Eastern Kentucky University

Encompass

Honors Theses

Student Scholarship

Spring 2021

It's All About the Ferns: A Literature Review of Species Concepts Referenced in New Pteridophyte Species Described Since 1989

Nicholas A. Koenig Eastern Kentucky University, nicholas_koenig1@mymail.eku.edu

Follow this and additional works at: https://encompass.eku.edu/honors_theses

Recommended Citation

Koenig, Nicholas A., "It's All About the Ferns: A Literature Review of Species Concepts Referenced in New Pteridophyte Species Described Since 1989" (2021). *Honors Theses*. 808. https://encompass.eku.edu/honors_theses/808

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in Honors Theses by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.

EASTERN KENTUCKY UNIVERSITY

It's All About the Ferns: A Literature Review of Species Concepts Referenced in New Pteridophyte Species Described Since 1989

Honors Thesis

Submitted

In Partial Fulfillment

Of The

Requirements of HON 420

Spring 2021

By

Nick Koenig

Faculty Mentor

Dr. Melanie Link-Pérez

Department of Biological Sciences

"The beginning of wisdom is to call things by their proper name."

~ Confucius

Abstract

It's All About the Ferns: A Literature Review of Species Concepts Referenced in New Pteridophyte Species Described Since 1989

Nick Koenig

Dr. Melanie Link-Pérez, Department of Biological Science

Taxonomy is the field of science responsible for giving names to all living organisms. These names are given based on the data available or discovered, and the foundational knowledge about related organisms. All fields of science are theory-laden with testable hypotheses made atop, and taxonomy is no exception. However, trends in descriptions of new species point towards an implicit citation of the underlying theories (species concepts) and hypotheses (proposed species) rather than explicit statements that are common for other fields of science. Therefore, to assess the status of pteridophyte taxonomy, we conducted a literature review of all new pteridophyte species described since 1989 to holistically observe changes in how researchers carry out taxonomic investigations. Of the 130 articles reviewed, we found only nine (6.9%) explicitly cited a species concept and only twelve (9.2%) made an explicit taxonomic hypothesis. The morphological species concept was the most common (130 articles; 100%), followed by the evolutionary species concept (34 articles; 26.2%), then lastly the biological species concept (11.5%) based on the data types presented in the articles. We hope our review contributes to the strengthening of taxonomy and future outlooks of the entire field by encouraging taxonomists to explicitly cite the species concept(s) being prescribed to as

well as the taxonomic hypothesis asserted. We believe these changes could allow for a broader audience to comprehend the field as well as provide a clearer path for future researchers to add to the existing field of knowledge.

Keywords and Phrases: species concepts, pteridophytes, hypothesis, literature review, taxonomy, ferns, monilophytes, clubmosses, lycophytes.

Table of Contents

Abstract	
List of Figures	6
List of Tables	7
Acknowledgements	
A Note to the Reader	9
Introduction	
Rationale & Research Objectives	
Methods	
Results	
Discussion	
Future Work	
References	
Figures	
Tables	
Appendix A: Journal Article Reviewing Form	

List of Figures

Figure 1. House-foundation analogy for scientific investigation demonstrating how
hypotheses are built on theories
Figure 2. House-foundation analogy for taxonomic investigation demonstrating how new
species are hypotheses, and those hypotheses emerge from the underlying theories, which
are the species concepts adopted by the taxonomist proposing the species
Figure 3. House-foundation analogy demonstrating how two different species concepts
(for example, morphological, above, and evolutionary, below) can give rise to differing
taxonomic conclusions
Figure 4. House-foundation analogy demonstrating the complexities that can come from
using different species concepts in fern taxonomy40
Figure 5. Pie chart of count of explicitly stated species concepts41
Figure 6. Location of explicitly stated species concept in journal article41
Figure 7. Pie chart of count of explicitly stated hypothesis
Figure 8. Location of explicitly stated hypothesis in journal article
Figure 9. Species concept(s) used by journal articles
Figure 10. Pie chart of count of hybrid taxa described44

List of Tables

Table 1. Reviewed articles with authors, journal titles, and publication dates
Table 2. Subset of articles used for verifying the reviewing form with authors, journal
titles, and publication dates70
Table 3. Removed articles with authors, journal titles, and publication dates

Acknowledgements

As we trekked through the forest understory, we spotted a humble pteridophyte. Dr. Jennifer Koslow, Dr. Melanie Link-Pérez, and I went over to check it out. As we ran it through the key, we landed upon a species in the genus *Dendrolycopodium*. It was either *D. obscurum* or *D. hickeyi*. Both Dr. Koslow and Dr. Link- Pérez exclaim, "We must figure this out!" As I sat there a touch confused, they explain that *Dendrolycopodium hickeyi* was named in honor of Dr. Link-Perez's dissertation mentor, R. James Hickey. Dr. Koslow states, "Nick, he's like your fern grandfather." We all laugh, but as we settle upon *D. obscurum* as the previously unidentified creature, I realize how science lies in the hands of people. It is the duty of all scientists, all biologists, and all pteridologists to pass along the bounty of knowledge they have accrued. With this, I fully realized how much I am indebted to all my mentors for entrusting me with this duty that I must fully carry out.

I deeply thank all my professional and personal mentors: Dr. Kelly Watson, Dr. Pat Calie, Dr. Jennifer Koslow, Dr. Brad Ruhfel, Robert Pace, Calvin Andries, and especially Dr. Melanie Link-Pérez. Each has given me knowledge and wisdom beyond belief. Lastly, I must thank the plant life, from the smallest of spores to the largest of trees. Each species has a unique story, and I hope to read as many as possible.

8

A Note to the Reader

Throughout the entirety of this thesis, the word "fern" is used interchangeably for the two clades (that is, lineages) traditionally called "pteridophytes," which includes the monilophyte (fern) clade and lycophyte (clubmoss) clade. More specifically, the two classes under the umbrella term of "pteridophytes" include the Lycopodiopsida (lycophytes) and Polypodiopsida (ferns). The use of "fern" in this thesis was to reduce confusion for readers when trying to explain the complexities in pteridology. The clubmosses are fascinating and charismatic group of plants, but for the sake of simplicity are being lumped into the term "ferns".

Introduction

What is Taxonomy?

The field of taxonomy is responsible for delineating and classifying organisms into "groups" called species. Taxonomists describe and name new species when observations are made that suggest the organism under study is different than the currently named species. Determination of a new species is influenced by taxonomists' species concept(s), which impacts the type of data they collect to support their hypothesis (existence of a new species). There are various species concepts researchers can employ depending on the data they have available. Examples of the data taxonomists collect include measurements of plant parts (also known as morphological character traits), phenological attributes, ecological niches the species occupy, genomic data, and so forth. All of these data could be used by researchers to determine whether there is a new species present based on their own species concept. However, taxon authors (researchers who describe and name species that are new to science) frequently do not explicitly state their hypotheses and species concept(s) when describing a new species, although they do show the data with which they are testing those hypotheses. Because the underlying theory (species concept) and hypotheses of taxonomic studies describing new species tend to be implicit rather than explicit, taxonomy has been viewed somewhat negatively in science at-large. At times, taxonomy is undervalued as a field of science because the basis of science is hypothesis-testing and theory-validation; since taxonomists often do not explicitly reference their hypotheses and underlying theories, taxonomy has been impugned as merely a "descriptive" science (Agnarsson and Kuntner 2007).

Species Concepts

In 1989, the *American Fern Journal* published a special issue as a type of reflection and retrospective on the field of fern taxonomy, species concepts, and explanation of pteridophyte evolution. There are many complicated phenomena associated with fern reproduction and speciation. Many fern genera and families have formed reticulation complexes (merging of species to form a new species) and/or hybrid species. These have proved to be novel situations because of the question: "Are hybrids separate species?" Unlike most animal life, ferns have the capacity to interbreed with different species and create a living organism lacking the ability to reproduce (termed a sterile offspring). The collective genome of a fern can spontaneously duplicate (this is "polyploidy") which brings fertility back to the hybrid individual. If this new wildcard with double the chromosomal number can reproduce and continue into future generations, a new species can arise (termed an allopolyploid). Most interestingly, this is just one of the many ways fern species can come to be.

Researchers have demonstrated reticulation complexes in some example groups like the *Asplenium* complex (Barrington et al. 1989). By using phenolics, isozymes, spore abortion, chromosome number, and comparative morphology, Barrington and others were able to determine evolutionary relationships between species in these complexes. Along with the aforementioned techniques, the authors also used morphometrics when analyzing clades of fern species (analyses using both Principal Components Analysis and Discriminant Function Analysis). At the end, the authors present an argument for the three main species concepts useful in pteridophyte taxonomy (specifically for complex reticulate evolution or hybridization events) which includes the following:

- Morphological Species Concept
 - "Groups whose boundaries are diagnosed by discontinuities in critical, qualitatively or quantitatively definable features of the available specimens" (Haufler 1989).
- Biological Species Concept
 - "Groups that do not necessarily differ morphologically but do have barriers to interbreeding" (Haufler 1989).
- Evolutionary Species Concept
 - "Place a historical parameter on biological species and require definition of ancestral/descendent relationships" (Haufler 1989).

The authors determined that hybrid ferns are stable species with the lens of the morphological and biological species concepts as well as the evolutionary species concept, but this last one is harder to address because it requires more thought and logical arguments (Barrington et al. 1989).

Taxonomic Hypotheses

Dr. Christopher Haufler wrote broadly in 1989 about the main purpose and path taxonomists take when describing pteridophyte species and the species concepts on which they base their hypotheses (Haufler 1989). The author tackles the discernment of species concepts and techniques used when describing polyploid complexes and cryptic species. Agreeing with Barrington and others, the three main species concepts aforementioned are available for taxonomists to make assertations about what is a species and where the lines for delineation lie. Haufler clearly supported the usage of the

evolutionary species concept; however, he recognized the utility of the other species concepts when the taxonomists do not have the data that are necessary to fully use the evolutionary species concept (potentially could include molecular data, fossil record, or biogeographical data). One of the main points made was that taxonomists must develop concrete hypotheses of new species based on significant character traits, life history, ecological conditions, genetic makeup, and biochemical processes. When crafting the framework for the literature review in the current study, which will be expounded in the methodology section below, we included if the author specifically stated the hypothesis for which they are carrying out their research (Haufler 1989).

Previous Pteridophyte Literature Review

In the field of pteridophyte taxonomy, there has been little research reviewing the taxonomic treatments leaving a gap for much work to be done. In 1989, Yatskievych and Moran carried out an analysis of 50 monographic works (complete synthesis of a group of organisms) for the status of species concepts, population differentiation, the taxonomic group being studied, level of classification and taxonomic work (i.e., species-level, subspecies, variety), the arguments used to support a proposed phylogeny (an evolutionary history of organisms), and the type of data the study used, if applicable (for example, molecular or morphological data). The authors found there are many liberties taken in pteridophyte taxonomy that should be addressed in the future. The authors also found that many taxonomists do not state the species concept they are prescribing to (24% stated), which could have drastic influence on the species they propose.

concepts: biological, morphological, and "look-alike" concepts (unlike the three species concepts defined by Haufler – morphological, biological, and evolutionary). For the purposes of our study, we will not be using the "look-alike" species concept (similar to morphological but less structured). From Yatskievych and Moran, we will also be adopting the part of the analysis where they collected the data types used by the taxonomists. However, our analyses will be expanding out from monographs to include any peer-reviewed publication in which a new fern species (new to science) is described (Yatskievych and Moran 1989).

Herbaria

The backbone of all taxonomic work are herbaria, natural history museums specifically for documenting and preserving plant and fungal specimens. Herbaria and the specimens stored within are shifting from solitary museums to more dynamic and accessible resources for researchers to participate in larger networks of data exchange and collaboration. In 2019, Heberling and collaborators conducted a computational text analysis on 13,702 research articles published from 1923 to 2017 that included the word "herbarium" in the title, keywords, or abstract (Heberling et al. 2019). The purpose of that research was to holistically analyze the usage of herbarium records throughout time. More specifically, the authors used machine learning to quantitatively review the connections between various fields of research using herbarium specimens as well as the rates and trends of research publications utilizing herbarium specimens. The authors used automated text analysis because the volume/quantity of the articles that have used herbarium specimens in the past 100 years was immense. A complex network was

created from the text analysis, providing a visual representation of the large dataset compiled. The major finding was that herbarium specimens have metamorphosed into a dynamic data source enriched from technological and genomic advances allowing for the mobilization of formerly static specimens (Heberling et al. 2019).

Pteridophyte Phylogeny Group

In 2016, a massive team of pteridologists published a landmark research article that outlines the current taxonomic classification of the living (or extant) lycophytes/clubmosses and monilophytes/ferns (PPG I 2016). All of the authors on the paper, collectively called the Pteridophyte Phylogeny Group, united to write a classification of all extant pteridophytes down to the genus-level. This serves as a baseline for other researchers to reference when delineating and researching in the framework of the pteridophyte clade. The Pteridophyte Phylogeny Group attempted to create monophyly among the classifications they were making, but respected and aimed to maintain pre-existing clades that are persistently recognized in the field and/or fall in line with the current understandings of proposed phylogenies (PPG I 2016).

Hybrization

In 2016, Sigel gave a broad overview of the changes and current stage of fern genomics specifically in regard to hybridization events and how researchers discern and interpret reticulate species complexes (Sigel 2016). Hybridization is a very common incident among ferns, but the interesting divergence in pteridophytes is that the fertile hybrids that result from allopolyploidy represent a unification of two different parental

genomes. To discuss these hybridization events, Sigel used published research similarly to how we are. Sigel goes as far as to recommend that the time for asking research questions about fern hybrids is now due to exponential increases in extinction rates among all forms of life. Therefore, to prevent these lineages from disappearing forever, we should try to learn as much as we can about them to conserve their existence. More specifically, the author wishes for fellow researchers to look at the genome specifically to look at the molecular-level changes to the relatedness of parental genomes and their progeny. Our review will include hybrids if a taxonomist treats the hybrid as a unique, stable species with an accompanying species description of the allopolyploid (Sigel 2016).

Basis of Literature Review

Dr. Melanie Link-Pérez, my thesis mentor, for her PhD dissertation completed a treatment of the neotropical fern genus *Adiantopsis*. The dissertation is split into many chapters that include an analysis of the palmate species in the genus; a phylogenetic, morphological, and biogeographical study of the members in *Adiantopsis*; and a summary of the results found with the broader implications. However, the part of Dr. Link-Pérez's dissertation that has sparked theoretical conversations among her friends and colleagues is the introduction and the "Note about Species Concepts." In this section, she explicitly describes the theoretical underpinnings adopted in her taxonomic study and explicitly stated a null hypothesis as well as articulated a prediction associated with the hypothesis. Link-Pérez goes into detail about what species concept the dissertation research prescribed to (evolutionary species concept). The original and initial hypotheses were

based upon the morphological species concept with further integration of a multitude of different data (i.e., ecological, biogeographical, and genomic). With the comprehensive data set, the initial hypotheses based on the morphological species concept were joined with other data that allowed for a final argument building on the evolutionary species concept. The value of this section is the whole reason for the start of our review. Since publication of the dissertation, Link-Pérez has been prompted by AJ Harris (who already has cited the dissertation in two of her own articles) to elaborate because explicit stating species concepts and hypotheses is relatively uncommon in taxonomic research but a mainstay of scientific methodology.

Rationale & Research Objectives

Even though taxonomy is observational in nature, rather than experimental, there are still very concrete and solid underlying theories from which taxonomic hypotheses are asserted (Fig. 1). In the field of taxonomy, these underlying theories are the species concepts a plant author (researcher who names new plant species) chooses to prescribe to based on the data available. From the theories, data analysis is carried out to make hypotheses on which recognition of a new species or new rearrangements of clades can emerge (Fig. 2). Changing the underlying theory can change the outcome of what hypotheses can be supported or built upon the foundation. This is also greatly dependent on the type of data available to the researchers (i.e., the building material of the house). For example, in Figure 3, we can show in the house-foundation analogy how two different species concepts (for this purpose, the morphological and evolutionary species concepts) can give rise to differing taxonomic conclusions with two species able to be supported from the top foundation (representing, perhaps, a morphological species concept) and three from the bottom foundation (for example, representing an evolutionary species concept). To demonstrate other complexities, Figure 4 represents many of the biological phenomena that complicate fern taxonomy. In the top right corner, a two-story house represents a polyploidy event. In the bottom left corner, hybridization giving rise to a sterile hybrid is represented by the support of a house on two different houses. In the bottom right corner, an allopolyploid species resulting from hybridization followed by polyploidy is represented in a "simple" reticulation complex. In some fern genera, there are much more dynamic interactions in reticulation complexes that simply cannot be explained by the analogy of stacking of houses. To develop the analogy further,

if a contractor does not consciously know the foundation she is building upon, the houses she builds could crumble (disagreement in science or falsification of the species hypothesis). However, if there is explicit statement of the species concept, when a new contractor wants to build a different house in a different location (taxonomist making a new hypothesis or taxonomic assertation), he can know exactly how previous contractors built certain structures (or how previous scientists interpreted that taxonomic group).

To bring this analogy back to the research at hand, we have conducted a literature review of new pteridophyte species described since the special issue of the *American Fern Journal* in 1989 in hopes of seeing what types of foundations are used in taxonomic treatments. We hypothesize three results from our research:

- There will be a meager number of researchers explicitly stating the species concept they are using, seeing a similar trend from 1989 (Yatskievych & Moran 1989).
- 2. Few publications will include an explicitly stated hypothesis.
- 3. There will be a general increasing use of genomics and DNA data as there has been extensive technological innovations and discoveries since 1989.

Methods

Article Search

To gather the data for our study, we were originally going to use Web of Science (WOS) as a search engine. However, the EKU Libraries during the data collection stage eliminated access to WOS due to the COVID-19 pandemic. In leiu of WOS, we utilized EBSCO's Academic Search Ultimate. Many initial tests were conducted to optimize search terms with combinations including "new species OR sp nov" AND "\$aceae" AND "pteridophy\$" as well as "plant species" AND "sp nov" AND "pteridophy\$". The search terms we settled upon were "new species OR sp nov" AND "fern OR pteridophy\$" and the dates were set from 1989 to 2020, which yielded 431 articles. This specific Boolean search was used for a variety of reasons: produced a manageable number of articles to sift through while other search terms gave over 10,000 articles to search through, and this search also included a higher concentration of extant species when compared to other searches.

Article Screening

After looking through the titles of the articles, we removed any paper that was the description of an extinct pteridophyte species from the fossil record. For the purposes of our work, the analysis techniques for describing fossilized species is much different than living species, mainly in the genetic techniques available for researching extant species. This reduced the number of papers to 176. When carrying out the review, articles were removed as needed if the articles did not fall into the scope of the research (i.e., outside of the pteridophyte phylogeny, extinct species, no new species described). The final number

of articles reviewed was 130 (Table 1). The articles that were initially included but were then removed once deeper into the text have also been included (Table 3).

Article Reviewing Methodology

A form was developed for collecting data (Appendix A). The articles were assessed for the following criteria:

- 1. Explicitly stated species concept:
 - a. Present or absent?
 - b. If present, where in the paper? (Abstract, introduction, methods, results, discussion, appendices, or other?)
- 2. Explicitly stated hypothesis:
 - a. Present or absent?
 - b. If present, where in the paper? (Abstract, introduction, methods, results, discussion, appendices, or other?)
- 3. Types of data used in the study:
 - Morphological species concept data types? (macroscopic, microscopic, or other?)
 - b. Biological species concept data types? (molecular data: isozymes, chromosome counts; non-molecular data: crossing, other?)
 - c. Evolutionary species concept data types? (morphological: differences among related taxa; biogeographical: ecological and geographical range; phylogenetic: proposed phylogeny; geological: paleobotanical and geological data; other?)

- Concept(s) used? (biological species concept, morphological species concept, evolutionary species concept, or other?)
- 5. Hybrid taxa? (yes, no, or other)

The data types associated with each of the underlying species concepts were derived from published expert taxonomists' descriptions of the type of data used in conjunction with certain species concepts (Haufler 1989; Link-Pérez 2010). To test the usability of the data-collection form, ten papers were evaluated using the form and small modifications were made to increase efficiency and repeatability by reducing the amount of detailed interpretation required by each paper (Table 2).

Data Analysis

We exported the articles from the EPSCO search into a .csv file format, and then bound the separate files using R and R Studio (R Core Team 2017; RStudio Team 2020). To analyze trends in the dataset, Google Sheets was used for creating charts/figures and the bar graphs were generated from Google Form or using Google Sheets.

Results

Species Concepts

From the literature review, 130 of the articles have been included in our final analyses. We found 121 (93.1%) of the articles did not explicitly state the species concept they were using and nine (6.9%) of the articles did explicitly state the species concept (Fig. 5).

When the species concept was stated explicitly in the paper, it was located in the discussion section in five (55.6%) of the articles, methods section in two (22.2%) of the articles, introduction section in four (44.4%) of the articles, and abstract in two (22.2%) of the articles (Fig. 6). Sometimes the species concept was explicitly stated in multiple places, hence percentages add to more than 100%.

When analyzing the articles, we determined of the 130 papers reviewed, 130 (100%) of the articles used the morphological species concept, 34 (26.2%) of the papers used the evolutionary species concept, and eleven (11.5%) of the papers used the biological species concept. The totals add up to more than 100% since an article can use multiple species concepts at a time. For example, when using the evolutionary species concept, the authors are simultaneously using the morphological species concept (Fig. 9).

Hypothesis Testing

For the hypothesis being tested, of the 130 articles reviewed, we found 118 (90.8%) of the articles did not explicitly state the hypothesis they were testing and twelve (9.2%) of the articles did state their hypothesis/hypotheses (Fig. 7). When the hypothesis was stated explicitly, it was in the discussion in ten (83%) of the articles, the introduction

in three (25%) of the articles, the methods in one (8.3%) of the articles, and the abstract in one (8.3%) of the articles (Fig. 8). Again, sometimes the taxonomic hypothesis was explicitly stated in multiple places, hence percentages add to more than 100%.

Hybrization

When analyzing if the newly described species was a hybrid species or not, of the 130 articles reviewed, we found seven (5.4%) of the articles were descriptions of new species believed to be distinct species from hybrid origins, nine (6.9%) of the articles were believed to potentially have hybrid origins but the authors were not able to positively confirm or deny the idea, and 114 (87.7%) of the articles were not believed to be of hybridization events or the author did not explore this idea (Fig. 10).

Discussion

Species Concepts

As hypothesized, we found an overwhelming majority of the reviewed articles (121; 93.1%) did not explicitly state the species concept(s) they were prescribing to (Fig. 5). This could be a result of previous research not including the species concepts, which creates a culture in the pteridophyte community for a researcher to not include this. We understand most pteridologists and expert taxonomists would automatically pick up on the species concept being utilized; however, for both experts and novices, we believe including this step would strengthen the field of taxonomy by both increasing the understanding of the specific species concept being used and better representing the field of taxonomy as a scientific discipline.

When the species concept was specifically stated in a paper, there were a variety of locations (discussion, methods, abstract, and introduction) but we find this to be beneficial. Leaving this decision up to the author would be optimal due to the nature of where they think it should be included. The decision to discuss the scientific theories a paper is relying on and/or using as a foundation would be logical to include in the introduction or methods (four articles and two articles, respectively) but could also be justified to include in the discussion or abstract (five articles and two articles, respectively), according to which best fits the author's flow of writing and logic (Fig. 6).

When analyzing the species concepts used in all of the articles, it was decided to allow for the possible selection of multiple species concepts for each article. This could be changed when conducting future studies; however, for this study, we wished to capture information about any of the three species concepts that could be supported by

the data used in each article rather than forcing a selection of just one species concept. Enforcing a selection of just one species concept for each article when those concepts were overwhelmingly implicit would require a much closer examination of each publication, demanding additional expertise and more time than what was allocated for this thesis. We found all 130 (100%) of the articles used the morphological species concept at some point. This is not at all surprising as this is the least expensive and most easily accessible data available for analysis (Fig. 9). We also found fifteen (11.5%) of the articles used the biological species concept data types such as isozymes or chromosomal numbers or structure when describing a new pteridophyte species. The biological species concept is problematic to apply to ferns and most plant life because mating between distantly related species is possible in ferns/plants (Donoghue 1985), even occurring between genera separated by 60 million years (Rothfels et al. 2015). As more data become available through research of a specific species or taxonomic group, a researcher can expand into the evolutionary species concept. By using genomic data, biogeographical data, and/or geologic data, this adds to the arguments being made in the morphological differences in a phylogeny or shifts the phylogeny to a more informed argument. We saw that 34 (26.2%) of the articles were able to get to this point in their species descriptions and use an evolutionary species concept based on the data types the researchers included (Fig. 9). For example, in a publication by Sánchez and Labiak, the authors write, "In the future, these taxonomic hypotheses should be tested with molecular data" (Sánchez & Labiak 2019). The researchers were able to gather enough data to make a sound morphological taxonomic hypothesis but recognized the need for future studies pushing for a more comprehensive conclusion.

Hypothesis Testing

We think that explicitly stating a hypothesis in taxonomic studies would be valuable and could improve the status of taxonomy among other scientific fields. Certainly, in every taxonomic study there is a hypothesis being made; however, the hypothesis draped over the entire paper often is implicit and left to be understood (or not) by the reader. An expert taxonomist would have no trouble dissecting a publication to be able to discern the hypothesis being asserted, but this could be more difficult for a reader unfamiliar with the field. However, out of the 130 articles reviewed, only twelve (9.2%) gave the reader an explicit taxonomic hypothesis the researchers are testing (Fig. 8). This shows vast room for growth in the other 118 (90.8%) of the articles to allow for a clearer scientific investigation.

By clearly articulating the hypothesis and underlying theories, we hope the field of taxonomy could become an even stronger leader in the sciences for researchers to find species to use as model organisms, groups for evolutionary studies, or individuals for ecological analyses, to answer complex questions in plant biology. Regarding the location of the hypothesis being stated, similar to the species concepts, placing the hypothesis where deemed most appropriate by the author would enhance the paper the most.

Hybridization

When the articles were reviewed, the number of stable species with hybrid origins was much lower than hypothesized, however, these data could be deceiving and

misleading. Whilst reviewing, an article was marked as "not hybrid" if there was no mention of hybridization, with 114 (87.7%) articles falling into this bin, or if the authors said confidently the distinct species was not of hybrid origins. The authors could have not included a hybrid origin hypothesis in their research thus not yielding a "Yes" or "Potentially" when asked where the species was of hybrid origin in the reviewing process. There were nine (6.9%) articles that mentioned a hybrid origin could be possible for the new species based on morphological blending of two related species, unusual chromosomal numbers, or other cytological inferences. However, it can be assumed the authors were not at far enough stage in their research to yet ask hybridization questions (Fig. 10).

Future Work

The authors are planning to expand greatly on the work completed by this thesis. Much of this thesis will be seen as preliminary work for larger research questions. While the authors recognize the limitations of a general literature search in missing pertinent articles, we will be searching individual articles that describe new species of pteridophytes to have more data points. Along with individual searches, we also hope to use Web of Science, the gold standard for scientific literature reviews, in combination with Academic Search Ultimate.

Along with the extended literature search, it would be fascinating to extend these research questions (if not asked yet) to other taxonomic groups such as angiosperms, bryophytes, and gymnosperms.

In terms of future analyses, we will be conducting more time analyses with the articles seeing if there are trends in time and the type of species concept(s) used by the authors or trends in time and the usage of genetic techniques (i.e., polymerase chain reaction and Next Gen Sequencing). We also hope to review the articles with a more fine-toothed comb when looking at the types of data researchers have deployed when describing pteridophyte species and comparing this to time. During the review process, we also noted the wide number of species described in each article ranging from sometimes only one new species to sometimes over eleven species. Additionally, analyzing the global distribution and trends in new pteridophyte species being described could shed light on where current research is being carried out as well as where new pteridophyte species remain to be discovered.

29

Lastly, the results from this thesis will be taken to the professional botanical and pteridological societies to report on the findings as well as to encourage taxonomists to be more explicit in the theories and hypotheses being researched and published.

References

- Agnarsson, I., & Kunter, M. 2007. Taxonomy in a Changing World: Seeking Solutions for a Science in Crisis. *Systematic Biology*. 56(3): 531-539.
- Barrington, D. S., Haufler, C. H., & Werth, C. R. 1989. Hybridization, Reticulation, and Species Concepts in the Ferns. *American Fern Journal*, 79: 55.
- Cárdenas, G. G., Tuomisto, H., & Lehtonen, S. 2016. Newly discovered diversity in the tropical fern genus *Metaxya* based on morphology and molecular phylogenetic analyses. *Kew Bull*, 71: 5.
- Chao, Y.-S., Ebihara, A., Chiou, W.-L., & Huang, Y. M. 2017a. *Pteris latipinna* sp. nov. (Pteridaceae), a new species segregated from *Pteris fauriei*. *PhytoKeys*, 85: 95–108.
- Chao, Y.-S., Huang, Y.-F., Dong, S.-Y., Huang, Y.-M., & Liu, H.-Y. 2019. Bolbitis lianhuachihensis (Dryopteridaceae), a new species from Taiwan. PhytoKeys, 131: 69–81.
- Chao, Y.-S., Mustapeng, A. M. A., Chen, C.-W., & Chiou, W.-L. 2017b. Pteris borneensis (Pteridaceae), a New Species from Borneo, with Re-circumscription of Pteris decrescens and Pteris parviloba. Systematic Botany, 42: 724-732.
- Donoghue, M.J. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. *Bryologist*. 88(3): 172-181.

Dubuisson, J.-Y., Bauret, L., Grall, A., Li, T., Ebihara, A., & Hennequin, S. 2016a.

Discussion on the taxonomy of African fern *Abrodictyum rigidum* (Sw.) Ebihara
& Dubuisson and description of two new *Abrodictyum* C.Presl species
(Hymenophyllaceae, Polypodiidae) for the Afro-Malagasy region. *Phytotaxa*,
284: 151.

- Dubuisson, J.-Y., Hennequin, S., Droissart, V., & Deblauwe, V. 2016b. Hymenophyllum senterreanum Dubuisson & amp; Deblauwe, sp. nov. (Hymenophyllaceae) and its relatives in western Central Africa. Phytotaxa, 257: 287.
- Fernandez-Hilario, R., & Arteaga, R. 2017. A new species of *Raputia* (Rutaceae) from the Selva Central of Peru. *PhytoKeys*, 89: 73–84.
- Grusz, A. L. 2013. *Myriopteris windhamii* sp. nov., a New Name For *Cheilanthes villosa* (Pteridaceae). *American Fern Journal*, 103: 112–117.
- Haufler, C. H. 1989. Species Concepts in Pteridophytes: Summary and Synthesis. American Fern Journal, 79: 90.
- He, H., & Zhang, L.-B. 2010. *Pteris xiaoyingae* sp. nov. (sect. *Pteris*) from a Karst Cave in China Based on Morphological and Palynological Evidence. *Systematic Botany*, 35: 695–700.

Heberling, J. M., Prather, L. A., & Tonsor, S. J. 2019. The Changing Uses of Herbarium

Data in an Era of Global Change: An Overview Using Automated Content

Analysis. BioScience, 69: 812–822.

- Huiet, L., Lenz, M., Nelson, J. K., M. Pryer, K., & Smith, A. P. 2015. *Adiantum shastense*, a new species of maidenhair fern from California. *PhytoKeys*, 53: 73–
 81.
- Jongkind, C., & Winter, W. de. 2015. *Blotiella confusa* Jongkind & W. de Winter, sp. nov. (Dennstaedtiaceae), a new species from lowland tropical West Africa, and its distinction from *B. reducta* (C.Chr) R.M.Tryon. *Adansonia*, 37: 7–12.
- Link-Pérez, M. A. 2010. Revision and Molecular Systematics of the Neotropical Fern Genus Adiantopsis (Pteridaceae). Miami University, 2-9.
- Lu, N. T., Peng, Y.-L., Gao, X.-F., & Zhang, L.-B. 2019. *Woodsia kungiana* sp. nov. (Woodsiaceae), a new fern from Sichuan, China. *Phytotaxa*, 397: 253.
- Lu, N. T., Zhang, L., Nguyen, D. T., & Zhang, L.-B. 2016. Polystichum quangbinhense sp. nov. (subg. Haplopolystichum; Dryopteridaceae), the southernmost cave species of Polystichum from central Vietnam. Phytotaxa, 283: 295.
- Padial, J., Miralles, A., De la Riva, I., & Vences, M. 2010. The integrative future of taxonomy. *Frontiers in Zoology*, 7: 16.
- Patel, M., & Narsimha Reddy, M. 2019. Revealing a new species of Ophioglossum

(Ophioglossaceae Pteridophyta) from India with palynological and phylogenetic

implications. Botany Letters, 166: 425–433.

- Perrie, L., & Brownsey, P. 2012. Lastreopsis kermadecensis, a new fern species from Raoul Island in the Kermadec Islands, New Zealand, with notes on L. pacifica. New Zealand Journal of Botany, 50: 29–36.
- Peters, M. D., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B. 2015. Guidance for conducting systematic scoping reviews. *International Journal* of Evidence-Based Healthcare, 13: 141-146.
- PPG I. 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 6: 563-603.
- R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rakotondrainibe, F., Hemp, A., & Meyer, S. 2014. Adiantum papilio Rakotondr. & Hemp, sp. nov. (Pteridophyta, Pteridaceae), une nouvelle espèce endémique de Madagascar. Adansonia, 36: 15–20.
- Rakotondrainibe, F., & Jouy, A. 2012. Quatre espèces et une variété nouvelles dans la famille des Thelypteridaceae à Madagascar -premier signalement du genre *Pronephrium* C.Presl dans la region africano-malgache. *Adansonia*, 34: 223–235.

Rothfels, C.J., Johnson, A.K., Hovenkamp, P.H., Swofford, D.L., Roskam, H.C., Fraser-

Jenkins, C.R., Windham, M.D. and Pryer, K.M. 2015. Natural hybridization between genera that diverged from each other approximately 60 million years ago. *The American Naturalist*, 185(3): 433-442.

Roux, J. P. 2014. Elaphoglossum nimbaense J.P.Roux, sp. nov. (Pteridophyta:

Dryopteridaceae), a new fern species from Liberia, West Africa. *Adansonia*, 36: 7-13.

- RStudio Team. 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA.
- Salino, A., Santos Fernandes, R., & Roberto Pietrobom, M. 2011. *Thelypteris amazonica* sp. nov. (Thelypteridaceae) from Amazonian Brazil. *Nordic Journal of Botany*, 29: 611–614.
- Salino, A., & Smith, A. R. 2018. *Steiropteris alstonii* (Thelypteridaceae), a new species from Colombia, and some new combinations in the family. *Phytotaxa*, 340: 175.
- Sánchez, C., & Labiak, P.H. 2019. *Parapolystichum villosissimum* (Dryopteridaceae): A new and threatened species from Cuba. Brittonia, 71: 235-241.
- Sanín, D. 2014. *Serpocaulon obscurinervium* (Polypodiaceae), a new fern species from Colombia and Ecuador. *Plecevo*, 147: 127–133.

Schwartsburd, P. B., Miranda, C. V., & Prado, J. 2016. Oleandra (Oleandraceae) in the

Brazilian Atlantic Forest. American Fern Journal, 106: 191–205.

- Sigel, E. M. 2016. Genetic and genomic aspects of hybridization in ferns. *Journal of Systematics and Evolution*, 54: 638-655.
- Tsutsumi, C., Matsumoto, S., Yatabe-Kakugawa, Y., Hirayama, Y., & Kato, M. 2011. A New Allotetraploid Species of *Osmunda* (Osmundaceae). *Systematic Botany*, 36: 836–844.
- Wang, C., Yang, W., Zhao, J., Zhang, D., & Zhang, G. 2019. Two new records of the fern genus *Coniogramme* (Pteridaceae) from Vietnam. *PhytoKeys*, 119: 137-142.
- Xu, K.-W., Zhou, X.-M., Zhang, L.-B., & Liao, W.-B. 2018. Hymenasplenium

hastifolium sp. nov. (Aspleniaceae) from a karst cave in western Guangxi, China. *Phytotaxa*, 333: 281.

- Yatskievych, G., & Moran, R. C. 1989. Primary Divergence and Species Concepts in Ferns. *American Fern Journal*, 79: 36.
- Zhang, L.-B., & He, H. 2010. *Polystichum speluncicola* sp. nov. (sect. *Haplopolystichum*, Dryopteridaceae) Based on Morphological, Palynological, and Molecular
 Evidence with Reference to the Non-Monophyly of *Cyrtogonellum*. *Systematic Botany*, 35: 13–19.

Zhang, L.-B., & He, H. 2011. Polystichum fengshanense, sp. nov. (sect.

Haplopolystichum, Dryopteridaceae) from Karst Caves in Guangxi, China based

on Morphological, Palynological, and Molecular Evidence. Systematic Botany,

36: 854-861.

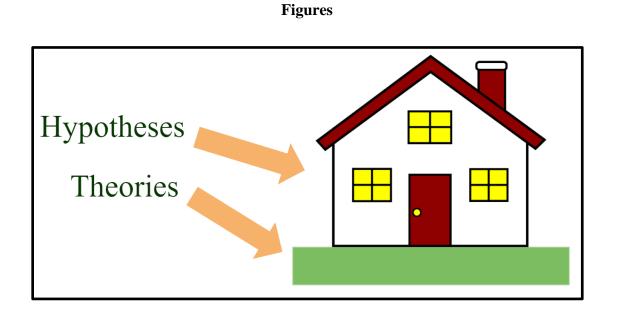


Figure 1. House-foundation analogy for scientific investigation demonstrating how hypotheses are built on theories.

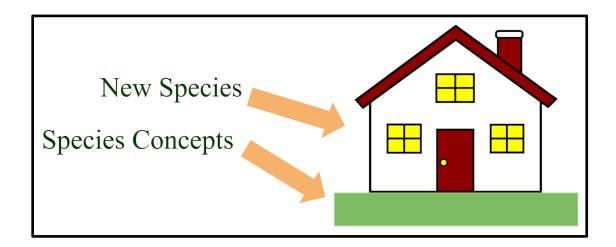


Figure 2. House-foundation analogy for taxonomic investigation demonstrating how new species are hypotheses, and those hypotheses emerge from the underlying theories, which are the species concepts adopted by the taxonomist proposing the species.

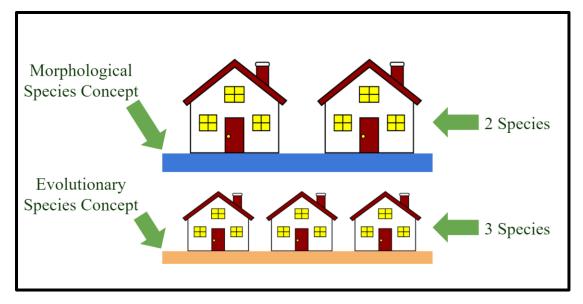


Figure 3. House-foundation analogy demonstrating how two different species concepts (for example, morphological, above, and evolutionary, below) can give rise to differing taxonomic conclusions. In the depiction above, a taxonomist subscribing to a morphological species concepts recognizes the existence of two species, whereas another taxonomist subscribing to an evolutionary species concept may propose the existence of three species even though the taxonomists are studying the same group of organisms.

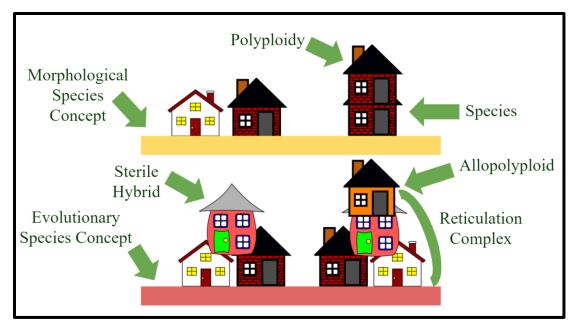


Figure 4. House-foundation analogy demonstrating the complexities that can come from using different species concepts in fern taxonomy. The two-story house represents a polyploidy event (top right corner), hybridization giving rise to a sterile hybrid is represented by the support of a house on two different houses (bottom left corner), and an allopolyploid species resulting from hybridization followed by polyploidy is represented in a "simple" reticulation complex (bottom right corner).

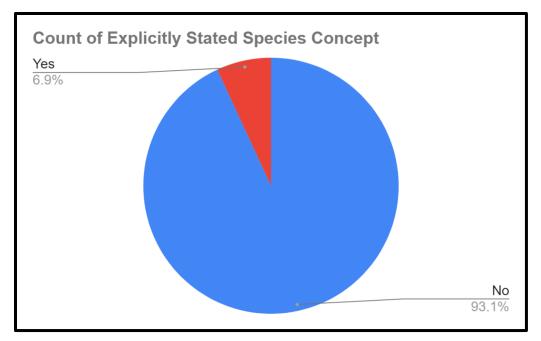


Figure 5. Pie chart of count of explicitly stated species concepts (Yes: n = 9 articles; No: n = 121 articles; Total: n = 130 articles).

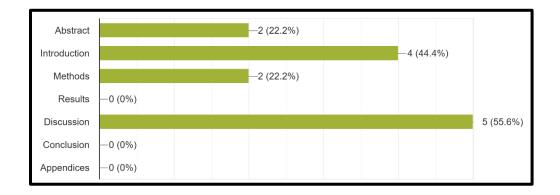


Figure 6. Location of explicitly stated species concept in journal article (Total: n = 9 articles). Exceeds 100% because options for reviewing were mutually inclusive.

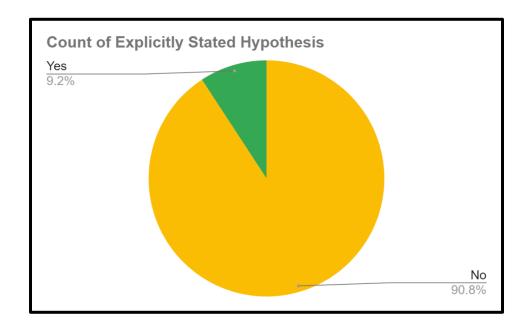


Figure 7. Pie chart of count of explicitly stated hypothesis (Yes: n = 12 articles; No: n = 118 articles, Total: n = 130 articles).

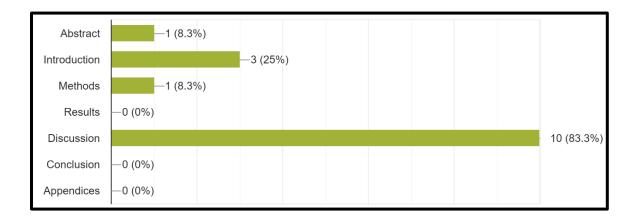


Figure 8. Location of explicitly stated hypothesis in journal article (Total: n = 12 articles). Exceeds 100% because options for reviewing were mutually inclusive.

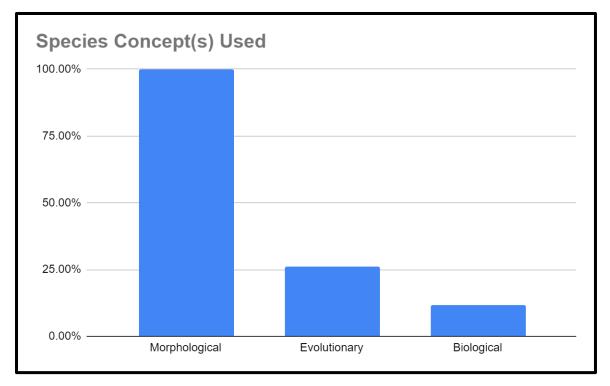


Figure 9. Species concept(s) used by journal articles (Morphological: 100 %, n = 130 articles; Evolutionary: 26.2%, n = 34 articles; Biological: 11.5%, n = 15 articles; Total: n = 130 articles). Exceeds 100% because options for reviewing were mutually inclusive.

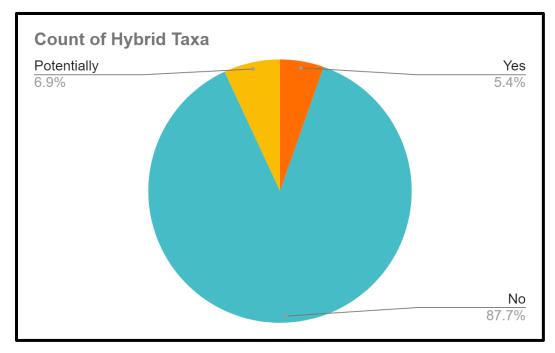


Figure 10. Pie chart of count of hybrid taxa described (No: n = 114 articles; Potentially: n = 9 articles; Yes: n = 7; Total: n = 130 articles).

Tables

Title of Reviewed Article Author(s) Title of Journal Year Ascogrammitis lehnertii (Polypodiaceae): A New and **Dominant Understory-Species** from a Diverse Community of Sundue, Michael; Grammitid Ferns in the Andes Olivares, Ingrid; Systematic of Ecuador. Kessler, Michael Botany 2018 Asplenium lepidotum, a new fern species from New New Zealand Zealand allied to *Asplenium* oblongifolium and Asplenium Perrie, LR; Journal of Botany 2016 obtusatum. Brownsey, PJ Asplenium serratifolium (Aspleniaceae), a New Fern Xu, Ke-Wang; Species from Central Vietnam Zhang, Liang; Lu, American Fern Based on Morphological and Ngan Thi; Zhang, Molecular Evidence. Journal 2018 Li-Bing Asplenium simaoense (Aspleniaceae), a New Fern Xu, Ke-Wang; Systematic Species from Yunnan, China, Jiang, Lei; Liao, Botany 2019

Table 1. Reviewed articles with authors, journal titles, and publication dates.

Based on Morphological and	Wen-Bo; Zhang, Li-		
Molecular Data.	Bing		
A Monograph of the Fern			
Genus Pteridrys	Zhou, Xin-Mao;	Systematic	
(Pteridryaceae).	Zhang, Li-Bing	Botany	2019
Athyrium bipinnatum K.Hori			
(Athyriaceae), a new			
cornopteroid fern from Japan.	Kiyotaka Hori	PhytoKeys	2020
Athyrium haleakalae			
(Athyriaceae), a new			
rheophytic fern species from			
East Maui, Hawaiian Islands:			
with notes on its distribution,			
ecology, and conservation	Wood, Kenneth R.;		
status.	Wagner, Warren L.	PhytoKeys	2017
Athyrium sessilipinnum: A			
new lady fern (Athyriaceae)	Wei, Ran; Zhang,		
from southern China.	Xian-Chun	Brittonia	2016
	Yi-Shan Chao; Yu-		
	Fang Huang; Shi-		
Bolbitis lianhuachihensis	Yong Dong; Yao-		
(Dryopteridaceae), a new	Moan Huang; Ho-		
species from Taiwan.	Yih Liu	PhytoKeys	2019

Bolbitis moranii			
(Dryopteridaceae), a new			
species from southern			
Guatemala.	Jiménez, Jorge	Brittonia	2012
	Tsutsumi, Chie;		
	Matsumoto,		
	Sadamu; Yatabe-		
	Kakugawa, Yoko;		
A New Allotetraploid Species	Hirayama, Yumiko;	Systematic	
	•	•	2011
of Osmunda (Osmundaceae).	Kato, Masahiro	Botany	2011
Bolbitis occidentalis			
(Dryopteridaceae), a new			
species from the western side			
of the Andes of Ecuador.	Moran, Robbin	Brittonia	2016
Campyloneurum			
atrosquamatum	Labiak, Paulo H.;		
(Polypodiaceae), a new	León, Blanca;		
species from Amazonia.	Moran, R. C.	Brittonia	2020
Ceradenia spectabilis			
(Polypodiaceae), a New			
Species from Cerro del Torrá,		American Fern	
Colombia.	Sundue, Michael A.	Journal	2017

	Matos, Fernando		
A New Decelling Constants			
A New Brazilian Species of	B.; Labiak, Paulo		
the Genus Asplenium L.	H.; Sylvestre, Lana	American Fern	
(Aspleniaceae).	S.	Journal	2009
Cyathea atrocastanea, a New			
Tree Fern from the Atlantic			
Rain Forest of Southeastern	Labiak, Paulo H.;	Systematic	
Brazil.	Matos, Fernando B.	Botany	2009
	Ranil, R. H. G.;		
	Pushpakumara, D.		
	K. N. G.; Janssen,		
Cyathea srilankensis Ranil	T.; Wijesundara, D.		
(Cyatheaceae): A New Tree	S. A.; Dhanasekara,	American Fern	
Fern Species From Sri Lanka.	D. U. M. B.	Journal	2010
Danaea (Marattiaceae)			
revisited: biodiversity, a new			
classification and ten new		Botanical	
species of a neotropical fern		Journal of the	
genus.	Christenhusz, M. J.	Linnean Society	2010
Dicksonia utteridgei, a new			
species of hairy tree fern			
(Dicksoniaceae - Cyatheales)	Lehnert, M.;		
from New Guinea.	Cámara-Leret, R.	Blumea	2018

A new Dryopteris (Pteropsida:		Botanical	
Dryopteridaceae) species from		Journal of the	
south-central Africa.	Roux, J. P.	Linnean Society	2003
Diplazium fimbriatum	Mynssen, Claudine		
(Athyriaceae), a New Species	M.; Mato, Fernado	American Fern	
from Brazil.	В.	Journal	2012
Doryopteris mojestoso			
(Pteridaceae), a New Species	Yesilyurt, Jovita	American Fern	
from South America.	Cislinski	Journal	2007
Dryopteris damingshanensis			
(Dryopteridaceae): A New			
Fern in Subgenus			
Nothoperanema from	Li-Bing Zhang;		
Guangxi, China.	Hong-Mei Liu	Novon	2014
Eight New Taxa of <i>Hypolepis</i>			
(Dennstaedtiaceae) from the	Schwartsburd,	American Fern	
Neotropics.	Pedro B.	Journal	2018
Elaphoglossum fendleri			
(Dryopteridaceae), a new			
species of <i>Elaphoglossum</i> sect.			
Lepidoglossa from Venezuela,			
and the identity of	Matos, Fernando;		
Elaphoglossum ornatum.	Vasco, Alejandra	Brittonia	2015

Elaphoglossum mickeliorum			
(Dryopteridaceae), a new			
species of <i>Elaphoglossum</i> sect.	Matos, Fernando;		
Polytrichia from Peru.	Moran, Robbin	Brittonia	2017
Elaphoglossum montanum, a	Kieling-Rubio,		
New Species from Southern	Maria A.; Windisch,	American Fern	
Brazil.	Paulo G.	Journal	2012
Elaphoglossum nidusoides			
(Dryopteridaceae), a New			
Species of Fern from	Rouhan, Germinal;		
Madagascar with an Unusual	Rakotondrainibe,		
Phylogenetic Position in the	France; Moran,	Systematic	
Squamipedia Group.	Robbin C.	Botany	2007
Eleven New Scaly Tree Ferns			
(Cyathea: Cyatheaceae) from	Tejedor, Adrian;	American Fern	
Peru.	Calatayud, Gloria	Journal	2017
Eleven New Species in the			
Grammitid Fern Genus		American Fern	
Melpomene (Polypodiaceae).	Lehnert, Marcus	Journal	2008
	Schwartsburd,		
Eriosorus areniticolci	Pedro Bond;		
(Pteridaceae), a New Species	Labiak, Paulo	American Fern	
from Brazil.	Henrique	Journal	2008

Four New Species of	Boudrie, Michel;		
rournew species of	Doudine, whenen,		
Adiantum (Pteridaceae) from	Hirai, Regina Y.;	American Fern	
the Guianas.	Prado, Jefferson	Journal	2017
Genetic Diversity in the			
Worldwide Botrychium			
lunaria (Ophioglossaceae)			
Complex, with New Species	Stensvold, Mary;		
and New Combinations.	Farrar, Donald	Brittonia	2017
Gleichenia inclusisora, a new	Perrie, LR;	New Zealand	
and uncommon tangle fern	Shepherd, LD;	Journal of	
from New Zealand.	Brownsey, PJ	Botany	2012
Hymenophyllum paniense			
(Hymenophyllacea), A New	Atushi, E.;		
Species of Filmy Fern from	Iwatsuki, K.;	Systematic	
New Caledonia.	Ohsawa, T.; Ito, M.	Botany	2003
	Perrie, LR;		
	Shepherd, LD; de		
	Lange, PJ; Batty,		
Hymenophyllum pluviatile , a	EL; Ohlsen, DJ;	New Zealand	
new and uncommon fern from	Bayly, MJ;	Journal of	
New Zealand.	Brownsey, PJ	Botany	2013

Introducing a new species of			
the fern genus Doryopteris		Botanical	
(Pteridaceae, Polypodiopsida)		Journal of the	
from the Neotropics.	Yesilyurt, Jovita C.	Linnean Society	2008
Isoetes aroucaniana, a New			
Species from Southern South	Macluf, C. Cecilia;	American Fern	
America.	Hickey, R. James	Journal	2007
	Changkyun Kim;		
	Bounphanmy,		
	Somchanh; Byung-		
Isoëtes laosiensis, a New	Yun Sun; Hong-	American Fern	
Species from Lao PDR.	Keun Choi	Journal	2010
	Hickey, R. James;		
Isoetes maxima, a New	MacLuf, C. Cecilia;	American Fern	
Species from Brazil.	Link-Perez, Melanie	Journal	2009
	Pereira, J. B.;		
	Windisch, P. G.;		
Isoetes mourabaptistae, a New	Lorscheitter, M. L.;	American Fern	
Species from Southern Brazil.	Labiak, P.	Journal	2012
Isoëtes todaroana (Isoëtaceae,	Troia, Angelo;		
Lycopodiophyta), a New	Raimond, Francesco	American Fern	
Species from Sicily (Italy).	М.	Journal	2009

	Rosenthal, Michael		
	A.; Rosenthal,		
Isoëtes viridimontana: A	Sharon R.; Johnson,		
Previously Unrecognized	Gabriel; Taylor, W.		
Quillwort from Vermont,	Carl; Zimmer,	American Fern	
USA.	Elizabeth A.	Journal	2014
Lastreopsis kermadecensis , a			
new fern species from Raoul			
Island in the Kermadec		New Zealand	
Islands, New Zealand, with	Perrie, LR;	Journal of	
notes on L. pacifica.	Brownsey, PJ	Botany	2012
	Link-Pérez, Melanie		
Lectotypification of	A.; Ludwig,		
Adiantopsis alata	Thomas G.;		
(Pteridaceae) and Descriptions	Ledford, Cody J.;		
of New Palmate Species in the	Seabolt, Matthew	Systematic	
Guiana Shield.	H.; Sessa, Emily B.	Botany	2016
Megalastrum			
(Dryopteridaceae -			
Pteridophyta) in Bolivia, with			
Descriptions of Six New	Kessler, Michael;	American Fern	
Species.	Smith, Alan R.	Journal	2006

Mar al materia	Manan Dahhin C.		
Megalastrum	Moran, Robbin C.;		
(Dryopteridaceae) in Andean	Prado, Jefferson;	American Fern	
South America, Part I.	Sundue, Michael A.	Journal	2014
Melpomene anazalea, a New			
Species of Grammitid Fern	Sundue, Michael;	American Fern	
(Polypodiaceae).	Lehnert, Marcus	Journal	2008
	Tejedor, Adrian;		
	Calatayud, Gloria;		
	Lehnert, Marcus;		
A new scaly tree fern	Duque, WDR;		
(Cyathea: Cyatheaceae) from	Wilson D.; Kessler,		
Colombia.	Michael	Brittonia	2018
Monograph of the West Indian			
fern genus Polystichopsis	Prado, Jefferson;		
(Dryopteridaceae).	Moran, Robbin	Brittonia	2016
Myriopteris windhamii sp.			
nov., a New Name For			
Cheilanthes villosa		American Fern	
(Pteridaceae).	Grusz, Amanda L.	Journal	2013
A new species and a new			
combination in Ctenitis			
(Dryopteridaceae) from South	Viveros, Raquel;		
America.	Salino, Alexandre	Brittonia	2017

A New Species and a New			
Combination of Thelypteris,			
subgenus Amauropelta,	Alvarez-Fuentes,		
section Amauropelta from	Orlando; Sánchez,	American Fern	
Cuba.	Carlos	Journal	2005
New pteridophyte records for			
Taveuni (Fiji) and a new	Game, John C.;	New Zealand	
species of Chingia	Fawcett, Susan E.;	Journal of	
(Thelypteridaceae).	Smith, Alan R.	Botany	2018
New pteridophyte species and	Lorence, David H.;		
combinations from the	Wagner, Warren L.;		
Marquesas Islands, French	Wood, Kenneth R.;		
Polynesia.	Smith, Alan R.	PhytoKeys	2011
New Species and New			
Records in Elaphoglossum			
sect. Polytrichia subsect.			
Hybrida (Dryopteridaceae)	Rojas-Alvarado,	American Fern	
from the Neotropics.	Alexander Fco.	Journal	2010
New species and new records			
of the fern genus Terpsichore		Organisms	
(Polypodiopsida:	Sundue, Michael;	Diversity &	
Polypodiaceae) from Bolivia	Kessler, Michael	Evolution	2008

New species and records of			
tree ferns (Cyatheaceae,		Organisms	
Pteridophyta) from the		Diversity &	
northern Andes	Lehnert, Marcus	Evolution	2006
A New Species and a New			
Hybrid in the Grammitid Fern			
Genus Stenogrammitis		American Fern	
(Polypodiaceae).	Labiak, Paulo H.	Journal	2012
New Species of			
Elaphoglossum Schott ex	Melo, Luciana C.		
J.Sm. (Dryopteridaceae) from	Neves; Salino,	American Fern	
Brazil.	Alexandre	Journal	2011
New species of grammitid		Organisms	
ferns (Polypodiaceae,	Kessler, Michael;	Diversity &	
Polypodiopsida) from Bolivia	Smith, Alan R.	Evolution	2008
New Species of the Fern			
Genus Lindsaea	Dong, Shi-Yong;		
(Lindsaeaceae) from New	Zuo, Zheng-Yu;		
Guinea with Notes on the	Chao, Yi-Shan;		
Phylogeny of <i>L</i> . sect.	Damas, Kipiro;		
Synaphlebium.	Sule, Bernard	PLoS ONE	2016
Not so Neotropical After all:	Rouhan, Germinal;	Systematic	
the Grammitid Fern Genus	Labiak, Paulo H.;	Botany	2012

<i>Leucotrichum</i> (Polypodiaceae)	Randrianjohany,		
is also Paleotropical, as	Emile;		
Revealed by a New Species	Rakotondrainibe,		
from Madagascar.	France; Hipp,		
	Andrew		
Novel fern- and centipede-like			
Selaginella (Selaginellaceae)			
species and a new combination			
from South America.	Valdespino, I.A.	PhytoKeys	2017
Novelties in Costa Rican			
Pityrogramma (Pteridaceae):			
A New Species and a New			
Hybrid from the Osa		American Fern	
Peninsula.	Test, Weston	Journal	2018
A New Species and Two New	Ponce, M. Monica;		
Records of the Fern Genus	Monteiro De Assis,		
Cheilanthes (Pteridaceae)	Elton Lois; Labiak,	American Fern	
from Southwestern Brazil.	Paulo Henrique	Journal	2008
On the identification of			
On the identification of <i>Cyathea pallescens</i> (Sodiro)			
		Botanical	
Cyathea pallescens (Sodiro)		Botanical Journal of the	

common Neotropical tree			
ferns.			
Parapolystichum			
villosissimum			
(Dryopteridaceae): A new and	Sánchez, Carlos;		
threatened species from Cuba.	Labiak, Paulo H.	Brittonia	2019
A New Species of Adiantum	Suksathan,	American Fern	
(Pteridaceae) from Thailand.	Piyakaset	Journal	2004
Phegopteris excelsior			
(Thelypteridaceae): A New	Patel, Nikisha R.;		
Species of North American	Fawcett, Susan;		
Tetraploid Beech Fern.	Gilman, Arthur V.	Novon	2019
A New Species of Adiantum		American Fern	
from Cuba.	Caluff, Manuel G.	Journal	2009
Phylogeny, divergence times,	Sessa, Emily B.;		
and historical biogeography of	Zimmer, Elizabeth	American	
New World Dryopteris	A.; Givnis, Thomas	Journal of	
(Dryopteridaceae)	J.	Botany	2012
Pityrogramma opalescens			
(Pteridaceae), a New Species			
from Cerro del Torrá,		American Fern	
Colombia.	Sundije, Michael A.	Journal	2011

Pneumatopteris pendens			
(Thelypteridaceae), a New			
Hawaii Endemic Species of		American Fern	
Pneumatopteris from Hawaii.	Palmer, Daniel D.	Journal	2005
A new species of Alsophila			
(Cyatheaceae) from the			
Tucuman-Bolivian forest.	Martínez, Olga	Brittonia	2015
Polystichum cavernicola, sp.			
nov. (sect. Haplopolystichum,			
Dryopteridaceae) from a karst			
cave in Guizhou, China and its	He, Hai; Zhang, Li-	Botanical	
phylogenetic affinities.	Bing	Studies	2011
Polystichum fengshanense, sp.			
nov. (sect. Haplopolystichum,			
Dryopteridaceae) from Karst			
Caves in Guangxi, China			
based on Morphological,			
Palynological, and Molecular	Li-Bing Zhang; Hai	Systematic	
Evidence.	Не	Botany	2011
	Liang Zhang;		
Polystichum hubeiense	Zhang-Ming Zhu;		
(Dryopteridaceae), a new fern	Xin-Fen Gao; Li-	Annales Botanici	
species from Hubei, China.	Bing Zhang	Fennici	2013

Polystichum kungianum, sp.			
nov. (sect. Mastigopteris,			
Dryopteridaceae) from	Hai He; Li-Bing	Botanical	
Chongqing, China.	Zhang	Studies	2010
Polystichum perpusillum (sect.			
Haplopolystichum,			
Dryopteridaceae), a new fern	Li-Bing Zhang; Hai	Annales Botanici	
species from Guizhou, China.	He	Fennici	2012
Polystichum puteicola, sp.			
nov. (sect. Haplopolystichum,			
Dryopteridaceae) from a karst			
sinkhole in Guizhou, China			
based on molecular,			
palynological, and	Li-Bing Zhang; Hai	Botanical	
morphological evidence.	He; Qiang Luo	Studies	2010
Pteris carsei (Pteridaceae), a			
new endemic fern from New	Brownsey, Patrick;	New Zealand	
Zealand previously treated as	Braggins, John;	Journal of	
P. comans G.Forst.	Perrie, Leon	Botany	2020
Revision of Adiantopsis	Link-Pérez, Melanie		
radiata (Pteridaceae) with	A.; Hickey, R.	Systematic	
Descriptions of New Taxa	James	Botany	2011

with Palmately Compound			
Laminae.			
A new species of Asplenium			
section Thamnopteris	Dong, S. Y.;		
(Aspleniaceae) from	Mujahidin; Wei, L.		
Indonesia.	L.; Chao, Y. S.	Blumea	2012
	Wang, Fa-Guo;		
	Zhang, Wan-Wan;		
	Yi, Qi-Fei; Duan,		
	Lei; Xing, Fu-Wu;		
Revision of series Gravesiana	Wang, Ai-Hua; Ma,		
(Adiantum L.) based on	Xiao-Dong; Li,		
morphological characteristics,	Dong-Lin; Li, Xu-		
spores and phylogenetic	Wen; Yan, Yue-		
analyses.	Hong	PLoS ONE	2017
Revision of the fern genus	Thien Tam Luong;		
Orthiopteris	Hovenkamp, Peter		
(Saccolomataceae) in Malesia	H.; Sosef, Marc S.		
and adjacent regions.	М.	PhytoKeys	2015
Rumohra glandulosissima			
(Dryopteridaceae) a New	Sundue, Michael;		
Species from the Atlantic	Hirai, Regina Y.;	Systematic	
Rainforest, and Revision of	Prado, Jefferson	Botany	2013

the Species Occurring in			
Brazil.			
Selaginella hyalogramma			
(Selaginellaceae -			
Lycopodiophyta): A New			
Species from Venezuela,		American Fern	
South America.	Valdespino, I.A.	Journal	2017
A New Species of Ceradenia			
(Polypodiaceae) from	Labiak, Paulo H.;	Systematic	
Southern Brazil.	Pereira, Jovani B. S.	Botany	2016
	Phyo Kay Khine;		
	Lindsay, Stuart;		
	Fraser-Jenkins,		
Selliguea kachinensis	Christopher; Kluge,		
(Polypodiaceae), a new fern	Jürgen; Kyaw,		
species of uncertain affinity	Myint; Hovenkamp,		
from Northern Myanmar.	Peter	PhytoKeys	2016
Stenochlaena riauensis		Bangladesh	
(Blechnaceae), A new fern		Journal of Plant	
species from Riau, Indonesia	Sofiyanti, N.; Iriani	Taxonomy	2015
Studies on the Genus Bolbitis			
(Dryopteridaceae) from	Jian-Ying Xiang;	American Fern	
Vietnam and Laos.	Wu Su-Gong; Phan	Journal	2011

	Ke Loc; Onevilay		
	Souliya		
Systematic revision of	Rouhan, G.;		
Elaphoglossum	Lorence, D. H.;		
(Dryopteridaceae) in French	Motley, T. J.;	Botanical	
Polynesia, with the description	Hanks, J. G.;	Journal of the	
of three new species.	Moran, R. C.	Linnean Society	2008
Systematics of			
Hymenophyllum subgenus			
Mecodium	Hsu, Tian-Chuan;		
(Hymenophyllaceae) in	Huang, Yu-Fang;	Systematic	
Taiwan.	Chao, Yi-Shan	Botany	2019
	Lehnert, Marcus;		
Taxonomic and Ecological	Coritico, Fulgent P.;		
Notes on the Alsophila hornei	Darnaedi, Dedy;		
Complex (Cyatheaceae-	Hidayat, Arief;		
Polypodiopsida), with the	Kluge, Jürgen;		
Description of the New	Karger, Dirk		
Species A. phlebodes from	Nikolaus; Kessler,	Systematic	
New Guinea.	Michael	Botany	2013
Taxonomic revision of			
Elaphoglossum subsection			
Muscosa (Dryopteridaceae).		Blumea	2011

	Lehtonen, Samuli;		
	Tuomisto, Hanna;		
Taxonomic Revision of the	Rouhan, Germinal;		
Fern Genus Osmolindsaea	Christenhusz,	Systematic	
(Lindsaeaceae).	Maarten J. M.	Botany	2013
Ten New Species and Two			
New Combinations of	Kessler, Michael;		
Blechnum (Blechnaceae,	Smith, Alan R.;	American Fern	
Pteridophyta) from Bolivia.	Lehnert, Marcus	Journal	2007
The Brazilian species of			
Elaphoglossum section	Matos, Fernando;		
Polytrichia (Dryopteridaceae).	Mickel, John	Brittonia	2014
The fern genus <i>Elaphoglossum</i>			
section Lepidoglossa			
(Dryopteridaceae) in Africa,			
Macaronesia, the mid-Atlantic		Botanical	
and southern Indian Ocean		Journal of the	
Islands.	Roux, Jacobus P.	Linnean Society	2011
The fern genus Polybotrya			
(Dryopteridaceae) in the			
Atlantic Forest of Brazil, with			
the description of a new	Canestraro, Bianca;		
species.	Labiak, Paulo	Brittonia	2015

	Martins, Marcos		
	Benigno Silva;		
	Lima, Bruno De		
	Cássio Da Costa;		
	Calliari, Ramon		
	Batista; Moraes-		
	Neto, Pedro		
	Gonçalves; Costa,		
A new species of Lindsaea	Jeferson Miranda;		
(Lindsaeaceae) from the	Pietrobom, Márcio		
Brazilian Amazon.	Roberto	Brittonia	2020
Thelypteris tuxtiensis			
(Thelypteridaceae), a New			
Species in Subgenus	Krömer, Thorsten;		
Goniopteris from Los Tuxtias,	Acebey, Amparo;	American Fern	
Veracruz, Mexico.	Smith, Alan R.	Journal	2007
Three new scaly tree fern			
species (Cyathea-			
Cyatheaceae) from the			
Amotape-Huancabamba Zone			
and their biogeographic	Lehnert, Marcus;	American Fern	
context.	Tejedor, Adrian	Journal	2016

Three New Species of			
Grammitid Ferns			
(Polypodiaceae) from the Fern			
Hunter's Paradise: Sierra		Systematic	
Juárez, Oaxaca, Mexico.	Sundue, Michael A.	Botany	2017
A New Species of <i>Microlepia</i>			
(Dennstaedtiaceae) from Mt.	Xiao-Si Guo; Bin	American Fern	
Micangshan, China.	La	Journal	2006
Tmesipteris horomaka, a new	Perrie, LeonR;	New Zealand	
octoploid species from Banks	Brownsey, PatrickJ;	Journal of	
Peninsula.	Lovis, JohnD	Botany	2010
Two new Diplazium			
(Weedsiegee) analies from			
(Woodsiaceae) species from			
East Malesia	Hovenkamp, P.	Fern Gazette	2015
	Hovenkamp, P.	Fern Gazette	2015
East Malesia	Hovenkamp, P.	Fern Gazette American Fern	2015
East Malesia Two New Species of	Hovenkamp, P.		2015
East Malesia Two New Species of <i>Pleopeltis</i> (Polypodiaceae)		American Fern	
East Malesia Two New Species of <i>Pleopeltis</i> (Polypodiaceae)	Sundue, Michael A.	American Fern	
East Malesia Two New Species of <i>Pleopeltis</i> (Polypodiaceae) from Andean South America.	Sundue, Michael A. de Oliveira Dittrich,	American Fern	
East Malesia Two New Species of <i>Pleopeltis</i> (Polypodiaceae) from Andean South America. Two New Species of the Fern	Sundue, Michael A. de Oliveira Dittrich, Vinícius Antonio;	American Fern	
East Malesia Two New Species of <i>Pleopeltis</i> (Polypodiaceae) from Andean South America. Two New Species of the Fern Genus <i>Blechnum</i> with	Sundue, Michael A. de Oliveira Dittrich, Vinícius Antonio; Salino, Alexandre;	American Fern Journal	

	Mendoza, Aniceto;		
	Windham, Mike;		
	Pérez-García,		
Una nueva especie de Pellaea	Blanca;		
(Pteridaceae) del estado de	Yatskievych,	Acta Botanica	
San Luis Potosí, México	George	Mexicana	2001
	Sundue, Michael;		
	Sylvester, Steven		
	Paul; Kessler,		
A New Species of	Michael; Lyons,		
Moranopteris (Polypodiaceae)	Brendan; Ranker,		
from Inaccessible Ledges in	Tom A.; Morden,	Systematic	
the High Andes of Peru.	Clifford W.	Botany	2015
A new species of Odontosoria			
(Lindsaeaceae) from New			
Guinea.	Lehtonen, S.	Blumea	2011
A New Species of <i>Thelypteris</i>	Salino, Alexandre;		
subgenus Amauropelta	De Oliveira		
(Thelypteridaceae) from	Dittrich, Vinícius	American Fern	
Southeastern Brazil.	Antonio	Journal	2008
A New Species, New	Carvajal-		
Combinations in Pecluma and	Hernández, César I.;	American Fern	
Pleopeltis, and New Records	Guzmán-Jacob,	Journal	2018

for the State of Veracruz,	Valeria; Smith,		
Mexico.	Alan R.; Krömer,		
	Thorsten		
	Cheng Wei Chen;		
	Yao Moan Huang;		
	Li Yaung Kuo; Yi		
A New Vittarioid Fern	Han Chang; Yea		
Species, Haplopteris	Chen Liu; Wen	Systematic	
heterophylla (Pteridaceae).	Liang Chiou	Botany	2013
A revision of <i>Blechnum</i>			
vulcanicum (Blume) Kuhn and	Chambers, T.		
related taxa (Blechnaceae) in	Carrick; Wilson,		
Malesia and Oceania.	Peter G.	Telopea	2019
	Noben, Sarah;		
	Kessler, Michael;		
	Weigand, Anna;		
	Tejedor, Adrian;		
A Taxonomic and	Duque, Wilson D.		
Biogeographic Reappraisal of	RodrÃguez;		
the Genus Dicksonia	Gallego, Luis		
(Dicksoniaceae) in the	Fernando Giraldo;	Systematic	
Neotropics.	Lehnert, Marcus	Botany	2018

A Unified Approach to	Schuettpelz, Eric;		
Taxonomic Delimitation in the	Pryer, Kathleen M.;		
Fern Genus Pentagramma	Windham, Michael	Systematic	
(Pteridaceae).	D.	Botany	2015
	Amoroso, Victor		
Actinostachys minuta, a new	B.; Coritico,		
species of grass fern from	Fulgent P.; Fritsch,		
Mindanao, Philippines.	Peter W.	PhytoKeys	2020
Adiantum alan-smithii			
(Pteridaceae), a New	Hirai, Regina Y.;		
Maidenhair Fern from	Sundue, Michael	Systematic	
Chiapas, Mexico.	A.; Prado, Jefferson	Botany	2014
Adiantum camptorachis			
(Pteridaceae), a New Species			
from South America with	Sundue, Michael		
Notes on the Taxonomy of	A.; Prado,		
Related Species from the	Jefferson; Smith,	American Fern	
Southern Cone and Bolivia.	Alan R.	Journal	2010
Adiantum lindsaeoides			
(Pteridaceae), a New Fern			
Species from the Atlantic Rain	Prado, Jefferson;	Systematic	
Forest, Brazil.	Hirai, Regina Y.	Botany	2013

Adiantum mariposatum	McCarthy, Mirabai		
(Pteridaceae), a New Species	R.; Hickey, R.	American Fern	
from Ecuador.	James	Journal	2011
	Huiet, Layne; Lenz,		
	Martin; Nelson,		
Adiantum shastense, a new	Julie K.; Pryer,		
species of maidenhair fern	Kathleen M.; Smith,		
from California.	Alan R.	PhytoKeys	2015
Anemia brunnea			
(Anemiaceae), a new species	Prado, Jefferson;		
from Central Brazil.	Hirai, Regina Y.	Brittonia	2020
	Labiak, Paulo H.;		
Anemia paripinnata	Mickel, John T.;		
(Anemiaceae), a New Species	MatosS, Fernando	American Fern	
from Central Brazil.	В.	Journal	2018
	Carvajal-		
	Hernández, César I.;		
	Córdova-		
	Hernández, Ena E.;		
Anemia tabascana	Krömer, Thorsten;		
(Anemiaceae), a new species	Burelo-Ramos,	American Fern	
from southeastern Mexico.	Carlos M.	Journal	2020

	Chen, Cheng-Wei;		
	Dang, Minh Tri;		
Antrophyum nambanense, a	Luu, Hong Truong;		
New Vittarioid Fern	Kao, Tzu-Tong;		
(Pteridaceae; Polypodiales)	Huang, Yao-Moan;	Systematic	
from Vietnam.	Li, Chia-Wei	Botany	2020
	Chen, Cheng Wei;		
	Nitta, Joel		
	Hamilton; Fanerii,		
Antrophyum solomonense	Moffat; Yang,		
(Pteridaceae), a New Species	Tsung Yu Aleck;		
from the Solomon Islands, and	Pitisopa, Fred; Li,		
Its Systematic Position Based	Chia Wei; Chiou,	Systematic	
on Phylogenetic Analysis.	Wen Liang	Botany	2015

Table 2. Subset of articles used for verifying the reviewing form with authors, journal titles, and publication dates.

Title of Reviewed Article	Author	Title of Journal	Year
Anemia paripinnata	Labiak, Pauol; Mickel,		
(Anemiaceae), a New Species	John T.; Matos,	American Fern	
from Central Brazil.	Fernando B.	Journal	2018

	Chen, Cheng-Wei;		
	Dang, Minh Tri; Luu,		
	Hong Truong; Kao,		
Antrophyum nambanense, a New	Tzu-Tong; Huang,		
Vittarioid Fern (Pteridaceae;	Yao-Moan; Li, Chia-	Systematic	
Polypodiales) from Vietnam.	Wei	Botany	2020
Athyrium haleakalae			
(Athyriaceae), a new rheophytic			
fern species from East Maui,			
Hawaiian Islands: with notes on			
its distribution, ecology, and	Wood, Kenneth R.;		
conservation status.	Wagner, Warren L.	PhytoKeys	2017
Athyrium sessilipinnum: A new			
lady fern (Athyriaceae) from	Wei, Ran; Zhang, Xian-		
southern China.	Chun	Brittonia	2016
Botrychium matricariifolium, a			
new fern species for the flora of	Stešević, Danijela;	Acta Botanica	
Montenegro.	Berg, Christian	Croatica	2015
Eriosorus areniticolci	Schwartsburd, Pedro		
(Pteridaceae), a New Species	Bond; Labiak, Paulo	American Fern	
from Brazil.	Henrique	Journal	2008

New species and new records of			
the fern genus Terpsichore		Organisms	
(Polypodiopsida: Polypodiaceae)	Sundue, Michael;	Diversity &	
from Bolivia	Kessler, Michael	Evolution	2008
Phylogeny, divergence times, and			
historical biogeography of New	Sessa, Emily B.;	American	
World Dryopteris	Zimmer, Elizabeth A.;	Journal of	
(Dryopteridaceae)	Givnis, Thomas J.	Botany	2012
	Wang, Fa-Guo; Zhang,		
	Wan-Wan; Yi, Qi-Fei;		
	Duan, Lei; Xing, Fu-		
Revision of series Gravesiana	Wu; Wang, Ai-Hua;		
(Adiantum L.) based on	Ma, Xiao-Dong; Li,		
morphological characteristics,	Dong-Lin; Li, Xu-Wen;		
spores and phylogenetic analyses.	Yan, Yue-Hong	PLoS ONE	2017
Rumohra glandulosissima			
(Dryopteridaceae) a New Species			
from the Atlantic Rainforest, and	Sundue, Michael; Hirai,		
Revision of the Species	Regina Y.; Prado,	Systematic	
Occurring in Brazil.	Jefferson	Botany	2013

Title of Removed Article	Author(s)	Title of Journal	Year
A consistent taxonomic			
treatment for dimorphic	Brownsey, Patrick J.;	New Zealand	
variation in New Zealand	Shepherd, Lara D.; Perrie,	Journal of	
Adiantum species.	Leon R.	Botany	2019
	Xu, Ke-Wang; Zhou, Xin-		
	Mao; Yin, Qian-Yi; Zhang,		
A global plastid	Liang; Lu, Ngan Thi;		
phylogeny uncovers	Knapp, Ralf; Luong, Thien		
extensive cryptic	Tam; He, Hai; Fan, Qiang;		
speciation in the fern	Zhao, Wan-Yi; Gao, Xin-	Molecular	
genus Hymenasplenium	Fen; Liao, Wen-Bo; Zhang,	Phylogenetics &	
(Aspleniaceae).	Li-Bing	Evolution	2018
A molecular phylogeny			
for the New Zealand			
Blechnaceae ferns from	Shepherd, Lara D.; Perrie,	New Zealand	
analyses of chloroplast	Leon R.; Parris, Barbara S.;	Journal of	
tmL-trnF DNA sequences.	Brownsey, Patrick J.	Botany	2007
A new Miocene fern	Kaulfuss, Uwe; Conran,		
(Palaeosorum:	John G.; Bannister, Jennifer	New Zealand	
Polypodiaceae) from New	M.; Mildenhall, Dallas C.;	Journal of	
Zealand bearing in situ	Lee, Daphne E.	Botany	2019

Table 3. Removed articles with authors, journal titles, and publication dates.

spores of			
Polypodiisporites.			
A New Species of	Kartini Kramadibrata;		
Scutellospora with a	Christopher Walker; Daniel		
Coiled Germination	Schwarzott; Arthur	Annals of	
Shield.	Schüßler	Botany	2000
A new species of the			
marattialean fern			
Scolecopteris (Zenker)			
Millay from the			
uppermost Permian of	He, Xiao-Yuan; Wang, Shi-	Botanical Journal	
Guizhou Province, south-	Jun; Hilton, Jason; Zhou,	of the Linnean	
western China.	Yi-Long	Society	2006
western China. A review of the fern genus	Yi-Long	Society	2006
	Yi-Long	Society	2006
A review of the fern genus	Yi-Long Brownsey, PJ; Ewans, R;	Society New Zealand	2006
A review of the fern genus Sticherus (Gleicheniaceae)			2006
A review of the fern genus Sticherus (Gleicheniaceae) in New Zealand with	Brownsey, PJ; Ewans, R;	New Zealand	2006 2013
A review of the fern genus <i>Sticherus</i> (Gleicheniaceae) in New Zealand with confirmation of two new	Brownsey, PJ; Ewans, R; Rance, B; Walls, S; Perrie,	New Zealand Journal of	
A review of the fern genus <i>Sticherus</i> (Gleicheniaceae) in New Zealand with confirmation of two new species records.	Brownsey, PJ; Ewans, R; Rance, B; Walls, S; Perrie, LR	New Zealand Journal of	
A review of the fern genus <i>Sticherus</i> (Gleicheniaceae) in New Zealand with confirmation of two new species records. A revised classification of	Brownsey, PJ; Ewans, R; Rance, B; Walls, S; Perrie, LR Ma, Xiao-Dong; Wang, Ai-	New Zealand Journal of	
A review of the fern genus <i>Sticherus</i> (Gleicheniaceae) in New Zealand with confirmation of two new species records. A revised classification of Chinese Davalliaceae	Brownsey, PJ; Ewans, R; Rance, B; Walls, S; Perrie, LR Ma, Xiao-Dong; Wang, Ai- Hua; Wang, Fa-Guo; He,	New Zealand Journal of	

morphological			
characteristics.			
A total-evidence			
phylogeny of the lady fern	Wei, Ran; Ebihara, Atsushi;		
genus Athyrium Roth	Zhu, Yan-Mei; Zhao, Cun-	Molecular	
(Athyriaceae) with a new	Feng; Hennequin, Sabine;	Phylogenetics &	
infrageneric classification.	Zhang, Xian-Chun	Evolution	2018
An expanded phylogeny			
of the Dennstaedtiaceae			
ferns: Oenotrichia falls			
within a non-			
monophyletic			
Dennstaedtia, and	Perrie, Leon R.; Shepherd,	Australian	
Saccoloma is	Lara D.; Brownsey, Patrick	Systematic	
polyphyletic.	J.	Botany	2015
Arsenic			
hyperaccumulation by	Zhao, F. J.; Dunham, S. J.;		
different fern species.	McGrath, S. P.	New Phytologist	2002
Botrychium simplex E.			
Hitchc. (Ophioglossaceae)		Biodiversity:	
a new species for the	Parnikoza, Ivan Yu.; Celka,	Research &	
native flora of Ukraine.	Zbigniew	Conservation	2016

Chloroplast DNA			
sequences indicate the			
grammitid ferns			
(Polypodiaceae) in New			
Zealand belong to a single		New Zealand	
clade, Notogrammitis gen.		Journal of	
nov.	Perrie, LR; Parris, BS	Botany	2012
Chloroplast DNA			
sequences support the			
transfer of the New			
Caledonian endemic fern	Perrie, LR; Shepherd, LD;	New Zealand	
Sphenomeris alutacea to	Thouvenot, L; von Konrat,	Journal of	
Odontosoria.	М	Botany	2014
Odontosoria.	M Chen, Cheng-Wei; Lindsay,	Botany	2014
<i>Odontosoria</i> . Clarification of Two		Botany	2014
	Chen, Cheng-Wei; Lindsay,	Botany	2014
Clarification of Two	Chen, Cheng-Wei; Lindsay, Stuart; Yong, Kien Thai;	Botany	2014
Clarification of Two Poorly Known Vittarioid	Chen, Cheng-Wei; Lindsay, Stuart; Yong, Kien Thai; Mustapeng, Andi Maryani	Botany	2014
Clarification of Two Poorly Known Vittarioid Ferns (Pteridaceae):	Chen, Cheng-Wei; Lindsay, Stuart; Yong, Kien Thai; Mustapeng, Andi Maryani A.; Amoroso, Victor B.;		2014 2019
Clarification of Two Poorly Known Vittarioid Ferns (Pteridaceae): <i>Haplopteris angustissima</i>	Chen, Cheng-Wei; Lindsay, Stuart; Yong, Kien Thai; Mustapeng, Andi Maryani A.; Amoroso, Victor B.; Dang, Viet Dai; Huang,	Systematic	
Clarification of Two Poorly Known Vittarioid Ferns (Pteridaceae): <i>Haplopteris angustissima</i> and <i>H. capillaris</i> .	Chen, Cheng-Wei; Lindsay, Stuart; Yong, Kien Thai; Mustapeng, Andi Maryani A.; Amoroso, Victor B.; Dang, Viet Dai; Huang,	Systematic	
Clarification of Two Poorly Known Vittarioid Ferns (Pteridaceae): <i>Haplopteris angustissima</i> and <i>H. capillaris</i> . Description and	Chen, Cheng-Wei; Lindsay, Stuart; Yong, Kien Thai; Mustapeng, Andi Maryani A.; Amoroso, Victor B.; Dang, Viet Dai; Huang, Yao-Moan	Systematic Botany	

arborescent ferns from			
Brazilian Mixed			
Ombrophylus Forest.			
		American Fern	
ERRATA.		Journal	2009
Erratum to: The fern			
genus Polybotrya			
(Dryopteridaceae) in the			
Atlantic Forest of Brazil,			
with the description of a	Canestraro, Bianca; Labiak,		
new species.	Paulo	Brittonia	2015
		American Fern	
ERRATUM.		American Fern Journal	2007
ERRATUM. Genetic and			2007
			2007
Genetic and	Shepherd, Lara D.;		2007
Genetic and morphological	Shepherd, Lara D.; Brownsey, Patrick J.;		2007
Genetic and morphological identification of a	-		2007
Genetic and morphological identification of a recurrent <i>Dicksonia</i> tree	Brownsey, Patrick J.;		2007 2019
Genetic and morphological identification of a recurrent <i>Dicksonia</i> tree fern hybrid in New	Brownsey, Patrick J.; Stowe, Chris; Newell,	Journal	
Genetic and morphological identification of a recurrent <i>Dicksonia</i> tree fern hybrid in New Zealand.	Brownsey, Patrick J.; Stowe, Chris; Newell,	Journal	

High endemism and stem			
density distinguish New	Ibanez, Thomas; Blanchard,		
Caledonian from other	E; Hequet, V; Keppel, G;		
high-diversity rainforests	Laidlaw, M; Pouteau, R;	Annals of	
in the Southwest Pacific.	Vandrot, H; Birnbaum, P	Botany	2018
Lista Con Anotaciones De			
Los Pteridófitos Del	Tejero-Díez, J. Daniel;		
Eastado De México,	Arreguín-Sánchez, Ma. De	Acta Botanica	
México	La Luz	Mexicana	2004
	Bauret, Lucie; Gaudeul,		
Madagascar sheds new	Myriam; Sundue, Michael		
light on the molecular	A.; Parris, Barbara S.;		
systematics and	Ranker, Tom A.;		
biogeography of	Rakotondrainibe, France;		
grammitid ferns: New	Hennequin, Sabine;		
unexpected lineages and	Ranaivo, Jaona; Selosse,	Molecular	
numerous long-distance	Marc-André; Rouhan,	Phylogenetics &	
dispersal events.	Germinal	Evolution	2017
Mycopteris, a new			
neotropical genus of			
grammitid ferns			
(Polypodiaceae).	Sundue, Michael	Brittonia	2014

New Combinations in			
Serpocaulon and a			
Provisional Key for the			
Atlantic Rain Forest	Labiak, Paulo Henrique;	American Fern	
Species.	Prado, Jefferson	Journal	2008
New insights into the			
phylogeny of Pleopeltis			
and related Neotropical	Otto, Elisabeth M.; Janssen,	Molecular	
genera (Polypodiaceae,	Thomas; Kreier, Hans-	Phylogenetics &	
Polypodiopsida)	Peter; Schneider, Harald	Evolution	2009
Phylogenetic relationships			
of the fern genus			
Christiopteris shed new			
light onto the			
classification and	Schneider, Harald; Kreier,	Botanical Journal	
biogeography of	Hans-Peter; Hovenkamp,	of the Linnean	
drynarioid ferns.	Peter; Janssen, Thomas	Society	2008
Phylogeny and			
classification of the Cuban	Lóriga, Josmaily; Vasco,		
species of Elaphoglossum	Alejandra; Regalado, Ledis;	Plant	
(Dryopteridaceae), with	Heinrichs, Jochen; Moran,	Systematics &	
description of	Robbin	Evolution	2014

Elaphoglossum sect.			
Wrightiana sect. nov.			
Phylogeny of the fern	Ohlsen, Daniel J.; Perrie,		
family Aspleniaceae in	Leon R.; Shepherd, Lara	Australian	
Australasia and the south-	D.; Brownsey, Patrick J.;	Systematic	
western Pacific.	Bayly, Michael J.	Botany	2015
Phylogeny of the fern			
subfamily Pteridoideae			
(Pteridaceae;			
Pteridophyta), with the	Zhang, Liang; Zhou, Xin-	Molecular	
description of a new	Mao; Lu, Ngan Thi; Zhang,	Phylogenetics &	
genus: Gastoniella.	Li-Bing	Evolution	2017
Ploidy level and genome			
size variation in the			
homosporous ferns		Plant	
Botrychium s.l.	Dauphin, Benjamin; Grant,	Systematics &	
(Ophioglossaceae).	Jason; Mráz, Patrik	Evolution	2016
Reticulate evolution on a			
global scale: A nuclear			
phylogeny for New World	Sessa, Emily B.; Zimmer,	Molecular	
Dryopteris	Elizabeth A.; Givnish,	Phylogenetics &	
(Dryopteridaceae)	Thomas J.	Evolution	2012

Taxonomic notes on the			
New Zealand flora:			
lectotypes in	Brownsey, Patrick J.;	New Zealand	
Dryopteridaceae and	Perrie, Leon R.; Field,	Journal of	
Nephrolepidaceae.	Ashley R.	Botany	2019
Taxonomic Placement of			
Unassigned Species of	Gardner, Jessica J. S.;		
Lastreopsid Ferns	Perrie, Leon; Shepherd,		
(Dryopteridaceae) Using	Lara; Nagalingum, Nathalie	Systematic	
Phylogeny.	S.	Botany	2017
The Genus Dryopteris		Contributions.	
(Pteridophyta):		Section of	
Dryopteridaceae) in the		Natural,	
Flora of the Repuplic of		Mathematical &	
Madedonia – 30 Years		Biotechnical	
After Micevski's Flora	Melovski, Ljupco	Sciences	2016
The Genus			
Hymencispienium			
(Aspleniaceae) in Cuba,			
Including New			
Combinations for the	Gabancho, Ledis Regalaijo;	American Fern	
Neotropical Species.	Prada, Carmen	Journal	2011

Tryonia, a new taenitidoid			
fern genus segregated			
from Jamesonia and	Cochran, Alyssa T.; Prado,		
Eriosorus (Pteridaceae).	Jefferson; Schuettpelz, Eric	PhytoKeys	2014

Appendix A: Journal Article Reviewing Form

Reviewer*

Nick

O Dr. Link-Perez

Article (Format: #_First-Author_Year) *

Your answer

Explicitly Stated Species Concept

🔵 Yes

○ No

If explicit species concept, where in the paper

Abstract
Introduction
Methods
Results
Discussion
Conclusion
Appendices
Other:

Explicitly Stated Hypothesis

If an explicit hypothesis, where in the paper?

	Abstract	
	Introduction	
	Methods	
	Results	
	Discussion	
	Conclusion	
	Appendices	
	Other:	
Morphological Species Concept Data Types		
	Macroscopic	
	Microscopic	
	Other:	
Diel	Ingring I Species Concept Data Types	
BIO	ogical Species Concept Data Types	
	Molecular Data (Isozymes, Chromosomes/DNA)	
	Non-Molecular Data (Crossing)	
	Other:	

Evolutionary Species Concept Data Types

	Morphological (Differences Among Related Taxa)
	Biogeographical (Ecological and Geographical Range)
	Phylogenetic (Proposed Phylogeny)
	Geological (Paleobotanical and Geological Data)
	Other:
Con	cept(s) Used
	Biological Species Concept
	Morphological Species Concept
	Evolutionary Species Concept
	Other:
Hyb	rid Taxa?
0	Yes
0	No
0	Other: