149	178	Chr3	2793914	2794087
Chr6	H	83146	Relic+5'	83043	83149	106	Chr6	2144771	2144875
Chr6	Æ	83146	Relic+5'	83043	83148	105	Chr	345706	345811

Сŗ	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	Chr*	Start (5')*	End (3')*
Chr6	Ŧ	2144774	Relic+5'	2144772	2144772	105	Сhл	345706	345813
Chr6	Æ	2144774	Relic+5'	2144767	2144876	109	Chr3	2793910	2794019
Chr6	Æ	2144774	Relic+5'	2144768	2144875	107	Chr6	83043	83152
Chr6	H	3282558							
Chr7	Æ	3694340							
Chr7	Æ	3836980							
Chr7	H	3841696							
Chr2	ГрКҮ	25940	, M	25959	(72754??)	126 or (1299	Chr6	5728681	2737809???

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	Chr*	Start (5')*	End (3')*
Chr2	ГрКҮ	25940	5,	23390	25821	2431	MiniChr1	2933499	2935944
Chr2	ГрКҮ	25940	Q	23390	25821	2431	Chr1	1077981	1080427
Chr2	ГрКҮ	25940	Q	24796	25821	1025	MiniChr1	2531374	2532411
Chr2	ГрКҮ	27585	Whole locus	27585	29145	1569	MiniChr2	680023	681615
Chr2	ГрКҮ	42376							
Chr3	ГрКҮ	152722	Q	152774	152934	160	Chr3	2672245	2672405
Chr3	ГрКҮ	2548296							
Chr3	ГрКҮ	2742283	Q	2742138	2742247	109	Chr6	2132274	2132383
Chr3	LpKY	2742283	3,	2742311	2742536	225	Chr1	2065426	2065654
Chr3	LpKY	2751680	5'	2751737	2751915	178	Chr6	2132096	2132274

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	r,	Start (5')*	End (3')*
Chr3	ГрКҮ	2787030	Relic+5'	2787027	2787200	**652	Chr6	82985	82333
Chr3	ГрКҮ	7355697							
Chr5	ГрКҮ	4395439							
Chr6	ГрКҮ	83149	Relic+5'	83058	83164	106	Chr6	2132278	2132382
Chr6	ГрКҮ	83149	Relic+5'	82985	83164	179	Chr3	2787027	2787200
Chr6	ГрКҮ	2132281	Relic+5'	2132274	2132383	109	Chr3	2787023	2787132
Chr6	ГрКҮ	2132281	Relic+5'	2132278	2132382	104	Chr6	83058	83164
Chr6	ГрКҮ	2132281	3,	2132096	2132274	178	Chr3	2751737	2751915
Chr6	ГрКҮ	3271965							
Chr7	ГрКҮ	3688512							

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr7	ГрКҮ	3825400							
Chr7	ГрКҮ	3835928							
MiniChr1	ГрКҮ	398360							
MiniChr1	ГрКУ	1359742	BIR	1357639	1360022	2383	MiniChr1	1360023	1362409
MiniChr1	ГрКҮ	1362129	BIR	1360023	1362409	2386	MiniChr1	1362410	1364797
MiniChr1	ГрКҮ	1364517	BIR	1362410	1364797	2387	MiniChr1	1264798	1367192
MiniChr1	ГрКҮ	1366906	BIR	1264798	1367192	2395			
MiniChr1	ГрКҮ	2383001	Whole locus	2380800	2386022	5222	MiniChr1	138552	143705
MiniChr1	LрКҮ	2700125	Relic + 5'	2700110	2700214	104	MiniChr1	2806582	2806687
MiniChr1	грКУ	2783081	Relic+5'	2783082	2783425	343	MiniChr1	2806592	2806931

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
MiniChr1	LpKY	2806591	Relic+5'	2806582	2806687	105	MiniChr1	2700110	2700214
MiniChr1	ГрКҮ	2806591	Relic+5'	2806592	2806931	339	MiniChr1	2783082	2783425
Chr1	B71	6127382	Relic + 5'	6127375	6127903	336	Chr6	77778	78244
Chr1	B71	6127382	а,	6127906	6128151	245	Chr3	2587832	2588077
Chr2	B71	39554	ŝ	39295	39547	252	Chr3	2707333	2717585
Chr3	B71	2523720	ŝ	2522904	2523688	784	Chr5	4325026	4325809
Chr3	B71	2719426	ñ	2719436	2719668	232	СНг	2062719	2062952
Chr3	B71	2723035	S,	2723103	2723643	540	Scaf2	90691	91231

Chr	Strain	Relic 3′ position	Duplication type	Start (5')	End (3')	Length	Chr*	Start (5')*	End (3')*
Chr3	B71	2758440							
Chr3	B71	7468533	ŝ	7468299	7468938	639	Chr3	7943524	7944163
Chr6	B71	78239	Relic + 5'	77902	78244	342	Chrl	6127567	6127903
Chr6	B71	2138958	2	2139056	2139212	156	Scaf2	739014	739167
Chr6	B71	2138958	Q	2139056	2139212	156	Chrl	6126568	6126724
Chr6	B71	3275257							
Chr7	B71	3754755							

Сŀг	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr7	B71	3755518							
Scaf2	B71	309325	ŝ	309099	309319	220	Chr3	7859255	7859473
Scaf2	B71	588650	°,	588657	592197	3540	Chrl	1690306	1693831
Scaf2	B71	588650	3,	588657	592197	3540	Chr3	1960673	1964198
Chr1	Arcadia	5692246							
Chr1	Arcadia	5425062							
Chr1	Arcadia	5374231							

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	chr*	Start (5')*	End (3')*
Chr2	Arcadia	11850							
Chr3	Arcadia	165684	ນ້	165879	165729	150	Chr1	60594	60444
Chr4	Arcadia	15722							
Chr5	Arcadia	122817							
Chr5	Arcadia	4700151							
Chr6	Arcadia	22696	'n,	22706	22936	230	Chr3	5587685	5587917
Chr7	Arcadia	2960437	Q	2959707	2960308	601	Chr1	1208662	1209263

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	Ch r*	Start (5')*	End (3')*
Chr1	US71	158743	Whole locus	149010	172995	23985	Chr1	303813	327767
Chr1	US71	313516	Whole locus	303813	327767	23954	Chr1	149010	172995
Chr1	US71	5599609							
Chr1	US71	5650676							
Chr1	US71	5918660							
Chr2	US71	3026							
Chr4	US71	7328	Whole locus		16824	16823	Chr7	4042072	4059008
Chr4	US71	51572							
Chr4	US71	51745							
Chr5	US71	4630653							

Chr	Strain	Relic 3' position	Duplication type	Start (5')	End (3')	Length	Chr*	Start (5')*	End (3')*
Chr2	70-15	35652							
Chr2	70-15	36813							
Chr5	70-15	102769							
Chr2	Bm88324	3176							
Chr2	Bm88324	4311							
Chr3	Bm88324	148531							
Chr4	Bm88324	5007462							
Chr7	Bm88324	560250							
Chr7	Bm88324	4570424							
Chr7	Bm88324	4571156							

End (3')*	
Start I (5')*	
Chr*	
Length	
End (3')	
Start (5')	
Duplication type	
Relic 3' position	4947590
Strain	U233
Chr	Chr1

APPENDICES

Appendix 1: Unix Command Line

List of commands:

>grep	>sort	>head	>cd	>tail
>egrep	>sed	>ls	>mkdir	>less
>awk	>cat	>pwd	>man	>nano

Installing local BLAST on the command line:

	https://www.	ncbi.nlm.nih.	aov/books/NBK569861/
--	--------------	---------------	----------------------

- Download .fasta files for query and subject sequences in your working directory
- > Make local databases for each .fasta subject file
 - For example: Making a database for the Guy11 genome
 - > makeblastdb -in <u>Guy11.fasta</u> -out <u>Guy11_db</u> -dbtype <u>nucl</u>
 - "-in _____" represents the sequence file you will be using to make a database
 - "-out _____" is the name you are giving your database
 - "-dbtype _____" is the type of data within your database, in this case it's made up of nucleotide
- Once you've made your database you can start using BLASTn to search for matches to your query sequences within the database
 - For example: When looking for MoTeR relics one method I used was blasting full MoTeR1 and MoTeR2 sequences against my database for each genome
 - The query sequences needed to be in .fasta format
 - The name of each sequence should follow a ">" and comprise the first line of the text file. The nucleotides for that file will then follow. You can have multiple query sequences within a file as long as they are prefaced by a ">".

>MoTER1 CCCGAACCCGAACCCAA ACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCGGAG GGTTCCCAAGTCGCCTAAACCCGAAGGGTTTAGGATATTATTTCGTTTAT TAGAATTGGATAATTATTTACCCCTGTTGGACAGGGGGGTTGCAGGGGTT AAATTAAGGTTTTTTATTATTATGCGCCGTTTATTTGTTTACCCCCCCA AATATTATAAAAGCGCGTTCCATCCTCTTAGGAAAAGCGAAGCTTTTCCT TGTAAAAGTCGCTAGACTTTTACTATAAAAGTCGCTAGACTTTTATACCA ATCTTTTAACAAAAAGCGTAGCTTTTTGTTGCCAATCTATTAAAAAAAGC ATTAGCGGTGGGGCTATTTATGCGCTTTAATTTGTGCGGGGCTATTTATG CGCTTTAATTTGTGCGGGGCTATTAATGCGCTTTAACTTTACAAATTTTA TTTATGCGCTTTAATTGCTGCGGGCCTGTTAATGCGCTTTAATTTACAAA ATTGCTATTATTATCGTTGCTATTATTATTATTGCTATTATTATCGTTAT TATTATTGCAATTTTATTATATAAACCCTCGTTTGTCCCTCGATTTATCC CGTTTCTTTTCCATCCCATCGCGCGTTTTCGTAAGCTTTGGTTTTCGTAG GATTTGCTTTCGTAGGCTTTGCTTTCGTAGGCTTTCGTCAGCTTTTACCT

- > To search for query matches in your database (in this example I used short blastn to search for MoTeR relics)
 - >blastn -query MoTeRs.fasta -db Guy11 db -task "blastn-short" out Guy 11 MoTeR shortblast.txt -e-value 1e-1 -outfmt 6
 - "-query _____" the sequences you are searching for "-db _____" the database you are searching for
 - matching sequences within
 - "-task 'blastn-short'" is specific to this particular blastn search looking for MoTeR relics as some of our matches may be particularly short ****
 - "-out _____.txt" The file name for your blast results. I typically save them as a .txt file
 - "-e-value " Manipulating the e-value may narrow your output or expand it. However, narrowing and/or expanding to either cause you to miss important matches or receive too many aberrant matches that you don't care about. For short blastn I used an e-value of 1e-1 as some of the matches could be short (< 40 nt). A few mismatches within a short sequence can be picked up by a lower designated e-value, but are easily lost with higher evalues.
 - -"outfmt " The format in which your output file will be organized. All output files consist of 12 columns. For output 6 they are organized as:
 - o https://www.metagenomics.wiki/tools/blast/blas tn-output-format-6

- qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore
 - 1. **qseqid** query or source (e.g., gene) sequence id
 - sseqid subject or target (e.g., reference genome) sequence id
 - pident percentage of identical matches
 - 4. length alignment length
 - 5. **mismatch** number of mismatches
 - 6. **gapopen** number of gap openings
 - 7. **qstart** start of alignment in query
 - 8. qend end of alignment in query
 - 9. **sstart** start of alignment in subject
 - 10. send end of alignment in subject
 - 11. evalue expect value
 - 12. **bitscore** bitscore
- Example output:

					C	D156_M	oTeR_bla	st.txt		
MoTER1	Chr4	83.888	571	32	21	622	1174	5498612	5498084	7.73e-84 313
MoTER1	Chr4	90.110	273	14	7	4505	4777	8608	8867	6.91e-75 283
MoTER1	Chr4	94.660	206	5	6	1050	1255	4771	4970	6.65e-72 274
MoTER1	Chr4	93.617	188	8	4	4549	4735	9142	9326	1.51e-63 246
MoTER1	Chr4	87.917	240	16	4	909	1137	100	337	2.26e-59 232
MoTER1	Chr4	95.395	152	2	3	4881	5032	9632	9778	1.40e-57 226
MoTER1	Chr4	95.522	134	5	1	908	1041	205	337	8.30e-53 210
MoTER1	Chr4	86.957	230	11	6	909	1126	5498259	5498037	1.25e-48 196
MoTER1	Chr4	95.935	123	3	2	908	1030	5498157	5498037	3.04e-46 188
MoTER1	Chr4	97.895	95	0	1	4938	5032	9516	9608	1.12e-39 167
MoTER1	Chr4	93.443	122	4	4	909	1030	4774	4891	1.04e-33 147
MoTER1	Chr4	84.549	233	17	7	957	1174	3	231	4.09e-33 145
MoTER1	Chr4	84.047	257	16	9	907	1150	4579	4823	4.09e-33 145
MoTER1	Chr4	92.800	125	5	4	1002	1126	4771	4891	4.09e-33 145

- To be able to efficiently look through this output you need to use commands that will help you filter and sort through all of the matches
 - My first criterion was finding matches that contained the 3' of MoTeR1 or MoTeR2
 - For that I could use sort to comb through the **qstart** and **qend** columns by sorting matches in that column numerically
 - > sort <u>-k 7n</u> CD156_MoTeR_blast.txt
 - -k used to designate a specific column (In this case column 7)

- n used to tell the sort command it is sorting things numerically
- OR I could use ask to search for matches that met a certain criterion
 - >awk '\$7 >5000 || \$8
 >5000'

CD156_MoTeR_blast.txt

- \$ designates a specific column – in this case we are looking in columns 7 and 8
- || is part of an OR • statement. We want an output of matches in columns 7 and 8 that are greater than 5000 as the position of the 3' end in MoTeR1 is at nucleotide 5034 in the query sequence. (Position will differ for MoTeR2) I provided a buffer. so we didn't miss any potential matches.
- Awk can be used even further to organize and filter through blast outputs and can be used in conjunction with sort (and other commands) to result in a final output. There are multiple ways to approach a dataset with these commands.
- >awk '\$7 >5000 || \$8 >5000' CD156_MoTeR_blast.txt | sort -k2 > CD156_Blast_Relics.txt
| • • • | | | | | Dov | wnloads · | – less CI | 0156_Bla | st_Relics | .txt — 134×40 | |
|--------|------|--------|------|----|-----|-----------|-----------|----------|-----------|---------------|------|
| MoTER1 | Chr1 | 94.595 | 111 | 1 | 4 | 4924 | 5032 | 753620 | 753727 | 1.62e-32 | 143 |
| MoTER1 | Chr1 | 97.403 | 154 | 0 | 3 | 4881 | 5034 | 6008485 | 6008336 | 2.44e-65 | 252 |
| MoTER1 | Chr3 | 90.000 | 40 | 4 | 0 | 4995 | 5034 | 2424521 | 2424482 | 7.12e-04 | 48.1 |
| MoTER1 | Chr3 | 94.945 | 3739 | 68 | 58 | 1336 | 5024 | 7555161 | 7551494 | 0.0 5578 | |
| MoTER1 | Chr4 | 93.182 | 88 | 1 | 4 | 4946 | 5032 | 8519 | 8602 | 8.58e-19 | 97.6 |
| MoTER1 | Chr4 | 93.478 | 46 | 0 | 1 | 4987 | 5032 | 3897 | 3939 | 1.20e-08 | 63.9 |
| MoTER1 | Chr4 | 94.551 | 3744 | 75 | 59 | 1346 | 5032 | 5498001 | 5494330 | 0.0 5475 | |
| MoTER1 | Chr4 | 95.395 | 152 | 2 | 3 | 4881 | 5032 | 9632 | 9778 | 1.40e-57 | 226 |
| MoTER1 | Chr4 | 95.455 | 88 | 0 | 3 | 4947 | 5034 | 9017 | 9100 | 5.93e-26 | 121 |
| MoTER1 | Chr4 | 97.895 | 95 | 0 | 1 | 4938 | 5032 | 9516 | 9608 | 1.12e-39 | 167 |
| MoTER1 | Chr5 | 95.746 | 3738 | 66 | 51 | 1337 | 5034 | 4608343 | 4604659 | 0.0 5828 | |
| MoTER1 | Chr6 | 87.829 | 304 | 27 | 9 | 4720 | 5021 | 12995 | 13290 | 9.29e-62 | 240 |
| MoTER1 | Chr6 | 91.667 | 132 | 8 | 3 | 4905 | 5034 | 3282084 | 3282214 | 6.63e-35 | 151 |
| MoTER1 | Chr6 | 92.208 | 77 | 6 | 0 | 4958 | 5034 | 6061687 | 6061611 | 3.52e-21 | 105 |
| MoTER1 | Chr6 | 93.333 | 150 | 4 | 4 | 4880 | 5028 | 3737 | 3881 | 7.70e-47 | 190 |
| MoTER1 | Chr6 | 95.172 | 145 | 5 | 2 | 4888 | 5032 | 6062120 | 6061978 | 1.35e-54 | 216 |
| MoTER1 | Chr6 | 95.644 | 3168 | 52 | 53 | 1904 | 5032 | 5395 | 8515 | 0.0 4831 | |
| MoTER1 | Chr6 | 95.833 | 144 | 0 | 3 | 4891 | 5034 | 17912 | 18049 | 8.62e-56 | 220 |
| MoTER1 | Chr7 | 86.408 | 103 | 10 | 3 | 4931 | 5030 | 3896503 | 3896604 | 4.91e-11 | 71.9 |
| MoTER1 | Chr7 | 88.043 | 92 | 2 | 5 | 4931 | 5021 | 3904604 | 3904521 | 1.20e-08 | 63.9 |
| MoTER1 | Chr7 | 89.474 | 38 | 4 | 0 | 4997 | 5034 | 3760976 | 3761013 | 0.011 44.1 | |
| MoTER1 | Chr7 | 93.103 | 145 | 10 | 0 | 4888 | 5032 | 3904260 | 3904116 | 3.28e-52 | 208 |
| MoTER1 | Chr7 | 94.707 | 3741 | 58 | 65 | 1346 | 5032 | 540 | 4194 | 0.0 5479 | |
| MoTER1 | Chr7 | 99.099 | 111 | 1 | 0 | 4924 | 5034 | 8733 | 8843 | 2.10e-53 | 212 |
| | | | | | | | | | | | |

Making comparisons between strains to search for matching and unique relics was done in a similar manner. Genomes were blasted against each other using an e-value of 1e-20 and using regular BLASTn rather than short blast to look for much longer matches.

blastn -query CD156.fasta -db 70-15_db -evalue 1e-20 outfmt 6 -out 70-15_CD156_blast.txt

After using nucleotide blast the output can be approached from a variety of ways such as using awk to look at specific positions or isolating certain chromosomes; probably the most efficient approach I've come to is known as "genome-walking".

For this I created a simple pipeline that selects the chromosomes I would like to compare using awk (in this case Chr1 and 70-15.Chr1). Then I set a criterion that the length of the match should be at least X (in this case 50000). This is purely subjective and can and should be adjusted, but it allows you to quickly look through what the largest alignments of the genomes are and whether or not the sequences and surrounding regions you are interested in align at a glance and in what orientation. Finally, I would sort one column (in this case 7) of positions initially to start "walking" from one direction along a chromosome. Following this I would always inspect the sequences in IGV, especially in the case that an alignment indicated that both genomes should have the same relic(s) but my BLASTn and grep analyses did not initially reveal this.

awk '\$1 == "Chr1" && \$2 == "70-15.Chr1" 70-15_CD156_blast.txt | awk '\$4 > 50000' | sort -k 7n

• •	•					0	Downloa	ıds — -ba	sh — 152	×49								
[Janes-	MacBook-Air:Down	loads jan	e_dostar	t\$ awk	'\$1 ==	"Chr1" &&	\$2 == "7	0-15.Chr	1"' 70-1	5_CD15	6_blast.txt	awk	'\$4	> 50000	117	sort	-k 7	'n
Chr1	70-15.Chr1	98.483	65261	478	346	308703	373514	80359	145556	0.0	1.146e+05							
Chr1	70-15.Chr1	98.388	50376	387	279	373612	423585	145745	196097	0.0	88136							
Chr1	70-15.Chr1	97.356	53054	674	416	499589	552074	554785	607677	0.0	89526							
Chr1	70-15.Chr1	97.419	61728	781	446	559587	620687	615219	676761	0.0	1.044e+05							
Chr1	70-15.Chr1	98.955	65278	105	356	1991630	2056342	1753060	1818325	0.0	1.162e+05							
Chr1	70-15.Chr1	99.100	80033	117	388	2133473	2212905	1902992	1983021	0.0	1.432e+05							
Chr1	70-15.Chr1	99.070	51829	45	236	2237092	2288490	2007279	2059100	0.0	92636							
Chr1	70-15.Chr1	98.890	55943	59	345	2288487	2343874	2059120	2115055	0.0	99349							
Chr1	70-15.Chr1	99.034	67625	168	334	2502776	2569938	2275874	2343475	0.0	1.208e+05							
Chr1	70-15.Chr1	99.008	68138	141	308	2588150	2655786	2361853	2429956	0.0	1.216e+05							
Chr1	70-15.Chr1	98.751	67837	291	334	2875764	2943061	2545755	2613574	0.0	1.201e+05							
Chr1	70-15.Chr1	99.089	55352	106	245	3412230	3467217	3078849	3134166	0.0	99057							
Chr1	70-15.Chr1	98.993	60870	108	290	3606194	3666578	3261394	3322243	0.0	1.085e+05							
Chr1	70-15.Chr1	98.830	55040	194	302	3678662	3733277	3334356	3389369	0.0	97657							
Chr1	70-15.Chr1	98.555	52444	275	290	4135085	4187093	3793944	3846339	0.0	92200							
Chr1	70-15.Chr1	98.661	57784	227	326	4187077	4244358	3846349	3904087	0.0	1.019e+05							
Chr1	70-15.Chr1	98.594	50346	188	317	4244427	4294261	3904080	3954416	0.0	88570							
Chr1	70-15.Chr1	98.729	110012	371	631	4350697	4459759	4046415	4156348	0.0	1.945e+05							
Chr1	70-15.Chr1	98.809	57028	183	308	4517211	4573796	4216155	4273128	0.0	1.011e+05							
Chr1	70-15.Chr1	98.856	94437	253	506	4573769	4667405	4273234	4367643	0.0	1.676e+05							
Chr1	70-15.Chr1	99.066	67787	148	296	4834918	4902234	4538241	4606012	0.0	1.212e+05							
Chr1	70-15.Chr1	97.876	63827	656	398	5285570	5348866	4961563	5025219	0.0	1.097e+05							
Janes-N	MacBook-Air:Down	loads jan	e_dostar	t\$														

Using grep to search for MoTeR relics

Grep is a command that can be used to look for exact matches in a file. In the cases that I used grep I would search for MoTeR 3' end sequences in .fasta files for genomes. The simplest grep search is shown below. Grep returns the search term and the line it was found on.

Because DNA is comprised of two strands which are complimentary and run antiparallel to each other, there are two sequences that make up the 3' end of MoTeRs. Using **egrep** allows you to look for multiple search terms within a file separated by a | sign.

egrep 'CGCGAATTAAAA|TTTTAATTCGCG' CD156_Final.fasta - colour=always

	🚞 CD156 — -bash — 152×50
[Janes-MacBook-Air:CD156 jane_dostart\$ egrep 'CGCGAATTAAAA TT	TTAATTCGCG' CD156_Final.fastacolour=always
TTTGGGGTATTTTAATTCGCGTCGTGGTTTTCAATTTTGGCATTTACCACTAATTACGAC	ATACGTTCCATAATCGAGGT
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATT	ATTAAAATGCAGGTTATTAT
ACAAAGGCGCGCGAATTAAAACAGCTGCTGAGGAATGTATTATCAGTTGCTTAGTGAGCC	TTTGCAAGCACCCCCAGGTC
TAGCAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCCTATACTTTGAGCTGTCT	CCGCTCAATTCTGCTGTTAT
GGGTTAGGGTTAGGGTTTTAATTCGCGCTTTATTATATTCTAAGCTTATTTGCTAAGGGT	TTTGTCGTACAAATAAAATA
CAAAACCCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCTAACCCATA	GACTTGAGGCCGGACGTGAC
CAACGTAGGAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCCTAAGGGAATTAA	TAAAGGGCGCCGCGCGGG
TACGACAAAACCATTAGCAAATAAGTTTAAAAATAAAAT	CCATCCCACCACAAATCTAG
CGTTTTAGGGTTTTAATTCGCGCTTTATTTAATTCTAAGCTTATTTGCTAAGGGTTTTGT	CGTACAAATAGGGTAGAAAA
TTGTGTTGGCACTTAGGGTTTTAATTCGCGCTTTATTATATTCTAAGCTTATTTGCTAAG	GGTTTTGTCGTACAAATAAA
TTTTATTTGTACGACAAACCCTTAGCAAATAAGCAGAATATAATAAAGCGCGCGAATTAAAA	CCCTAACCCTAAGCGCCGAG
ATAATATACCCGGACCTTTTTGCCTCGTCAATTAGATAATTTATATCTTATTTAATTCG	CGGACGTTATATTATTACAA
TCCAAGACGAACTTTTAATTCGCGACGACAGTCCCTTCTCTGCGATTTCCGTCCCGCGGT	TTATTTGAATCCTCCTTTCA
TAAATATTTTTCCGCGTTATAAATTTCGTCCAATTGTTCGGTTTCGCGAATTAAAAGGTC	GAATAAAACGTAATAATAAC
GACCATGGAGATGCGGAGTGGTTACGGAATCCGTACCGCTCTCT TTTTAATTCGCG GGAC	CCCTGTAAAAATAAAATAAA
CCTTAGCAAATAAGCTTAGAATATAATAAAGCCGCGAATTAAAACCCCTAAGTGAAATTTTG	AACATCGCGATTTTACTTCC
CAGGCTACAATTAGCGCAAATAAACTTAGAATAAAGTTAAGCGCGAATTAAAACCTTAAC	CCTAAACTGCGAGGTTGACC
TGATAAAAATATTTTTTCCCGCGAATTAAAATTTATTTAATATTATAAAAAAAA	CCAAATTTGTCGCCGATCGT
AGTTTAATATTTATGCGGAACAATTGAAAAGAATGAGCAGGGCCGGTATTTATT	AAAA <mark>CGCGAATTAAAA</mark> GTGC
CGTATGCGATAAAATAATTTCCTCCCCGCGAATTAAAATTTGCTCGATATTGTGGGCGAGG	ATATAAACTAAATCCGTCGC
GTTTTAATTCGCGTTTTATTTTATTCTAAGCTATTTTGCTAGTTGTTTTGCTGTACAAAG	GGAAGTAAAATAGAAAAATA
ACGCGAATTAAAAACCCTACCCCTAAATTTTGCTTCTATGTTTGCTTTTATATTTGTTCTA	ATTTTTACTTATTATATTTT
CTTAGAATATAAATAAACGCGAATTAAAACCCTAACCCTACAAGTTAGGAATGCGGCTGT	TTATAGTGTTTGTAATATGC
TGGAACAGAAGTTAGGGTTTTAATTCGCGTTTATTAATATTCTAAGCTACTTTGCTACGT	TGTTTTATTTGAAATAACGT
ACCGTCGTCTTTGGGTGCAAGGAAAATGGGGGATTAGTGGGCGCTCTCGAGTCAGTTGGTT	GGGG TTTTAATTCGCG TTTA
TATCTCCACTCCATTATTTTAAGTAAAATAACGTAGTAAAGTAGCTTAGAATATAAATAA	A <mark>CGCGAATTAAAA</mark> CCCTAAC
TCAAGTAAAACAACGTAGCAAAACAGCTTAAAACATAAATAA	AGTTGGGCATTTGAAATTGA
ACCCGCAGTAAAACAACGTAGCAAAGTAGCTTAAAATATAAATAA	CTACTACGAGGGTCCTTACC
TAATTTTTCCCCGCGAATTAAAACCTGCTCGATATTGTGGGCGAGGGCACAAACCAGATC	CGTCGCCGATCGTTTGGGTA
Janes-MacBook-Air:CD156 jane_dostart\$ 📕	

Finally, with grep I needed to extend the sequences surrounding my search terms to first confirm that they were part of a MoTeR sequence and were not due to random chance. I also needed to extend the surrounding sequence to facilitate mapping them within the genome. To include lines surrounding the search term you can include the options: -A, -B, or -C with the number of lines you would like to include in the output. -A stands for after the search term, -B for before the search term, and -C includes both before and after. In the case below you can see how extending -C by 3 lines gives you a more detailed output.

	<mark></mark> CD156 — -bash — 152×50
Janes-MacBook-Air:CD156 jane_dostart\$ egrep 'CGCGAATTAAAA TTT GATGCGATTATAACAATTTCGCAGGCAATTTGCTAACCAAACCGCTTTTGACGGGCTGGT TAATATATAATCCTTTTTTATAATATAA	TAATTCGCG' -C3 CD156_Final.fastacolour=always ATCCAAACATTAAAACCTT CCTGTTTATCCTGGGACGC TTTAAAAAAATGCTCCGAA TACGTTCCATAATCGAGGT ATACAATTTGTCCATGGGC TTCGGCGGAGGCCAAATTT TTTAATTTTAAAATTAAAG
 TTAAACCCGGTACAGGGTAAGTAACCCCACTCGCTGACCTTTGAATTGCATTCCTGCATTA CCATTCCACCACCCCACTTCGGCACTATATAAAATGGACTATATATA	ACAAAATAACGGAATTCCA ATTACATGCAAAATAATGC ACCTTCGCTTAGGTTTAAC TTAAAATGCAGGTTATAT GGAGGCGAAACCTTAAAAA TAATTAAAACAGGCATTCC TACCAGATCAACCGGTGCA
 TCGGCTCTGGGCCATACCAAGCTCTGTGGCGACCTTGCTACAGTTCCCATCTTTCCTAGGA GTCAACTGGTCGGTCGTCGCACCGGCAAAATTGATGATGACGGCTAAAACGCTGTGGAGCTAT TAAGGGGCCTGCCAATGGTAAGTAAAGTACTATGTAGTGACGCCGACAAAAGGACGCAGAGTTA ACAAAGGCGCGCGCAATTAAAACAGCTGCTGAGGAATGATTATTCAGTTGCTTAGTGAGGCT CCAACAGTCTACGTTGCAAAAGTAATTATCCAAGCTTGCCAAGGTTTACCTGTCTCCATT AAACCCAGAACTGGAACCCACATGTCCAATACGCGGAAAGTGCCCCTCCCATTTCGTCATT CCACATCCAAAGGAAGCTACGACACAGCTGGCACTCACAGGAAAGGTACATGCCCGGTATT CACGTTTGTTATTTACACCCACGTTCACTGCTACTTTCTATTATTAATCACGCGCGC	GGTGGGTAAGGTTGGTGGG TATCAAACAAAGTGTCCTT CGGAGTAGGTAAAGCAGCG TTGCAAGCACCCCCAGGTC CATGGAAGCACGTTGAGGA TTGACAGCAGATATGACTG GTACCTATGCGCGCGAAAG

To both confirm the identity of the sequence as well as its position in the genome you need to convert your grep output to .fasta format and trim the sequences. Save your grep output as a text file (without the –colour=always option – this would change the text file format).

egrep 'CGCGAATTAAAA|TTTTAATTCGCG' -C3 CD156_Final.fasta > CD156_MoTeR_grep.txt

Next you can remove the dashes in your text file by using the sed command. This command is used to substitute or replace a subject with something else in a file. In this case we will be replacing the '- -' with nothing, so we are essentially erasing it and replacing it with a space.

- sed 's/--//' CD156_MoTeR_grep.txt > CD156_MoTeR_grep_sed.txt
 - o 's/ <u>replace this</u>/ <u>with this</u>/'
 - The s is an option in sed used for substituting

CD156 — less CD156_MoTeR_grep_sed.txt — 152×50

TTAAACCCGGTACAGGGTAAGTAACCCCACTCGCTGACCTTTGAATTGCATTCCTGCATTAACAAAATAACGGAATTCCA CCATTCCACCACCCCACTTCGGCACTATATAAAATGGACTATATAAAATAAAGTGGGCTTATTACATGCAAAATAACG ATATTAATTAACAGGGATAAAAAACCCGGGCCGTGGAACTGCTAAAATCTGGGCTAATATACCTTCGCTTAGGTTTAAC ATTTAATAGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTATTTGTTTAAAAACGCGAATTAAAATGCAGGTATTAT CCATAATAGGATCCAAATACCGGTATTCCGATTTTGGATAATACGAAAAAGGCCATTTTGGAGGCGAAACCTTAAAA ATTTAATTTGGAATCAAGCTATTCCAATTACTCCTTACCGTGTAAAAACTGACAACTGACAACAGGCAATCCTAAAA ATTTAATTTGGAATAAGCTATTCCAATTACTCCTTTCCGATGAAAAACTGACAAATAATAAACAGGCAATTCC AATAATATGGGGCGAGGGACCTGAGGCAAACCCAGACAGCAGCCGCGGTGCCGCCTACCAGATCAACAGGCGATCC

For the following steps I manually changed the file to a fasta format. For this you will need to exit the command line and work within the text file. There is likely a way to code this, but it took longer for me to try and figure out how than just doing this step manually myself. For BLAST it is easier to make comparisons between the grepped sequences and both MoTeRs 1 and 2 as well as the genome as blastn will only give you an output with the length of the match as well as the positions. To facilitate the process,-it is better to trim the sequences to include only the boundary of the 3' sequence as well as what would be the continued MoTeR sequence in the 5' direction. Include the position of the first or last nucleotide in the 3' end sequence in the sequence name. ່ 🔴 🔴 🌑

CD156_MoTeR_grep_sed.txt — Edited

Q~ Find	$\langle \rangle$	Done Repla	ace
>Sequence1@1			
TTTGGGGTATTTTAATTCGCGTCGTGGTTTTCAATTTTGGCATTTACCACTAATTACGACATACGTTCCATAATC	GAGGT		
TTTTTACTATTGTTTCAATCCCGGATATTGCTTTTATTACGCCACCAACCA	TGGGC		
TATTTTTTGTCAAACATTTTATTACCAGCGATATAAAAAGTGGTGGGTATAGTTATTGTAATTCGGCGGAGGCCA	AATTT		
TCCATTTTCCCCATAAAAAATGGGATGCAAATACGCGTCGACATACCACGTACAAAACAATTTTAATTTTAAAAT	TAAAG		
>Sequence2@307			
TTAAACCCGGTACAGGGTAAGTAACCCCACTCGCTGACCTTTGAATTGCATTCCTGCATTAACAAAATAACGGAA	TTCCA		
CCATTCCACCACCCCACTTCGGCACTATATAAAATGGACTATATAAAATAAAGTGGGCTTATTACATGCAAAAT	AATGC		
ATATAATTAACAGGGATAAAAAAGCCGGGCCGTGGAACTGCTAAAATCTGGGCTAATATATACCTTCGCTTAGGT	TTAAC		
ATTTATACGGAACAATTGAAAAGGATGAGCAGGGCCGGTATTTATT			
>Sequence3@262			
TCGGCTCTGGGCCATACCAAGCTCTGTGGCGACCTTGCTACAGTTCCCATCTTTCCTAGGAGGTGGGTAAGGTTG	GTGGG		
GTCAACTGGTCGGTCGTCGCACCGGCAAAATTGATGATACGGCTAAAACGCTGTGAGCTATTATCAAACAAA	TCCTT		
TAAGGGGCCTGCCAATGGTAAGTAAAGTTACTATGTAGGCCGACAAAAGGACGCAGAGTTACGGAGTAGGTAAAG	CAGCG		
ACAAAGGCGCGCGAATTAAAAQ			
>Sequence4@285			
CACGTTTGTTATTTCCTTTATTAACCACGTTCACTACTTTTCTATTATTAACCACGCTCGCT	TATTT		
TAACAACGTATTCCTTTTTCCTTTATTTTATTTTCGTTTTTTCGTTCTTTTAGGATTTTATTTTTCGTTTATT	TATTT		
CTTTTCTACTTTTCCTACTTATGTTTTACACCTTGTATTTTATATTTGTCTCCACTCCATTATTTCAAGTAAAA	CAACG		
TAGCAAAGTAGCTTAGAATATAAATAAACGCGAATTAAAACCCTA			
>Sequence5@1			
TTAGGGTTTTAATTCGCGCTTTATTATATTCTAAGCTTATTTGCTAAGGGTTTTGTCGTACAAATAAAATA			
GAAAAACAAACGGGAAAATAAAACCGTAAAAAGAAAAAGAAAAAAAA	TAAGG		
GTGGGGATACTAGAAAATCGGAAAATAAAAACAATAATAAGAATAGAAACAAAAATAAAAAACAAAAAAAA	ΑΤΑΑΑ		
ΔΑΓΑΓΑΔΑΔΑΤΑΔΑΔΑΓΑΔΑΔΑΔΑΔΑΔΑΔΑΔΑΔΑΔΑΔΑΔΑ	ССТАТ		

Once this has been formatted you can blast it against MoTeRs 1 and 2 as well as the genome it belongs to.

BLASTing grep sequences against MoTeR sequences (in this example I only used 5 sequences from the grep output)

> bla	stn -q	uery (CD1	56 N	loTeF	R gre	o sec	l.txt -c	lb Mo	TeR data	base -task
'bla	astn-sl	horť -	eva	lue 1e	e-1 -c	outfmt	6 -ou	t CD1	56gre	p_MoTeR	_blast.txt
								CD156 -	- less CD	156grep_MoTeR	_blast.txt — 187×46
Sequence2@307	MoTER2	94.118	17	1	0	291	307	1707	1723	0.025 26.3	
Sequence2@307	MoTER2	100.000	12	0	0	281	292	198	209	0.098 24.3	
Sequence2@307	MoTER1	94.118	17	1	0	291	307	5018	5034	0.025 26.3	
Sequence2@307	MoTER1	100.000	12	0	0	281	292	198	209	0.098 24.3	
Sequence3@262	MoTER2	100.000	13	0	0	249	261	1711	1723	0.021 26.3	
Sequence3@262	MoTER1	100.000	13	0	0	249	261	5022	5034	0.021 26.3	
Sequence4@285	MoTER2	87.500	40	5	0	241	280	1684	1723	1.53e-06	40.1
Sequence4@285	MoTER2	100.000	12	0	0	43	54	687	698	0.091 24.3	
Sequence4@285	MoTER1	87.500	40	5	0	241	280	4995	5034	1.53e-06	40.1
Sequence4@285	MoTER1	100.000	12	0	0	43	54	687	698	0.091 24.3	
Sequence4@285	MoTER1	100.000	12	0	0	3	14	4460	4449	0.091 24.3	
Sequence5@1	MoTER1	97.403	154	0	3	7	156	5034	4881	2.35e-70	252
Sequence501	MoTER1	84.034	119	10	5	198	311	4788	4674	1.11e-10	54.0
Sequence5@1	MoTER2	100.000	60	0	0	7	66	1723	1664	2.26e-30	119
CD156grep_MoTel	R_blast.t	xt (END)									

From this output you can use the position of the 3' end in the sequence to match it to the 3' end sequence of MoTeR 1 (at position 5034) and of MoTeR 2 (at position 1723). You can also filter out any hits that are particularly short. I didn't include anything less than 20 nt. Following this you can then blast the grepped sequences against the genome to find their position.

blastn -query CD156_MoTeR_grep_sed.txt -db CD156_database -evalue 1e-20 -outfmt 6 -out CD156grep_Genome_blast.txt To organize the output the easiest thing you can do is to awk for a 100% match in column 3 as we grepped these sequences from the genome, so they should each have an exact match. This will allow you to find the position in the genome as well as its orientation.

								🚞 CD15	6 — -bash -	— 187×46		
[Janes-MacBook-/ [Janes-MacBook-/	Air:CD156 Air:CD156	jane_dosta: jane_dosta:	t\$ blas t\$ awk	tn -query ('\$3 == 100.	D156_M 00' CD	loTeR_grep_s 156grep_Ger	sed.txt -dl nome_blast	b CD156_0 .txt	database -e	value 1e-20 -outfm	t 6 -out CD156grep_Genome_blast.t	xt
Sequence101	Chr1	100.000 320	9 0	0	1	320	727441	727760	7.40e-169	592		
Sequence2@307	Chr1	100.000 30	7 0	0	1	307	1411761	1412067	1.19e-161	568		
Sequence3@262	Chr1	100.000 263	2 0	0	1	262	2209201	2209462	1.04e-136	484		
Sequence4@285	Chr1	100.000 28	5 0	0	1	285	5748801	5749085	1.87e-149	527		
Sequence5@1	Chr1	100.000 31:	L 0	0	1	311	6008330	6008640	7.23e-164	575		
Janes-MacBook-A	Air:CD156	jane_dosta:	t\$									

\succ	awk '\$3 ==	100.00' CI	D156grep	Genome	blast.txt

After this step you should compare your grep matches that contained MoTeR relics, as confirmed by the grep-MoTeR blast, with your already recorded MoTeR relics that were captured by blasting the MoTeRs against the genome. I would then follow this by examining the sequences in IGV. In my case my .gff files for IGV did not show the MoTeR relics found using grep, so I had to designate their boundaries myself to investigate if they were associated with any rearrangements/duplications in the genome.

Appendix 2: Graphics in R Studio

###Plotting relics and their associated duplications on chromosomes in Circlize using R Studio Version 4.0.2

By: Jane E. Dostart

library(readxl)

library(dplyr)

library(tidyr)

library(circlize)

library(readr)

#Each color in this list corresponds to a specific chromosome. This list will change in length# As you account for differences in numbers of chromosomes (ie. minichromosomes)

color2 = c("#C62828", "#EF6C00", "#F9A825", "#2E7D32", "#1565C0", "#283593", "#6A1B9A", "#AD1457", "#E91E63")

#Read in the data for lengths of chromosomes, positions of relics, and positions of duplicate sequences.

LpKY <- read_xlsx("LpKY_MoTeR_Duplications.xlsx", col_names = TRUE)

#This sets the first track with the corresponding length of each chromosome
df < LpKY %>%
 select(Chromosome, Chr_start, Chr_end) %>%
 drop_na()
head(df)

#This reads in your duplicate sequences. Source_links and Target_links
correspond to each other and
#should be in order in each file as to the corresponding regions a duplicate
sequence is found in in
#each chromosome

source_links <-

LpKY %>%

select(chr = Chr_relic, start = relic_dup_start, end = relic_dup_end) %>%

as.data.frame(table(unlist(source_links))) %>%

drop_na()

target_links <-

LpKY %>%

select(chr = Chr_dup, start = o.chr_dup_start, end = o.chr_dup_end) %>%

as.data.frame(table(unlist(target_links))) %>%

drop_na()

#Reading in relic positions

Relics <-

LpKY %>%

select(Chromosome_relic, `end_position(3')`) %>%

drop_na()

circos.clear()

#This helps to position the plot where you want it to be in the window. If part of your figure

#is being cut off, manipulating this code (specifically your ylim) will help.

circos.par("track.height" = 0.8, gap.degree = 1.5, cell.padding = c(0,0,0,0),

canvas.ylim = c(-1.1, 1.1), canvas.xlim = c(-1.1, 1.1))

#This actually sets up your track to plot your data onto. The lengths of your chromosomes are now

#used to lay down the canvas or base of your plot. You won't see a figure until the next bit of code.

circos.initialize(factors = df\$Chromosome,

xlim = matrix (c(rep(0,9), df Chr_end), ncol = 2))

#Visualizing the chromosomes - This creates rectangles that represent the chromosome. You can manipulate #interior and border color, size, and labels here. circos.track(ylim=c(0,1),panel.fun=function(x,y) { chr=CELL_META\$sector.index xlim=CELL_META\$sector.index ylim=CELL_META\$xlim ylim=CELL_META\$ylim circos.text(mean(xlim),2.5,chr,cex=0.75,col="black",

facing="bending.inside",niceFacing=TRUE, font=2)

},bg.col=color2,bg.border=F,track.height=0.11)

#Adding axis labels - I found this to be useful as it seemed the default axis labels were in

#kilobases instead of megabases

brk <- c(0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7,7.5,8,8.5)*10^6

circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {

circos.axis(h="top",major.at=brk,labels=round(brk/10^6,1),labels.cex=0.5,

col="black",labels.col="black",lwd=0.7,labels.facing="clockwise")

},bg.border=F)

#Adding target and source links - genome duplications - For my figures the duplicate sequences correspond

#specifically to the relic they were found adjacent to.

#original - circos.genomicLink(source_links, target_links, col = c("#D53E4F", "#D53E4F", "#D53E4F", "#FEE08B", "#FEE08B", "#FEE08B", "#FEE08B", "#99D594")) circos.genomicLink(source_links, target_links, col =

c("#EF6C00","#EF6C00","#EF6C00","#EF6C00","#EF6C00","#F9A825","#F9A82 5","#F9A825","#F9A825","#F9A825","#283593","#283593","#283593","#283593", "#283593","#AD1457","#AD1457","#AD1457","#AD1457","#AD1457", "#AD1457", "#AD1457", "#AD1457"))

#color2 = c("#C62828", "#EF6C00", "#F9A825", "#2E7D32", "#1565C0", "#283593", "#6A1B9A", "#AD1457", "#E91E63")

#Plotting Relics with No duplications. You could technically separate the types of relics into different

#columns in your dataset, but where I used triangles to represent the direction of the relics here

"pch = 24 OR pch =25" I had to manipulate things a bit more directly, so I entered in the position for each.

#Some of the triangles don't look great, so there may be a better way in R, or you might use Adobe Illustrator.

#You will also find that many of the relics will overlap and be difficult to distinguish, so manipulating

the x coordinates allows you to visualize them. The true positions are found in the excel file.

circos.trackPoints(factors = c("Chr2", "Chr3", "Chr3", "Chr6", "Chr7", "MiniChr1"), cex = 0.8,

> x = c(42376, 2548296, 7355697, 3271965, 3825400, 398360), y = c(0.4, 0.4, 0.4, 0.4, 0.4, 0.4), pch = 24, bg = "white")

circos.trackPoints(factors = c("Chr5", "Chr7", "Chr7"), cex = 0.8,

x = c(4395439, 3688512, 3835928), y = c(0.4, 0.4, 0.4), pch = 25, bg = "white")

#Plotting Relics with 5' Duplications

circos.trackPoints(factors = c("Chr3", "Chr3"), cex = 0.8,

x = c(152722, 2751680),y = c(0.4, 0.4),pch = 24, bg = "red")

#Plotting Relic + 5' Duplications

circos.trackPoints(factors = c("Chr3", "MiniChr1", "MiniChr1", "MiniChr1"), cex = 0.8,

circos.trackPoints(factors = c("Chr6", "Chr6"), cex = 0.8,

```
x = c(83149, 2132281),
y = c(0.4, 0.4),
pch = 25, bg = "grey")
```

#Plotting relics with Whole locus duplications

```
circos.trackPoints(factors = "Chr3", cex = 0.8,
```

```
x = 2787030,
y = 0.4,
pch = 24, bg = "purple")
```

circos.trackPoints(factors = "MiniChr1", cex = 0.8,

```
x = 2382001,
y = 0.4,
pch = 25, bg = "purple")
```

#Plotting relics with 3' and 5' Duplications

circos.trackPoints(factors = c("Chr2", "Chr3"), cex = 0.8,

```
x = c(25940, 2742283),
y = c(0.4, 0.4),
pch = 25, bg = "red", col = "blue")
```

#plotting areas with patterns of Breakage-induced-replication

circos.trackPoints(factors = c("MiniChr1", "MiniChr1", "MiniChr1", "MiniChr1"), cex = 0.8,

> x = c(1359742, 1362129,1364517, 1366906), y = c(0.4, 0.4, 0.4, 0.4), pch = 24, bg = "green")