On Association Schemes with Multiplicities 1 or 2

Department

Mathematics and Statistics

Document Type

Article

Publication Date

11-2021

Abstract

Inspired by the work of Amitsur [1] on finite groups whose irreducible characters all have degree (multiplicity) 1 or 2, in this paper we study association schemes whose irreducible characters all have multiplicity 1 or 2. We will first show that the general case can be reduced to commutative association schemes. Then for commutative association schemes with multiplicities 1 or 2, we prove that their Krein parameters are all rational integers. Using automorphism groups of association schemes, we obtain a characterization and classification of those commutative association schemes all valencies and multiplicities of which are 1 or 2 in terms of Cayley schemes.

Journal Title

Journal of Algebra

Share

COinS