Life Sciences


Rose Rosette Disease (RRD) harms the global rose supply by modification of the growth and development in rose cultivar. RRD spreads via a negative-sense RNA plant virus transmitted by eriophyid mites. Importantly, there is no pre-existing knowledge about the biochemistry by which this virus debilitates roses. Here we implicate glyceraldehyde-3-phosphate dehydrogenase (GAPDH), one of the major metabolic enzymes in plants, as a possible target of the virus. Genomic DNA of the cytosolic form of the protein encoded by GAPC was extracted from both virally-infected and non-infected samples of the Rosa hybrid cultivar Rosa Tropicana. The sequence results provided several distinct differences in the GAPC gene of the non-infected rose compared to the virally-infected rose. Importantly, these modified nucleotide bases resulted in a putative protein sequence containing four unique non-conserved amino acid substitutions in the GAPDH enzyme. This study provides the first evidence of a gene impacted in virally-infected rose plants.

Mentor Name

Jacob Adler

Mentor Email


Figure 1.pdf (6088 kB)
Pictorial Representation