Utility of the MMPI–2-RF (Restructured Form) Validity Scales in Detecting Malingering in a Criminal Forensic Setting: A Known-Groups Design

Martin Sellbom
University of Alabama - Tuscaloosa

Joseph A. Toomey
John Jay College of Criminal Justice

Dustin B. Wygant
Eastern Kentucky University, dustin.wygant@eku.edu

L. Thomas Kucharski
John Jay College of Criminal Justice

Scott Duncan
United States Penitentiary, Atlanta, Georgia

Follow this and additional works at: https://encompass.eku.edu/psychology_fsresearch

Part of the Clinical Psychology Commons

Recommended Citation

This Article is brought to you for free and open access by the Psychology at Encompass. It has been accepted for inclusion in Psychology Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.
Utility of the MMPI–2-RF (Restructured Form) Validity Scales in Detecting Malingering in a Criminal Forensic Setting: A Known-Groups Design

Martin Sellbom
The University of Alabama

Joseph A. Toomey
John Jay College of Criminal Justice

Dustin B. Wygant
Eastern Kentucky University

L. Thomas Kucharski
John Jay College of Criminal Justice

Scott Duncan
United States Penitentiary, Atlanta, Georgia

The current study examined the utility of the recently released Minnesota Multiphasic Personality Inventory—2 Restructured Form (MMPI–2-RF; Ben-Porath & Tellegen, 2008) validity scales to detect feigned psychopathology in a criminal forensic setting. We used a known-groups design with the Structured Interview of Reported Symptoms (SIRS; Rogers, Bagby, & Dickens, 1992) as the external criterion to determine groups of probable malingering versus nonmalingering. A final sample of 125 criminal defendants, who were administered both the SIRS and the MMPI–2-RF during their evaluations, was examined. The results indicated that the two MMPI–2-RF validity scales specifically designed to detect overreported psychopathology, F-r and FP-r, best differentiated between the malingering and nonmalingering groups. These scales added incremental predictive utility to one another in this differentiation. Classification accuracy statistics substantiated the recommended cut scores in the MMPI–2-RF manual (Ben-Porath & Tellegen, 2008) in this forensic setting. Implications for these results in terms of forensic assessment and detection of malingering are discussed.

Keywords: MMPI–2-RF, validity scales, malingering, forensic assessment

It is vital that psychologists have instruments at their disposal that can effectively determine the veracity of symptom presentation in forensic psychological evaluations given the high stakes associated with such proceedings. It is not uncommon for criminal defendants to feign psychopathology (particularly psychosis) during the course of competency and criminal responsibility evaluations to avoid or delay punishment (Rogers, 2008). To date, the Minnesota Multiphasic Personality Inventory—2 (MMPI–2; Butcher et al., 2001) is one of the most widely used instruments of any general assessment measure (i.e., personality assessment, intelligence assessment, neuropsychological assessment, etc.) used by clinical psychologists across various clinical and forensic settings (Archer, Buffington-Vollum, Stredny, & Handel, 2006; Camara, Nathan, & Puente, 2000; Lally, 2003). The instrument has also been touted by neuropsychologists as one of the top five most widely used instruments in the determination of response bias (Sharland & Gfeller, 2007). Additionally, numerous meta-analyses (e.g., Berry, Baer, & Harris, 1991; Rogers, Sewell, Martin, & Vitacco, 2003; Rogers, Sewell, & Salekin, 1994) have found the MMPI–2 Infrequency scales effective in identifying overreported psychopathology.

Most of the studies included in the aforementioned meta-analyses, however, have involved analogue simulation designs. These research designs typically involve the administration of the MMPI–2 to psychologically well-adjusted college students under the instruction to feign symptoms of mental illness and comparing them to psychiatric patients (e.g., Graham, Watts, & Timbrook, 1991). Though simulation studies provide important experimental control, they are often limited with regard to external validity, making it difficult to determine the degree to which the results generalize to actual forensic evaluations. Rogers et al. (1994) and Rogers and Bender (2003) specifically noted that the majority of the malingering research involving the MMPI–2 has been void of actual malingerers.

Although they represent the standard in cognitive malingering research, studies utilizing a known-groups design (i.e., defining symptom-overreporting groups based on an empirically validated response bias criterion) are scarce with regard to feigned psychopathology and are sometimes confounded by methodological con-
cerns. For example, Gassen, Pietz, Spray, and Denney (2007) found Megargee’s (2004) Criminal Offender Infrequency (Fo) scale produced the highest hit rate of any MMPI–2 validity scale in detecting criminal defendants who were classified as malinger-
ing by the Structured Interview of Reported Symptoms (SIRS; Rogers, Bagby, & Dickens, 1992). However, it is difficult to determine how to interpret these results, as defendants were only administered the SIRS if the evaluating clinician determined that their MMPI–2 results were indicative of symptom feigning. Lewis, Simcox, and Berry (2002) also investigated a sample of criminal defendants using the SIRS as the criterion for defining malinger-
ing. However, the authors noted that, to increase the number of feigning participants for comparison, a portion of the selected sample was only administered the MMPI–2 and SIRS “because of clinical suspicion of feigning” (Lewis et al., 2002, p. 172). Utiliz-
ing the procedures in the two aforementioned studies makes sense in clinical practice; however, such practice raises the possibility of criterion contamination and could therefore confound accurate prediction models.

Furthermore, studies that investigate the utility of the MMPI–2 validity scales in forensic populations are also rare (Bagby, Rogers, & Buis, 1994; Iverson, Franzen, & Hammond, 1995; Lewis et al., 2002; Wygant et al., 2007). For instance, Wygant et al. (2007) examined the relationship between MMPI–2 validity scales and cognitive symptoms validity measures across civil and criminal forensic settings and found that Infrequency (Fi) and Infrequency-Psychopathology (Fi–p) were related to cognitive response bias in addition to overreported psychopathology in criminal forensic evaluations. Utilizing exploratory factor analysis, Nelson, Sweet, Berry, Bryant, and Granacher (2007) suggested that F and Fi–p load on a factor representative of overreporting psychotic/rarely en-
dorsed symptoms among compensation seeking plaintiffs.

Recently, two studies employing known-groups designs (Boccaccini, Murrie, & Duncan, 2006; Toomey, Kucharski & Duncan, 2009) examined archival samples of criminal defendants derived from the same setting who had been administered both the MMPI–2 and SIRS as part of a forensic evaluation. These studies found that the F (Boccaccini et al., 2006; Toomey et al., 2009) and the Fi–p (Toomey et al., 2009) scales performed quite well in differentiating between a SIRS-defined malinger group and a nonmalinger group. To summarize, in a review of the extensive literature of the F and Fi–p scales in detecting malingering in both simulation and known-groups designs, Berry and Schipper (2007) noted that while considerable consistency is evident among mean cutting scores, sensitivity, specificity, and effect sizes (Cohen’s ds) across the two designs, there appears to be a large decline in mean cut scores for F and mean sensitivity for Fi–p when moving from simulation to known-groups designs. However, the authors nonetheless noted that, overall, in psychiatric and criminal neuropsychological evaluations, the use of F and Fi–p to assess feigning and exaggeration appear well supported (Berry & Schipper, 2007). No study to date, however, has examined the MMPI–2 Restructured Form (MMPI–2-RF; Ben-Porath & Tellegen, 2008) validity scales using a known-groups design in a criminal forensic setting.

The MMPI–2 Restructured Form

The MMPI–2-RF is a substantially shortened version of the test designed to represent the clinically significant substance of the MMPI–2 item pool with a comprehensive set of psychometrically efficient measures. It is linked conceptually and empirically to modern theories and models of psychopathology and personality. The test includes six sets of scales: Validity, Higher-Order, Re-
structured Clinical (RC), Specific Problem, Interest, and Person-
ality Psychopathology Five scales.

The current investigation focused on the validity of the MMPI–2-RF scales designed to measure symptom overreporting. These indicators include revised versions of three current MMPI–2 scales and a new measure introduced with the MMPI–2-RF. The Infrequent Responses (Fi–r) scale serves as a general overreporting indicator and comprises 32 items that are rarely endorsed by the test’s normative sample (i.e., were answered in the keyed direction by 10% or less of both men and women in the sample).

The Infrequent Psychopathology Responses (Fi–p–r) scale is an indicator of overreported symptoms of severe psychopathology. The MMPI–2 Fi–p scale, composed of 27 items, was developed originally by Arbisi and Ben-Porath (1995) to complement the F scale, on which scores are confounded by genuine reports of severe psychopathology. Fi–p–r is shorter than its MMPI–2 counterpart, consisting of 21 items, 17 of which also are scored on Fi–p. Item reduction involved the removal of those items also scored on the MMPI–2 Lie scale, those included on the new Infrequent Somatic Responses (Fi–s) scale, and several with wording judged to be ambiguous. Four items were also added to Fi–p–r based on multiple regression analyses that indicated that they could contribute incre-
mentally to the scale in the detection of overreported test protocols (Tellegen & Ben-Porath, 2008).

The Fi–s scale was added to the MMPI–2-RF to measure overre-
ported somatic complaints using the traditional infrequency ap-
proach. Wygant, Ben-Porath, and Arbisi (2004) developed Fi–s by identifying 16 items with somatic content that were endorsed by less than 25% of patients in two large archival medical samples and an archival chronic pain sample, comprising over 55,000 patients. Wygant (2007) examined the scale in several simulation, known-groups, and mental health samples and found that it was significantly elevated among patients who failed cognitive symp-
tom validity tests and participants instructed to feign symptoms consistent with a head injury. Fi–s was also less correlated with measures of genuine somatic complaints and mood psychopathol-
ogy than other MMPI–2 validity scales, and the scale added incrementally to other MMPI–2 validity scales in predicting various response bias criteria.

Finally, a revised version of the Symptom Validity (FBS–r) scale assesses noncredible somatic and neurocognitive complaints. Research has found that the original Symptom Validity scale (Lees-Haley, English, & Glenn, 1991),¹ which was developed specifically as a validity scale for use in civil forensic assessments, is sensitive to noncredible somatic responding (e.g., Bianchini, Etherton, Greve, Heinly, & Meyers, 2008; Larrabee, 1998, 2003), suboptimal effort on cognitive symptom validity tests (e.g., Greifffenstein, Baker, Gola, Donders, & Miller, 2002; Larrabee, 2003; Ross, Millis, Krukowski, Putnam, & Adams, 2004; Wygant et al.,

¹ The Symptom Validity Scale (FBS–r) was formerly labeled the Fake Bad Scale but was renamed when officially adopted on the MMPI–2 scoring materials to better reflect its construct validity and to avoid the negative connotation associated with such a label.
2007), and malingered neurocognitive dysfunction (Greve, Bianchini, Love, Brennan, & Heiny, 2006). The FBS-r comprises 30 of the original 43 FBS items. Whereas the three infrequency scales, F-r, Fp-r, and Fg, do not overlap in content, FBS-r shares three items with Fg and one with Fp-r.

Ben-Porath and Tellegen (2008) reported correlations between the MMPI–2-RF and MMPI–2 versions of F-r, Fp-r, and FBS-r showing strong covariation in scores on the original and revised scales (correlation coefficients greater than .90). However, they noted the need to examine the utility and efficiency of various cutoffs on the revised scales in detecting noncredible symptom reporting. To date, only one published study has examined the validity and clinical utility of the MMPI–2-RF validity scales designed to detect overreporting. Wygant et al. (2009) examined the these scales in two simulation samples and one known-groups sample that utilized cognitive symptom validity tests as a criterion and found that the scales were able to detect the various threats to protocol validity in civil forensic settings.

The Current Study

The current investigation was designed to examine the validity and clinical utility of the MMPI–2-RF validity scales in detecting malingered psychopathology in a known-groups design. We used the SIRS (Rogers et al., 1992), a well-validated measure of malingered often considered a gold standard, as the external criterion. Because the SIRS primarily reflects malingered of extreme psychopathology, we expected that the F-r and Fp-r scales would exhibit greater utility in differentiating between the malingered and nonmalingered groups than would Fs and FBS-r, which are specifically focused on detecting noncredible somatic and neurocognitive responding. Because of their nonoverlapping nature, somewhat differing detection strategies (rare symptoms [Fp-r] vs. quasi-rare symptoms [F-r]; see Rogers, 2008), and the fact that F-r is more saturated with emotional content whereas Fp-r is more associated with bizarre content (Tellegen & Ben-Porath, 2008), we expected that these scales would add incremental predictive utility to one another in detecting malingered. Finally, we also examined the optimal cut scores for these scales in detecting malingered psychopathology and compared them to those proposed in the MMPI–2-RF manual (Ben-Porath & Tellegen, 2008).

Method

Participants

Potential participants consisted of 155 men who were selected from an archival database of criminal defendants referred by the federal courts for competency to stand trial, criminal responsibility, or aid-in-sentencing evaluations between 1994 and 2004. 2 A large portion of these data has been used previously in the examination of MMPI–2 validity scales (Toomey et al., 2009). Each of these individuals had been administered the MMPI–2 and the SIRS (Rogers et al., 1992) as part of their psychological evaluation. Individuals who produced an excessive amount of unscorable responding (i.e., Cannot Say > 17), inconsistent (i.e., Variable Response Inconsistency [VRIN-r] > 79T), or indiscriminant fixed (i.e., True Response Inconsistency [TRIN-r] > 79T) responding based on MMPI–2-RF scales were excluded from the study. These criteria led to the exclusion of 30 (or 19.4%) individuals.

The final sample consisted of 125 men with a mean age of 36.7 years (SD = 10.2). They had an average education of 10.2 years (SD = 2.9). In terms of race/ethnicity, participants were Caucasian (51.8%), African American (44.0%), or Hispanic (3.5%), with the remaining participants of other or mixed ethnicities. Almost 64% of the sample reported prior mental health treatment, while 38% reported a history of at least one prior psychiatric hospitalization (M = 2.7, SD = 7.2). Approximately 84% of participants reported substance abuse problems, and 94% had at least one prior felony conviction. There were no statistically significant differences between those participants included versus excluded based on MMPI–2-RF criteria on any of these descriptive variables.

Measures

MMPI–2-RF. The MMPI–2-RF (Ben-Porath & Tellegen, 2008) is a 338-item self-report inventory on which participants respond “true” or “false” to a variety of statements indicating personality and psychopathology. The entire MMPI–2-RF item pool can be derived from the original MMPI–2 (administered in this sample), and the same normative sample is used with a few modifications (Ben-Porath & Tellegen, 2008). The MMPI–2-RF technical manual provides extensive reliability and validity data for this instrument (Tellegen & Ben-Porath, 2008). In addition, Tellegen and Ben-Porath (2008) presented data indicating that the MMPI–2-RF scale scores derived from administration of the 567-item MMPI–2 booklet are interchangeable with results obtained from administration of the 338-item MMPI–2-RF booklet, which included virtually identical mean scale elevations and correlations with external criteria. For this study, we used the F-r, Fp-r, Fs, and FBS-r validity scales. See the earlier description of their development and initial validation. We also used the RC scales for the differential symptoms presentation analyses described later.

SIRS. The SIRS (Rogers et al., 1992) was used as the external criterion from which malingered and nonmalingered groups were derived. It is a 172-item structured interview designed to assess malingered and overreported response styles. It contains eight primary scales that are designed for specific detection strategies. These include Rare Symptoms, Improbable and Absurd Symptoms, Symptom Combinations, Blatant Symptoms, Subtle Symptoms, Symptom Severity, Symptom Selectivity, and Reported Versus Observed Symptoms scales. Four classifications can be derived from each scale: honest, indeterminate, probable faking, and definite faking. Several reviews (e.g., Rogers, 2001) have indicated excellent psychometric properties for the SIRS, and it has been frequently used as an external criterion measure in known-groups designs for other structured interviews (e.g., Vitacco, Rogers, Gabel, & Munizza, 2007) and self-report inventories (e.g., Edens, Poythress, & Watkins-Clay, 2007) designed to detect malingered. Because we used an archival database in which we did not have

2 Previous research from this archival database has indicated that about 83% of all individuals evaluated were administered the SIRS. There was no discernible pattern as to why this instrument was administered versus not administered. There were no significant differences between those administered versus not administered the SIRS on any demographic or mental health variables (see e.g., Boccaccini et al., 2006; Toomey et al., 2009).
access to individual SIRS items, we were unable to calculate reliability estimates for the current sample. However, numerous previous studies have shown acceptable to excellent internal consistencies (range: .77–.96) and excellent interrater reliability (range: .97–1.00) for SIRS scales (e.g., Rogers et al., 1992; Ustad, 1998; Vitacco et al., 2007).

Procedures

We employed a known-groups design (see Rogers, 2008) to examine the utility of the MMPI–2-RF validity scales in detecting malingering. The SIRS was used as an external criterion to determine group membership (i.e., malingering or nonmalingering). We used a strict cutoff of three or more subscales in the probable range or one score in the definite range to determine malingering, as this cutoff off has been well validated in forensic populations (e.g., Rogers, Hinds, & Sewell, 1996). This resulted in 27 participants (or 21.6%) being classified as malingering. The remaining 98 participants were classified as nonmalingering. Moreover, the SIRS manual classifies individuals who score in the probable range on one or two subscales as indeterminate. Eight (or 6.4%) participants in the present sample would fall in this category. Because this group would be too small to be analyzed separately but their presence in the nonmalingering group might violate the assumption of a bona fide known-groups design, we also compared the malingering group to a nonmalingering group (n = 90) from which these 8 indeterminate participants were excluded.

The participants represented an archival sample of convenience and were not randomly selected. Each participant had undergone a psychological evaluation for the federal court. All treatment and psychiatric hospitalization information was gathered through pretrial service reports, prior hospitalization records, and clinical interviews. All psychological testing was conducted by the forensic evaluator taking the ability and cooperation of the defendant into consideration. Those who were not fluent in English, refused specific psychological tests, or produced protocols suggestive of inconsistent responding were excluded as stated earlier. The use of human participants for this study was approved by the Federal Bureau of Prisons and university institutional review boards.

Results

For all analyses, we used untruncated T scores for MMPI–2-RF scales. Tellegen and Ben-Porath (2008) recommend the use of these scores as artificially truncating validity scale scores (20T at the lower end and 120T at the higher end) and substantive scale scores (20T at the lower end and 100T at the higher end) artificially restricts the range of these variables and, thus, attenuates variance.

Differential Symptom Presentation

Figure 1 shows the mean profiles for the research conditions (i.e., malingering vs. two nonmalingering groups) on the MMPI–2-RF RC scales. We conducted this analysis with the expectation that malingering participants actually exaggerate their symptom presentation relative to the nonmalingering participants. A Bonferroni-corrected alpha set at p < .006 (i.e., .05/9 comparisons) was applied for each individual comparison. Overall multivariate analysis of variance (MANOVA) models were significant, Hotelling’s $T^2 = 1.068, F(9, 115) = 13.65, p < .001, \eta^2 = 0.52$ for the malingering versus nonmalingering group (including indeterminates), and Hotelling’s $T^2 = 1.426, F(9, 107) = 16.95, p < .001, \eta^2 = 0.59$, for the malingering versus nonmalingering group (excluding indeterminates). The malingering group had significantly higher scores in all of the RC scales (except RC3 [Cynicism] and RC9 [Hypomanic Activation]) relative to both nonmalingering groups, all Fs > 18.72, all ps < .001, all η^2s > 0.13 (vs. nonmalingering group including indeterminates), and all Fs > 19.97, all ps < .001, all η^2s > 0.15 (vs. nonmalingering group excluding indeterminates).

Validity Scale Group Differences

We next conducted a one-way MANOVA to determine whether there were overall differences on the MMPI–2-RF overreporting validity scales across the two conditions. The overall models were statistically significant—Hotelling’s $T^2 = .983, F(4, 120) = 29.49, p < .001, \eta^2 = .50$ (malingering vs. nonmalingering with intermediates), and Hotelling’s $T^2 = 1.356, F(4, 112) = 37.98, p < .001, \eta^2 = .58$ (malingering vs. nonmalingering without intermediates). We followed up with univariate analyses of variance and Tukey’s honestly significant difference post hoc tests for each individual validity scale (i.e., F–r, Fp–r, Fc, and FBS–r) to test for differences between the malingering and nonmalingering groups. These results are displayed in Table 1. All four validity scale scores in the malingering condition were significantly higher compared to those of the nonmalingering condition. F–r and Fp–r had the largest effect sizes, as expected, given that these scales were designed to detect overreported psychopathology. FBS–r had a larger effect size relative to Fc, which is not surprising given the

3 We realize that no individual method of detecting malingering is perfect; as such, these groups would be best referred to as probable malingering and probable nonmalingering. However, for simplicity of writing, we do not use probable when referring to these conditions.
broader nature of the overreported symptoms captured by the FBS-r scale. The pattern of results was identical, albeit with slightly larger effect sizes, when intermediate malingering participants were removed from the nonmalingering group.

Incremental Validity

We next conducted hierarchical logistic regression analyses to determine whether other scales added to F-r or FP-r in differentiating between malingering and nonmalingering conditions. We chose these two scales because they were developed to detect overreporting of psychopathology and are associated with the largest effect sizes in this sample. We conducted six separate planned regression analyses. First, we examined whether any of the scales would add incremental predictive utility to F-r. In three regressions, F-r was entered in the first step, and FP-r, FS, or FBS-r was entered in the second step. Next, three additional analyses were conducted in which FP-r was entered in the first step and the remaining three scales in respective second steps. These analyses were repeated when intermediate malingering participants were removed from the nonmalingering groups. Table 2 shows the results of these analyses, which indicate that only FP-r added incrementally to F-r in differentiating the malingering and nonmalingering conditions. In the analyses where FP-r was entered first, both F-r and FBS-r added significant incremental utility to FP-r. This pattern was identical when intermediate malingerers were removed.

Classification Accuracy

Classification accuracies of the F-r and FP-r validity scales in differentiating the two overreporting groups from the patient group were examined using receiver operating characteristic (ROC) curves, which are calculated based on a function of sensitivity and 1-specificity. Overall predictive performance was assessed using the area under the ROC curve (AUC). In addition, positive and negative predictive powers (PPP and NPP) are indices of diagnostic efficiency in that they provide a probability that the individual is (or is not) engaging in invalid responding given a certain cutoff value. Although predictive powers are more directly meaningful to clinicians (because they only have access to a test score) and therefore emphasized here, they are heavily influenced by base rates. We therefore provide estimates of predictive powers across three different base rates, (a) base rate of .15, because it represents the lower end of empirically identified overreporting rates (Rogers, Salekin, Sewell, Goldstein, & Leonard, 1998; Rogers et al., 1994); (b) base rate of .30, which represents the higher end of empirically derived overreporting rates (e.g., Mittenberg, Patton, Canyock, & Condit, 2002); and (c) base rate of .50, which yields the fewest classification errors (i.e., sensitivity and specificity are maximized), but also because Ardolf, Denney, and Houston (2007) found that negative response bias could occur in over 50% in individuals referred for consecutive criminal evaluations.

We selected a range of possible optimal cutoff scores with an emphasis on reducing false-positive predictions. In most clinical situations, there is an emphasis on minimizing false-positive prediction errors (i.e., 1-PPP), as clinicians prefer to avoid designating test takers as malingerers unless substantial evidence for such responding is present. This is favorable to avoiding false-negative predictions, as such errors have less potential negative impact on the individual. Bagby et al. (1994) recommended that PPP values should never be lower than .80 (i.e., false-positive prediction error rate of 20%); however, in high-stakes settings such as these, we would argue for even greater PPP values of .90 or higher (cf. Rogers, 2008).

For ROC analyses with F-r, the AUC was .91 (SE = .029) for differentiating the malingering and nonmalingering conditions. The AUC increased to .93 (SE = .027) when intermediate participants were excluded. The ROC curve of F-r (and relative to FP-r) can be seen in Figures 2A and 2B. The upper half of Table 3 displays the classification accuracy statistics, with statistics to the right of each slash mark indicating values after intermediate participants were removed. As seen in Table 3, sensitivity for F-r is

Table 1
Means, Standard Deviations, F Tests, and Cohen’s d Effect Size Estimates for Group Differences

<table>
<thead>
<tr>
<th>Scale</th>
<th>M (n = 25)</th>
<th>SD</th>
<th>M (n = 98)</th>
<th>SD</th>
<th>M (n = 90)</th>
<th>SD</th>
<th>F1</th>
<th>F2</th>
<th>d1</th>
<th>d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-r</td>
<td>141.92</td>
<td>23.42</td>
<td>82.00</td>
<td>29.54</td>
<td>79.10</td>
<td>27.37</td>
<td>94.57***</td>
<td>116.55***</td>
<td>2.11</td>
<td>2.37</td>
</tr>
<tr>
<td>FP-r</td>
<td>122.38</td>
<td>35.54</td>
<td>68.94</td>
<td>22.44</td>
<td>66.37</td>
<td>19.32</td>
<td>91.04***</td>
<td>113.41***</td>
<td>2.07</td>
<td>2.34</td>
</tr>
<tr>
<td>F3</td>
<td>98.94</td>
<td>25.87</td>
<td>69.17</td>
<td>24.80</td>
<td>67.06</td>
<td>24.02</td>
<td>29.95***</td>
<td>35.29***</td>
<td>1.19</td>
<td>1.30</td>
</tr>
<tr>
<td>FBS-r</td>
<td>86.47</td>
<td>14.03</td>
<td>60.97</td>
<td>16.49</td>
<td>59.47</td>
<td>15.88</td>
<td>53.63***</td>
<td>62.98***</td>
<td>1.59</td>
<td>1.74</td>
</tr>
</tbody>
</table>

Note. F-r = Infrequent Responses; FP-r = Infrequent Psychopathology Responses; F3 = Infrequent Somatic Complaints; FBS-r = Symptom Validity; F1 = F test between malingering group and nonmalingering group including intermediates; F2 = F test between malingering group and nonmalingering group excluding intermediates; d1 = effect size for difference between malingering group and nonmalingering group including intermediates; d2 = effect size for difference between malingering group and nonmalingering group excluding intermediates.

***p < .001.
particularly good, in that it ranges from .89 (at 120T) to .96 (100T), and corresponding NPPs are even higher, indicating that most malingering participants will be identified at these scores. However, as stated earlier, the most important statistic here are PPP values, which, for F-r, do not become acceptable until the base rate reaches .50, with a cut score of 120T providing the best balance of predictive powers. The MMPI–2-RF manual (Ben-Porath & Tellegen, 2008) recommends that overreporting be suspected at F-r ≥ 100T, which is supported by the present results in that sensitivity and NPP (across base rates) rates are very high, but so are false-positive predictive error rates as well—an indication that a significant proportion of nonmalingers score high on F-r.

For ROC analyses with Fp-r, the AUC was .89 (SE = .037; and .91, SE = .035, when intermediates were excluded) for differentiating the malingering and nonmalingering conditions. Figures 2A and 2B display the ROC curve for Fp-r relative to F-r. The lower half of Table 3 displays the classification accuracy statistics. As seen in this table, sensitivity and PPP values are lower for Fp-r compared to F-r, indicating that this scale is less sensitive in correctly identifying malingers. However, with our stated emphasis on avoiding false-positive prediction errors, the results indicate that a cut score of 110T provides for the best PPP values (and better relative to F-r), but these do not become acceptable until higher base rates. Moreover, when more clean known groups are differentiated (i.e., intermediate participants removed), PPP values for Fp-r are substantially better, especially at low base rates. Furthermore, the MMPI–2-RF manual recommends that individuals who produce 80T or greater on Fp-r be considered as possibly overreporting (Ben-Porath & Tellegen, 2008). The present results support this recommendation, as such cut scores are associated with high sensitivity and NPP values, but in light of 78% specificity (and even lower PPP values), it will also yield many false-positive prediction errors (up to 60%) in settings where the base rate for overreporting is low.

Discussion

The goal of this investigation was to determine the utility of the MMPI–2-RF validity scales in detecting malingering in a known-groups design. We found that, as expected, F-r and Fp-r were the best scales in differentiating malingering and nonmalingering groups as determined by the SIRS. This differentiation was also associated with very large effect sizes, even by malingering research standards (d > 1.75; see Rogers, 2008). Moreover, the effect sizes derived from the current study are quite similar to those reported in Rogers et al.’s (2003) meta-analysis of the MMPI–2 validity scales (i.e., mean $d_s = 2.21$ and 1.90 for F and Fp, respectively), which suggests that F-r and Fp-r are as effective in differentiating between malingered and nonmalered profiles as their MMPI–2 counterparts.

The other two MMPI–2-RF validity scales designed to assess overreported response bias, Fs and FBS-r, performed less well. This finding was entirely expected, however, as F-r and Fp-r are designed to measure malingering of psychopathology, whereas Fs

Table 2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Model fit $\chi^2(df)$</th>
<th>w'</th>
<th>χ^2 change (df)</th>
<th>w' change</th>
<th>R^2</th>
<th>ΔR^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malingering group vs. nonmalingering group with intermediates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-r entered first</td>
<td>62.11***</td>
<td>.70</td>
<td>.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. Fp-r</td>
<td>65.78***</td>
<td>.73</td>
<td>3.67*</td>
<td>.17</td>
<td>.63</td>
<td>.03</td>
</tr>
<tr>
<td>2b. Fs</td>
<td>62.47***</td>
<td>.71</td>
<td>0.36</td>
<td>.05</td>
<td>.60</td>
<td>.00</td>
</tr>
<tr>
<td>2c. FBS-r</td>
<td>62.67***</td>
<td>.71</td>
<td>0.56</td>
<td>.07</td>
<td>.61</td>
<td>.01</td>
</tr>
<tr>
<td>Fp-r entered first</td>
<td>52.08***</td>
<td>.65</td>
<td>.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. F-r</td>
<td>65.78***</td>
<td>.73</td>
<td>13.70***</td>
<td>.33</td>
<td>.63</td>
<td>.10</td>
</tr>
<tr>
<td>2b. Fs</td>
<td>53.48***</td>
<td>.65</td>
<td>1.40</td>
<td>.11</td>
<td>.54</td>
<td>.01</td>
</tr>
<tr>
<td>2c. FBS-r</td>
<td>59.31***</td>
<td>.69</td>
<td>7.24***</td>
<td>.24</td>
<td>.58</td>
<td>.04</td>
</tr>
<tr>
<td>Malingering group vs. nonmalingering group without intermediates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-r entered first</td>
<td>69.50**</td>
<td>.77</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. Fp-r</td>
<td>75.44**</td>
<td>.80</td>
<td>5.94*</td>
<td>.23</td>
<td>.72</td>
<td>.04</td>
</tr>
<tr>
<td>2b. Fs</td>
<td>69.91**</td>
<td>.77</td>
<td>0.42</td>
<td>.06</td>
<td>.68</td>
<td>.00</td>
</tr>
<tr>
<td>2c. FBS-r</td>
<td>69.57**</td>
<td>.77</td>
<td>0.07</td>
<td>.02</td>
<td>.68</td>
<td>.00</td>
</tr>
<tr>
<td>Fp-r entered first</td>
<td>59.67***</td>
<td>.71</td>
<td>.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. F-r</td>
<td>75.44***</td>
<td>.80</td>
<td>15.77***</td>
<td>.37</td>
<td>.72</td>
<td>.11</td>
</tr>
<tr>
<td>2b. Fs</td>
<td>61.79***</td>
<td>.73</td>
<td>2.12</td>
<td>.13</td>
<td>.62</td>
<td>.01</td>
</tr>
<tr>
<td>2c. FBS-r</td>
<td>67.76***</td>
<td>.76</td>
<td>8.10*</td>
<td>.26</td>
<td>.66</td>
<td>.05</td>
</tr>
</tbody>
</table>

Note. Nagelkerke R^2 estimation was used for logistic regression. F-r = Infrequent Responses; Fp-r = Infrequent Psychopathology Responses; Fs = Infrequent Somatic Complaints; FBS-r = Symptom Validity; w' = effect size for χ^2 statistic; w' change = effect size for χ^2 change statistic.

$**p < .05.$ $***p < .01.$ $****p < .001.$
and FBS-r are more specifically focused on the detection of noncredible somatic and/or neurocognitive complaints (see Wygant et al., 2009). Nonetheless, FS and FBS-r were still associated with respectable effect sizes in differentiating the malingering and nonmalingering groups, suggesting some utility in this setting. This finding is also consistent with the previous observation that individuals in criminal forensic contexts tend to malinger symptoms across all three domains of response bias (i.e., psychopathology, cognitive, somatic), whereas individuals in civil forensic settings tend to be more specific in their symptom presentation (Wygant et al., 2007).

The current findings also indicate that F-r and Fp-r complement each other in detecting malingering. The regression analyses indicate that both add incremental predictive utility to one another, showing that both scales add something unique in differentiating between malingering and nonmalingering individuals. One potential reason for this finding is that F-r and Fp-r reflect different response bias detecting strategies (Rogers, 2008). Fp-r adheres to the more stringent rare symptoms strategy, which focuses on identifying symptoms that are rarely reported among genuine patients with mental illness (Rogers, 2008). F-r, on the other hand, corresponds best to the quasi-rare symptoms strategy, which focuses on identifying symptoms that are rare in a normal population, and it is quasi because individuals with actual psychopathology could endorse these items as well (Rogers, 2008). Thus, these strategies work in a complementary fashion in criminal forensic settings, likely because criminal forensic clients tend to be less sophisticated regarding the symptoms they report, as previously discussed (Wygant et al., 2007).

Although F-r performed quite well in this study, it is important to note a significant caution against solely relying on the quasi-rare symptom detection strategy. Rogers (2008; Rogers et al., 2003) noted that because these symptoms are not necessarily rare in clinical populations, items that are infrequent in normative (rather than clinical) populations may have different endorsement frequency in various clinical groups. This is exemplified by the original F scale, which demonstrated widely varying mean scores in different diagnostic groups (e.g., Rogers et al., 2003). This has significant implication for, among other things, determining optimal cut scores, which have indeed varied greatly for the original F scale (Rogers et al., 2003). However, as indicated earlier, F-r is different from the original F scale in an important way, as it is composed of infrequent items in the current MMPI–2 normative sample, whereas many items on the original F scales were no longer infrequently endorsed in the restandardization sample (Tellegen & Ben-Porath, 2008). Nonetheless, it is imperative that future research continue to examine F-r in various diagnostic groups to determine whether the same variations in mean scores persist. Such research would also have significant implications on deriving stable cut scores to classify malingering, which are discussed next.

Another important goal of this investigation was to determine optimal cut scores on the MMPI–2-RF validity scales to classify malingering versus nonmalingering defendants. We focused on F-r and Fp-r because these scales were associated with the greatest differentiation in this sample as well as being designed to measure overreporting of psychopathology. When determining optimal cut scores, it is important to consider whether the measures should be used to screen in or screen out malingering. The former would emphasize sensitivity and reducing false-negative prediction errors (i.e., $1 - H11002NPP$), but often at a cost of an increased false-positive error rate. Conversely, when the goal is to screen out malingerers, cut scores should emphasize high specificity and low false-positive prediction errors (i.e., $1 - H11002PPP$), at the cost of increased nondetection of malingering. Although our goal in recommending cut scores would be to minimize false-positive errors, as we would prefer to avoid designating test takers as malingerers unless substantial evidence for such responding is present, the present data can speak to the scales’ utility in both scenarios.
The current findings clearly show that the optimal cut score for F-r is 120T in this sample, which is in accordance with the recommended cut score outlined in the MMPI–2-RF manual (Ben-Porath & Tellegen, 2008); however, it is important to keep in mind that even at a high correct classification rate of nonmalingering (88%–91%), when base rates are very low, more than one third of positive predictions will be errors. Thus, clinicians should be careful using F-r as a screening-in tool in low base-rate settings. On the other hand, a cut score of 100T was associated with almost perfect sensitivity, that is, almost all malingering will score at least 100T on F-r. Thus, this scale could serve as an excellent screening measure of malingering, but clinicians should be aware that this scale has the potential to yield a high number of false-positive errors, especially at these lower cut scores.

The optimal cut score for F-pr in this investigation is 110T, which is slightly higher than the manual’s recommendation (100T; see Ben-Porath & Tellegen, 2008). F-pr was generally associated with less sensitivity than F-r but with higher rates of specificity, indicating that this scale will yield fewer false-positive classifications but also miss more individuals who mangle. Of course, it is important to note that even with high levels of specificity (97% when intermediate participants are removed), PPP values are low at the 15% base rate (.78) by any convention suggested earlier (i.e., .80 or .90), thus further emphasizing the difficulty of using these scales to rule in malingering.

It is important, however, to consider that clinicians would not use these scales in isolation when making decisions about malingering versus nonmalingering. Any test score warrants corroboration by extrastest information. As such, although F-r scores of 120T and/or F-pr scores of 110T might indicate a substantial likelihood for malingering, other information (e.g., presence of external incentive, no previous mental health treatment history, other test scores) would be needed before malingering could be ruled in. In this light, the classification accuracies of F-r and F-pr are impressive.

A final point of discussion is of methodological nature. In the current study, we used a known-groups design with a well-established external measure (SIRS) as the criterion on which groups were formed. Although the SIRS has excellent specificity and PPP rates, sensitivity rates are lower (Rogers et al., 1992). Several malingering individuals would have been classified as indeterminate by the SIRS and included among nonmalingers in the current study; therefore, their presence in the nonmalingering group might violate the assumption of a bona fide known-groups design. Consequently, we also analyzed the data without the participants who were classified as indeterminate. The same pattern of findings emerged (albeit somewhat stronger), and it is noteworthy that classification accuracies, especially at low base rates, improved substantially. Future researchers should take these findings into account and weigh the importance of generalizability of findings from a sample to a population that obviously includes intermediates versus need for clean groups with the potential overstatement of scales’ utility in detecting malingering.

There are some limitations of this research that need to be acknowledged. First, it is important to note that although the SIRS is currently considered the gold standard for assessing malingering, this external criterion method is not perfect, and it too is associated with some classification error. Although using a cut score of three or more primary scales in the probable feigning or one scale in the definite feigning range is associated with near-perfect specificity, sensitivity has varied in different investigations (Gothard, Viglione, Meloy, & Sherman, 1995; Rogers et al., 1992). This would suggest that our current findings may be an underestimate in detecting malingering, as some actual malingers may have been in the nonmalingering group. These findings therefore require replication using other research designs (e.g., analogue simulation designs) and other response bias criterion measures.

Moreover, because of the archival nature of the database, we could not calculate reliability estimates for the SIRS, including internal consistency and interrater reliability. However, as indicated earlier, previous research has consistently reported very high reliability estimates, and given the structured response format, these estimates are not surprising, and it is unlikely that significant random measurement error has influenced our results.

Table 3

Classification Accuracy Statistics for F-R and F-pr-R in Differentiating Between Malingering and Nonmalingering Groups

<table>
<thead>
<tr>
<th>Cutoff score</th>
<th>SN</th>
<th>SP</th>
<th>OCC</th>
<th>PPP</th>
<th>NPP</th>
<th>BR = .15</th>
<th>PPP</th>
<th>NPP</th>
<th>PPP</th>
<th>NPP</th>
<th>BR = .30</th>
<th>PPP</th>
<th>NPP</th>
<th>BR = .50</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-r</td>
<td></td>
</tr>
<tr>
<td>T = 120</td>
<td>.89</td>
<td>.88/.91</td>
<td>.88/.91</td>
<td>.56/.64</td>
<td>.98/.98</td>
<td>.76/.81</td>
<td>.95/.95</td>
<td>.88/.91</td>
<td>.89/.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T > 115</td>
<td>.93</td>
<td>.82/8.4</td>
<td>.84/8.8</td>
<td>.47/51</td>
<td>.98/.98</td>
<td>.68/.72</td>
<td>.96/96</td>
<td>.83/86</td>
<td>.92/92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T > 105</td>
<td>.96</td>
<td>.78/8.0</td>
<td>.82/8.4</td>
<td>.43/46</td>
<td>.99/99</td>
<td>.65/67</td>
<td>.98/98</td>
<td>.81/83</td>
<td>.95/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T > 100</td>
<td>.96</td>
<td>.72/7.4</td>
<td>.78/7.9</td>
<td>.38/40</td>
<td>.99/99</td>
<td>.60/62</td>
<td>.98/98</td>
<td>.78/7.9</td>
<td>.95/95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-pr</td>
<td></td>
</tr>
<tr>
<td>T > 110</td>
<td>.67</td>
<td>.94/9.7</td>
<td>.88/9.0</td>
<td>.66/78</td>
<td>.94/94</td>
<td>.82/90</td>
<td>.87/87</td>
<td>.92/95</td>
<td>.74/74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T > 100</td>
<td>.74</td>
<td>.90/9.2</td>
<td>.88/8.8</td>
<td>.56/63</td>
<td>.95/95</td>
<td>.76/80</td>
<td>.89/89</td>
<td>.88/90</td>
<td>.78/78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T > 90</td>
<td>.74</td>
<td>.85/8.8</td>
<td>.81/8.5</td>
<td>.46/52</td>
<td>.95/95</td>
<td>.67/72</td>
<td>.88/89</td>
<td>.83/86</td>
<td>.77/77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T > 80</td>
<td>.85</td>
<td>.78/8.1</td>
<td>.79/8.2</td>
<td>.40/44</td>
<td>.97/97</td>
<td>.62/66</td>
<td>.92/93</td>
<td>.79/82</td>
<td>.84/85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Optimal cut score is set in bold font. Values to the left of a slash are when the nonmalingering group with intermediates is used, whereas values to the right of a slash are when the nonmalingering group without intermediates is used. F-r = Infrequent Responses; F-pr = Infrequent Psychopathology Responses; SN = sensitivity; SP = specificity; OCC = overall correct classification; BR = base rate; PPP = positive predictive power; NPP = negative predictive power; T = T score.

a OCC values are based on base rates in the current sample (.22 and .23 for nonmalingering groups with and without intermediates, respectively.

...
In light of these limitations, we also have recommendations for future research. The results of the current investigation warrant replication in samples derived from different contexts (correctional, inpatient, personal injury, etc.). Researchers also need to continue to use other research designs, including analogue simulation and bootstrapping paradigms (see Rogers, 2008). It is also important to examine the utility of these scales in identifying malingering of specific forms of psychopathology with specific diagnostic comparison groups. Such research has particular implications for determining which validity scale works best in different contexts but also for determining the stability of optimal cut scores, particularly with F-r. Finally, the MMPI–2–RF primarily makes use of the rare symptom and quasi-rare symptom detection strategies (cf. Rogers, 2008), which have proved quite successful. Nonetheless, Rogers et al. (2003) showed that the erroneous subtype detection strategy (as approximated with the MMPI–2 Disimulation scale) is a close second. Therefore, it would be worthwhile to explore whether additional malingering detection strategies would add useful information to the rare symptom strategy in identifying such response bias.

References

Rogers, R., Bagby, R. M., & Dickens, S. E. (1992). Structured Interview of

Received June 26, 2009
Revision received October 12, 2009
Accepted October 13, 2009