Abstract

Heavy metals such as lead and arsenic exist in drinking water sources worldwide, largely as a result of industrial spills, mining, and other environmental contamination events. When ingested, even in very small amounts, these metals can cause biological damage, including but not limited to brain damage and cancers. Often these impacts occur in rural and/or agricultural communities, exacerbating existing equity issues. Heavy metal detection methods exist, but most require a skilled professional, limiting the utility of these methods in remote locations. To be useful, a platform must be sensitive and specific, having an appropriately low limit of detection and accurately distinguishing lead and arsenic from other naturally occurring, benign species. Building on the work of Marei et al, 2019, here we describe advances in using an electrochemical method for detection and quantification of lead and arsenic in water sources, in pursuit of an affordable, remotely-operated measurement platform. We focus specifically on the electrode materials, comparing carbon, gold, and platinum printed electrodes. When optimized and affordably fabricated, this platform will allow for remote detection and quantification of heavy metals, enabling regular monitoring in at-risk areas at risk for contamination.

Semester/Year of Award

Spring 2022

Mentor

Judith L. Jenkins

Mentor Department Affiliation

Chemistry

Access Options

Restricted Access Thesis

Document Type

Bachelor Thesis

Degree Name

Honors Scholars

Degree Level

Bachelor's

Department

Chemistry

Share

COinS